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Twist maps
Consider an exact symplectic twist map T of the cylinder A with
symplectic coordinates (q, p). Denote by H(q, q′) the generating function,
i.e p′dq′ − pdq = dH so that p′ = ∂2H(q, q′), p = −∂1H(q, q′) . We
assume the negative twist condition: H12(q, q

′) > 0. Variational principle
for configurations: {qn} →

∑
nH(qn, qn+1).

Example
1. The standard-like map H(q, q′) = 1

2 (q − q′)2 + V (q), where V is a
periodic potential. Here H12 = −1- positive twist.
2. Let γ be a C2-convex closed curve in the plane. Birkhoff billiard map
T : (s, δ) 7→ (s1, δ1) ⇔ Ls = − cos δ, Ls1 = cos δ1 . Here
L(s, s1) = |γ(s)− γ(s1)|, and L12 = sin δ sin δ1

L > 0-negative twist.
γ(s)

γ(s1)

δ

δ1

L(s, s1)
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We study locally maximizing configurations, i.e. those configurations
{qn} such that any finite subsegment {qn}Nn=M ,M ≤ N is a local
maximum of the truncated functional

FM,N (xM , ..., xN ) = H(qM−1, xM ) +
N−1∑
i=M

H(xi, xi+1) +H(xN , qN+1).

We shall call such configurations, m-configurations, and the
corresponding orbits on the phase cylinder A, m-orbits.
If the matrix of second variation of some finite segment of a
configuration {qn} is negative semi-definite, then the matrix of second
variation of any proper sub-segment is negative definite.
Let MH ⊂ A the set swept by all m-orbits corresponding to H. The set
MH is a closed invariant set of T .
By twist map theory, MH contains all rotational invariant curves as well
as Aubry-Mather sets (Cantor-tori).
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Criterion for m-orbits
Theorem 1 [B.-Tsodikovich]. Let T : A 7→ A be an exact twist map
with the twist condition H12 > 0. Then the orbit {(qn, pn)} is an m-orbit
if and only if there exists a positive Jacobi field along {qn}.
A Jacobi field along a configuration {qn} is a sequence {δqn} satisfying
the discrete Jacobi equation:

bn−1δqn−1 + anδqn + bnδqn+1 = 0, (1)

an := H22(qn−1, qn) +H11(qn, qn+1), bn := H12(qn, qn+1).

Any solution to the Jacobi equation {δqn} can be lifted to a T -invariant
vector field (δqn, δpn) along the orbit (and vice versa) where

δpn = −H11(qn, qn+1)δqn −H12(qn, qn+1)δqn+1,

or equivalently, due to the Jacobi equation:

δpn = H22(qn−1, qn)δqn +H12(qn−1, qn)δqn−1.
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The matrix of second variation of FMN has the following Jacobi form:

WMN = δ2FMN =


aM bM 0 · · · 0 0
b∗M aM+1 bM+1 · · · 0 0
... . . . . . . . . . ...
0 · · · b∗N−2 aN−1 bN−1

0 · · · 0 b∗N−1 aN

 ,

Proof of the criterion uses discreet Sturm theory for the Jacobi equation.
For example positive Jacobi field can be constructed (similar to E.Hopf in
Riemannian case) as follows:
Set ξ(k)n be the Jacobi field satisfying the boundary conditions
ξ
(k)
0 = 1, ξ

(k)
k = 0, and define δqn := lim

k→+∞
ξ(k)n ⇒ δqn > 0

0

1

k

Here one can show that the graphs of two Jacobi fields intersect at most
once (due to negative definiteness of W ).
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Criterion in the opposite direction
Assume now that there exists a positive Jacobi field along a configuration
{qn}. Then it follows from the discrete Sturm Separation Theorem that
any other Jacobi field along {qn} which vanishes at n = K keeps a
constant sign for all n < K and the opposite sign for all n > K. We
show that the matrix W1N is negative definite. For the principal minors
Mk of the matrix W1N we have the recursion formula

Mk+1 = ak+1Mk − b2kMk−1,

where by convention M0 = 1,M−1 = 0.
The Jacobi field {ξn} such that ξ0 = 0, ξ1 = 1. Then we have the
formula

ξk+1 = (−1)k
Mk

b1b2 · · · bk
. (2)

Indeed, (2) holds true for k = 1, and then can be verified by induction. It
follows from (2) that the sign of Mk equals (−1)k for all k ≥ 1, since all
ξk are positive for k ≥ 1. This proves negative definiteness of the matrix
W1N .
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Function ω
Let {(pn, qn)} be an m-orbit of the point z = (p0, q0). Then by the
Criterion there exists an invariant vector field {(δpn, δqn)} along the orbit
{(pn, qn)} such that δqn > 0 (normalized by δq0 = 1).

