Global Kuranishi charts for Gromov–Witten moduli spaces and a product formula

Symplectic Zoominar

Amanda Hirschi

joint work with Mohan Swaminathan

University of Cambridge

April 21st, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Set-up

Let (X, ω) be a closed symplectic manifold and $J \in \mathcal{J}_{\tau}(X, \omega)$. We want to define invariants using the *moduli space of stable maps*

$$\overline{\mathcal{M}}_{g,n}^J(X,\beta).$$

It consists of *J*-holomorphic maps $u: C \to X$ where *C* is of the form and

- 1. g the arithmetic genus,
- 2. n = # marked points,
- 3. $[u] = \beta \in H_2(X, \mathbb{Z}),$
- 4. stable iff $|\operatorname{Aut}(u, C, x_1, \ldots, x_n)| < \infty$.

900

Gromov-Witten invariants

 $\overline{\mathcal{M}}^J_{g,n}(X,\beta)$ is compact and metrisable. Using

we want to define

$$\mathrm{GW}_{\beta,g,n}^{(X,\omega)} \colon H^*(X^n,\mathbb{Q}) \to H^*(\overline{\mathcal{M}}_{g,n},\mathbb{Q})$$

by

$$\mathsf{GW}_{\beta,g,n}^{(\boldsymbol{X},\omega)}(\alpha) = \mathsf{PD}(\mathsf{st}_{\ast}(\mathsf{ev}^{\ast}\alpha \cap [\overline{\mathcal{M}}_{g,n}^{J}(\boldsymbol{X},\beta)])).$$

Problem: $\overline{\mathcal{M}}_{g,n}^J(X,\beta)$ often does not admit a fundamental class in the expected degree \rightsquigarrow replace with a suitable *virtual fundamental class*

Global Kuranishi chart

A global Kuranishi chart ${\mathcal K}$ for a compact space ${\mathcal M}$ consists of

- a compact Lie group G,
- a G-manifold \mathcal{T} , the *thickening*, with finite isotropy
- a G-vector bundle $\mathcal{E} \to \mathcal{T}$, the obstruction bundle,
- an equivariant section $\mathfrak{s} \colon \mathcal{T} \to \mathcal{E}$ such that

 $\mathfrak{s}^{-1}(0)/G\cong \mathcal{M}.$

The virtual dimension of $\mathcal M$ is

$$\mathsf{vdim}_{\mathcal{K}}(\mathcal{M}) := \mathsf{dim}(\mathcal{T}) - \mathsf{dim}(\mathcal{G}) - \mathsf{rank}(\mathcal{E}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Virtual fundamental class

An orientation of \mathcal{K} is a *G*-orientation of $[T\mathcal{T} - \mathfrak{g}]$ and of \mathcal{E} .

Given this, the virtual fundamental class $[\mathcal{M}]^{\text{vir}} \in \check{H}^d(\mathcal{M}, \mathbb{Q})^*$ is the composition

$$\check{H}^{vdim}(\mathcal{M};\mathbb{Q}) \xrightarrow{\simeq} H^{\mathcal{G}}_{\mathsf{rank}(\mathcal{E})}(\mathcal{T},\mathcal{T} \backslash \mathfrak{s}^{-1}(0);\mathbb{Q}) \xrightarrow{\mathfrak{s}^* \tau} \mathbb{Q}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where τ is the equivariant Thom class of \mathcal{E} .

Remark We use \mathbb{Q} -coefficients due to the G-action.

Main result

Theorem (H.-Swaminathan, 2022)

Let $g, n \ge 0$ be arbitrary.

- a) $\overline{\mathcal{M}}_{g,n}^{J}(X,\beta)$ admits an oriented global Kuranishi chart of the expected virtual dimension.
- b) Its virtual fundamental class is independent of the auxiliary choices made during the construction.
- c) Given another $J' \in \mathcal{J}_{\tau}(X, \omega)$, we can make the auxiliary choices, so that there exists a cobordism between the global Kuranishi charts associated to the respective moduli space.

$$\rightsquigarrow \quad \mathsf{GW}^{(X,\omega)}_{\beta,g,n} := \mathsf{PD}(\mathsf{st}_*(\mathsf{ev}^*(-) \cap [\overline{\mathcal{M}}^J_{g,n}(X,\beta)]^{\mathsf{vir}}))$$

is well-defined

Remarks

- 1. *Local* Kuranishi chart has been used in several approaches before. A global Kuranishi chart removes the need for a complicated patching-together of the virtual fundamental class.
- Abouzaid, McLean and Smith (AMS) were the first to construct a global Kuranishi chart in genus 0. (arXiv:2110.14320) They have an independent construction in higher genus.
- 3. AMS construct a Morava K-theory valued virtual fundamental class \rightsquigarrow quantum K-theory