δpn = −H11(qn, qn+1)δqn −H12(qn, qn+1)δqn+1,

or equivalently, due to the Jacobi equation:

δpn = H22(qn−1, qn)δqn +H12(qn−1, qn)δqn−1.

Set ω(pn, qn) :=
δpn
δqn

. One can prove that ω is measurable on M and

{
ω(T (p, q)) = H22(q, q1) +H12(q, q1)δq1(q, p)

−1,

ω(p, q) = −H11(q, q1)−H12(q, q1)δq1(q, p).

Therefore by the twist condition we have the bounds

H22(q−1, q0) < ω(q0, p0) < −H11(q0, q1). (3)

(used by MacKay, Percival for converse KAM). Here H22 (and −H11) is
the slope of the image (respectively pre-image) of ∂/∂p under T .

Misha Bialy Tel Aviv University, Israel Rigidity for convex billiards



V

α = DT (V ), Slope = H22

β = DT−1(V ), Slope = −H11

H22 < ω < −H11
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Two generating functions

Consider a map of the cylinder A which is a twist map wrt two sets of
symplectic coordinates (q, p) and (x, y), with generating functions H,G
respectively.
Natural question: Does the equality MH = MG hold ? We claim ”yes”
under assumption (GA) below.
At every point z ∈ MH one can partition the tangent space TzA to four
cones that are determined by the image α and pre-image β (by T ) of the
vertical direction ∂

∂p .
We denote by NH the “north” cone. Similarly, we define NG, for every
point z ∈ MG. by the image and pre-image of the vertical direction ∂

∂y .
We shall assume the following:
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Geometric assumption :

{
∀z ∈ MH =⇒ ∂

∂y (z) ∈ NH ,

∀z ∈ MG =⇒ ∂
∂p (z) ∈ NG.

(4)

NH

SH

WH EH

βH

αH

∂
∂p

∂
∂y
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Theorem 2 [B.-Tsodikovich]. Let T : A → A be an exact twist map,
with respect to two sets of symplectic coordinates, (q, p) and (x, y) and
generating functions H,G satisfying the twist condition H12, G12 > 0.
Assume the geometric assumption holds. Then the sets of m-orbits
corresponding to the variational principles for H and G coincide:

MH = MG.

Corollary Let L, S be generating functions for billiard map, as we
explain below. Then Geometric assumption is satisfied (can be checked
explicitly) and hence ML = MS .

Remark Theorem and Corollary hold true for higher dimensions,
Geometric assumption must be modified slightly: there exists a homotopy
of Lagrangian subspaces {Vt} connecting V S and V H , such that the
subspace Vt is transversal to all four subspaces αS , βS , αH , βH .
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GA versus Tonelli

Let us remind a result by Bernard and by Mazzucchelli and Sorentino on
Tonelli Hamiltonians. It was shown that if a Tonelli Hamiltonian remains
Tonelli after an exact symplectic change of variables, then the Aubry,
Mañe, and Mather sets are the same for both Hamiltonians.

Every exact symplectic twist map of a cylinder can be seen as a
time-one map for some Tonelli Hamiltonian by Moser, 1986. This
suggests that in the two dimensional case, the result on Tonelli
Hamiltonians and our results may be connected. It is also known that a
higher dimensional twist maps that satisfies a “symmetric” twist
condition is also a time-one map of a Tonelli Hamiltonian.

However, this interpolation result is not known for general Twist
maps/ Birkhoff billiards in high dimension. In our approach we deal
directly with the discrete system, and do not rely on interpolation by
Tonelli Hamiltonians.
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Proof of Theorem 2.
Let us show, for example, the inclusion MH ⊆ MG. Take any m-orbit
(qn, pn) in MH . By the Criterion, there exists a non-vertical T -invariant
vector field (δqn, δpn) along the m-orbit, with δqn > 0. Since for
ω = δpn

δqn
we know H22 < ω < −H11, then this vector field lies in the cone

EH . Hence this invariant field in coordinates (x, y) satisfies δxn > 0.
NH

SH

WH EH

βH

αH

∂
∂p

∂
∂y
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Symplectic structure on the space of lines.
Phase cylinder A=Space of oriented lines. Natural symplectic structure ω
can be written in two ways:

L

l → (s, cos δ)

ω = d(cos δds) = sin δds ∧ dδ

δ

h(ϕ)

O

x1 cosϕ+ x2 sinϕ = h(ϕ)

ϕ

p

ω = dp ∧ dϕ

x1

l → (p,ϕ)
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Generating function L

Let T be the billiard map T : A → A, T ∗ω = ω.
For the primitive 1-form λ1 = (cos δ)ds, dλ1 = ω we have

T ∗λ1 − λ1 = dL ⇔ cos δ1ds1 − cos δds = dL(s, s1).

Here
T : (s, δ) 7→ (s1, δ1) ⇔ Ls = − cos δ, Ls1 = cos δ1.

Here L(s, s1) = |γ(s)− γ(s1)| the length of the chord.
γ(s)

γ(s1)

δ

δ1

L(s, s1)
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Non-standard generating function S in the plane
ω = dp ∧ dφ, λ2 = pdφ.

T ∗λ2 − λ2 = p1dφ1 − pdφ = dS

Theorem[B-M] For planar billiard Generating function S takes the form

S(φ,φ1) = 2h (ψ) sin (δ) ; ψ =
φ+ φ1

2
, δ =

φ1 − φ

2

ϕ

p

ϕ1
p1

n(ψ)

δ

δ = ϕ1−ϕ

2
, ψ = ϕ1+ϕ

2

S(ϕ,ϕ1) = 2h(ψ) sin δ

0

p = h(ψ) cos δ − h′(ψ) sin δ = −Sφ
p1 = h(ψ) cos δ + h′(ψ) sin δ = Sφ1
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Effective version of Birkhoff conjecture
Non-standard generating function S can be used to give an effective
version of Birkhoff conjecture for centrally symmetric curves. This is
done by sharp estimation of the invariant set ∆ which is the complement
to the set M occupied by locally-maximizing orbits (m-orbits). Set M
contains all rotational invariant curves and all Cantor tori.
It is crucial that the set M does not depend on the choice of the
generating function L or S. Let α be the invariant curve of rotation
number 1/4 consisting of 4-periodic orbits.

α

A

ᾱ

B

A

∆A = A−M, ∆B = B −M

∆ = A−M
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Consider the class C of centrally symmetric, strictly convex, C2 smooth
curves, for which the billiard map has an invariant curve α with rotation
number 1/4 consisting of 4-periodic orbits.
Let A be the domain bounded by α and the upper boundary of the
cylinder, and by M the subset of A swept by m-orbits.

Theorem 3 [B.-Tsodikovich]. Let γ ∈ C, Denote by h : [0, 2π] → R the
support function of γ, with respect to the center of symmetry. Set
∆A = A \M. Then the following estimate for the measure holds true:

µ(∆A) ≥
25π2

32
β3d2(h2, U),

where 0 < β is the minimal curvature of γ, U is the subspace of L2[0, π]
spanned by {1, cos(2ψ), sin(2ψ)}, and d(·, U) is the L2- distance from
this subspace. Moreover, this bound is sharp for ellipses.
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Birkhoff conjecture for centrally symmetric case [B-M]

Corollaries of Theorem 3
1. If µ(∆A) = 0 then γ is an ellipse.

2. Assume the domain A is foliated by rotational invariant curves of T .
Then by M.Hermann’ result each orbit is m-orbit and hence it follows
from 1. that γ is an ellipse.

3. Assume that there is a field of non-vertical lines on A, oriented to the
right, and such that it is invariant under T (together with the
orientation) then γ is an ellipse (Every orbit is an m-orbit, since there
exists a positive Jacobi field, hence Theorem 3 applies).

4. For γ ∈ C which is not ellipse, there always exist billiard orbits in A
having conjugate points with respect to each set of coordinates (s, δ) and
(φ, p).
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Effective Rigidity apart from the boundary

Let γ ∈ C, let α, ᾱ be the invariant curves of 4-periodic orbits, B be the
domain between them on the phase cylinder.
Let ∆B := B \M.