 Bai-Xu: Z-valued Gromov–Witten type invariants (arXiv:2201.02688)

Product formula

Theorem (H.-Swaminathan, 2022) If $(X, \omega) = (X_0, \omega_0) \times (X_1, \omega_1)$, then $\sum_{p_{i_*}\beta = \beta_i} \mathsf{GW}^{(X,\omega)}_{\beta,g,n}(\alpha_0 \times \alpha_1) = \mathsf{GW}^{(X_0,\omega_0)}_{\beta_0,g,n}(\alpha_0) \smile \mathsf{GW}^{(X_1,\omega_1)}_{\beta_1,g,n}(\alpha_1)$

for any $(g, n) \notin \{(1, 1), (2, 0)\}$ and $\alpha_i \in H^*(X_i^n, \mathbb{Q})$.

In particular, the small quantum cohomology ring splits over the universal Novikov ring Λ_0 :

$$\mathsf{QH}^*(X) \cong \mathsf{QH}^*(X_0) \otimes_{\Lambda_0} \mathsf{QH}^*(X_1).$$

Constructing a global Kuranishi chart from scratch

(日) (四) (日) (日) (日)

In our case (for n = 0):

- rigidifying data: highly positive embeddings C → P^N (framings);
 → B = M^{*}_σ(P^N, m) consists of embedded regular curves in P^N
- perturbations are elements of

 $H^{0}(C, \overline{\operatorname{Hom}}_{\mathbb{C}}(T_{\mathbb{P}^{N}}|_{C}, u^{*}T_{X}) \otimes \mathcal{O}_{C}(k)) \otimes \overline{H^{0}(\mathbb{P}^{N}, \mathcal{O}(k))}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for some $k \gg 1$ (an auxiliary choice)

• G = PU(N + 1) acts on the framing and the perturbation term

The case of n > 0 follows formally.

Equivalence of global Kuranishi charts

We call two global Kuraishi charts *equivalent* if they are related by a zigzag of the following moves

- (Germ equivalence) Given $U \subseteq \mathcal{T}$ open *G*-invariant neighbourhood of $\mathfrak{s}^{-1}(0)$: $(G, \mathcal{T}, \mathcal{E}, \mathfrak{s}) \rightsquigarrow (G, U, \mathcal{E}|_U, \mathfrak{s}|_U)$
- (Group enlargement) Given a principal G'-bundle $q: \mathcal{P} \to \mathcal{T}$ with compatible G-action: $(G, \mathcal{T}, \mathcal{E}, \mathfrak{s}) \rightsquigarrow (G \times G', \mathcal{P}, q^*\mathcal{E}, q^*\mathfrak{s})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• (Stabilisation) Given a *G*-vector bundle $p: W \to T$: $(G, T, \mathcal{E}, \mathfrak{s}) \rightsquigarrow (G, W, p^*\mathcal{E} \oplus p^*W, p^*\mathfrak{s} \oplus \delta_W)$

Constructing a global Kuranishi chart from a given one

Question: Given a map $\psi \colon \mathcal{M} \to \mathcal{N}$ between moduli spaces, can we lift it to a map $\mathcal{K}_{\mathcal{M}} \to \mathcal{K}_{\mathcal{N}}$ between global Kuranishi charts?

Answer: Usually not.

But: Global Kuranishi charts can be pulled back along maps to their base space.

- \rightsquigarrow use $\mathcal{K}_\mathcal{N}$ to construct a new global Kuranishi chart $\tilde{\mathcal{K}}_\mathcal{M}$ which
 - i) comes with a natural map $\widetilde{\mathcal{K}}_{\mathcal{M}} \to \mathcal{K}_{\mathcal{N}}$
 - ii) is equivalent to $\mathcal{K}_{\mathcal{M}}$ (work required).

Remark: This is the key idea in the proof of the product formula, using the map

$$\overline{\mathcal{M}}_{g,n}^*(\mathbb{P}^{N_0}\times\mathbb{P}^{N_1},(m_0,m_1))\to\overline{\mathcal{M}}_{g,n}^*(\mathbb{P}^{N_0},m_0)\times\overline{\mathcal{M}}_{g,n}^*(\mathbb{P}^{N_1},m_1).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank you for your attention!