α

A

ᾱ

B

Figure: The region B
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Theorem 4 [B]. Suppose that the billiard ball map T of γ has a
continuous rotational invariant curve α ⊂ A of rotation number 1/4,
consisting of 4-periodic orbits. Let ᾱ be the corresponding invariant
curve of rotation number 3

4 . Then the following estimate holds;

3

64
β(P 2 − 4πA) ≤ µ(∆B), (5)

where P ,A denote the perimeter and the area of γ, and β is the minimal
curvature of γ.
Corollary
If µ(∆B) = 0 then γ is a circle.
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Mather β-function
Given a rotation number ρ, Mather β-function for a positive twist map
assigns to ρ the average action of a minimal action trajectory with
rotation number ρ. For convex billiard β(mn ) = perimeter of the periodic
billiard configuration divided by the number of vertices.

Theorem 5 [B]. Let Ω1,Ω2 be two strictly convex C2-smooth centrally
symmetric planar domains such that Ω1 is an ellipse. Suppose that
Mather β-functions β1, β2 of the domains satisfy

β1(ρ) = β2(ρ), ∀ρ ∈
(
0,

1

4

]
.

Then Ω2 is an ellipse isometric to Ω1.

Remarks
1. Can other domains be distinguished by the β-function.
2. This circle of questions was first addressed in the book by K.F.Siburg,
then by Kaloshin, Sorrentino.
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β-function of ellipses explicitly
There is a simple way to compute β-function for ellipses using
non-standard generating function.

Theorem (...?;Reznik, Garcia, Koiller; B.)
Consider the invariant curve of rotation number ρ corresponding to the
caustic Eλ =

{
x2

a2−λ + y2

b2−λ = 1
}
, 0 < λ < b2 < a2. Then

β(ρ) =
2ce

√
e2 − f2

e2 − 1
− 2cf

K(k)
[K(k)E(ϕ, k)− E(k)F (ϕ, k)], where

k = 1
f , ϕ = arcsin

√
λ
b , and E(ϕ, k) is elliptic integral of the second kind,

K(k), E(k) are complete elliptic integrals of first and second kind, and
e, f are eccentricities of the ellipses E,Eλ.

Corollary

β(ρ) =
2a

√
λ

b
− 2

√
a2 − λE(ϕ, k) + ρ|Eλ|, where

ϕ = arcsin
√
λ
b , k = 1/f, and |Eλ| is the circumference of Eλ.
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Proof of Theorem 5
1. By a Theorem of J.Mather the function β is differentiable at any
irrational point. It is differentiable at a rational point ρ, iff there is a
rotational invariant curve consisting of periodic orbits with rotation
number ρ. It then follows from this theorem and Aubry-Mather theory
that there exist invariant curves of all rotation numbers ρ ∈ (0, 14 ] which
foliate the annulus A. Thus Corollary 1 implies that Ω2 must be an
ellipse.

P
P

α

A

β+

β
−
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2. We need to show that this ellipse is an isometric copy of Ω1. Indeed
let ai > bi, i = 1, 2 are the semi-axis. First,

β1

(1
4

)
= β2

(1
4

)
⇒ a21 + b21 = a22 + b22.

b

a
β
(

1

4

)

=

√

a2 + b2

Second, mention that by the definition β(0) = 0 holds true for any
domain. But, β′

1(0) = |Ω1| = β′
2(0) = |Ω2| -the circumferences of the

domains. We have:
|Ω| =

∫ 2π

0

h(ψ)dψ.

Therefore for the ellipses Ω1,2 we write
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|Ωi| = 4

∫ π/2

0

√
a2i + b2i

2
+
a2i − b2i

2
cos 2ψ dψ =

= 2
√
2

∫ π

0

√
(a2i + b2i ) + (a2i − b2i ) cos t dt = 2

√
2

∫ π

0

√
A+ c2i cos t dt,

where A := a21 + b21 = a22 + b22. Consider now the last integral as a
function of the parameter C := c2 = a2 − b2, while A is fixed.

f(C) := 2
√
2

∫ π

0

√
A+ C cos t dt

Differentiating f with respect to C we obtain for f ′(C):

√
2

∫ π

0

cos t√
A+ C cos t

dt =
√
2

∫ π/2

0

[
cos t√

A+ C cos t
− cos t√

A− C cos t

]
dt.

It is easy to see that the for t ∈ (0, π/2) the integrand is negative, hence
f is strictly monotone decreasing in C. Therefore, the equality
|Ω1| = |Ω2| is possible only when C1 = C2. Hence the ellipses are
isometric.
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Question. How many values of β-function determine the ellipse in the
class of ellipses. More precisely we ask if ellipse is determined by any two
values of β-function β(ρ1), β(ρ2) for the rotation numbers ρ1,2 ∈ (0, 12 ].
Notice that in [Sorrentino] the reconstruction of ellipse is given by means
of infinitesimal data of the β-function near 0.
A partial result in the direction of this question is the following

Theorem 6. Ellipse can be determined by two values of β(ρ1), β(ρ2)
where ρ1 = 1

2 and ρ2 = m
n is any rational in (0, 12 ).

Proof
Notice first that β( 12 ) = 2a is the diameter of ellipse. We argue by
contradiction. Suppose Ω1,Ω2 are two ellipses with the same diameter
2a, satisfying β1(mn ) = β2(

m
n ), but b1 < b2.
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Introduce a linear map A which is the expansion map along the y-axes
transforming Ω1 to Ω2.

Ω1

Ω2

2a

Denote by P1, P2 two Poncelet polygons of the rotation number m
n for

Ω1 and Ω2, respectively. Obviously, the polygons A(P1) and P2 have the
same rotation number. The condition β1(mn ) = β2(

m
n ) implies that the

perimeters of P1,2 are equal:

|P1| = |P2| ⇒ |A(P1)| > |P2|.

However, this contradicts the fact P2 is a Poncelet polygon is a length
maximizer in its homotopy class.
Remark. It is plausible that the result remains valid when the rotation
number ρ2 is irrational.
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Idea of Proof of Theorem 3.
Let C be the class of centrally symmetric, strictly convex, C2 smooth
curves, for which the billiard map has an invariant curve of 4-periodic
orbits.
Proposition. For the class C the following description holds:

C = {γ | h2(ψ) = c0 +
∑

n∈2+4Z
cne

inψ, h+ h′′ > 0}. (6)

More precisely, given a C2 function h : [0, 2π] → R satisfying both
conditions in the definition of the class C, there exists a curve γ ∈ C for
which the support function is h.

P0 = P0(ψ)

P1 = Tα(ψ)

P2 = T 2

α
(ψ) = −P0

P3 = T 3

α
(ψ) = −P10

Q0

Q1
Q2

Q3

d(ψ)

d(Tα(ψ))

d(T 2

α
(ψ))
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Fourier decomposition of h2 also yields the identity
h2(ψ) + h2(ψ + π

2 ) = 2c0 =: R2, where c0 = h2(0). Therefore, we can
find a π-periodic function d, 0 < d(ψ) < π

2 for which{
h(ψ) = R sin d(ψ),
h(ψ + π

2 ) = R cos d(ψ).
(7)

Theorem 2 implies that we can can work with the generating function S.
Consider an m-orbit of the point (φ, p).
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We have the relations:{
ω(p1, φ1) = S22(φ,φ1) + S12(φ,φ1)δφ1(φ, p)

−1,

ω(p, φ) = −S11(φ,φ1)− S12(φ,φ1)δφ1(φ, p).

We multiply the first equation by p21, and the second by p2, and subtract

p21ω(φ1, p1)− p2ω(φ, p) =

= p2S11(φ,φ1) + p21S22(φ,φ1) + S12

(
p2δφ1(φ, p) + p21δφ1(φ, p)

−1
)
≥

≥ p2S11(φ,φ1) + p21S22(φ,φ1) + 2pp1S12(φ,φ1).

We used the fact that δφ1 and S12 are positive. Now integrate both
sides of this inequality on the invariant set M∩A, with respect to the
invariant measure dµ. The integral of the left hand side vanishes, hence:∫
M∩A

(
p2S11(φ,φ1) + p21S22(φ,φ1) + 2pp1S12(φ,φ1)

)
dµ ≤ 0.
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Ellipse vs circle
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Substitute the second partials of S and p, p1 and
dµ = 1

4 (h(ψ) + h′′(ψ)) sin δdδdψ.
p = −S1(φ,φ1) = h(ψ) cos δ − h′(ψ) sin δ
p1 = S2(φ,φ1) = h(ψ) cos δ + h′(ψ) sin δ,
where ψ = φ+φ1

2 , δ = φ1−φ
2 .

Then after simplification, we get the following inequality

0 ≥
∫

M∩A

[
cos2 δ sin δ

(
h′′h2 + 3h(h′)2

)
− h(h′)2 sin δ

]
dµ. (8)

Call the first summand of the integrand A, and the second one B. Then
inequality (8) gives:

0 ≥
∫

M∩A

A−B dµ =

∫
A

A−B dµ−
∫

∆A

A−B dµ ≥
∫
A

A−B dµ−
∫

∆A

A dµ,

Since the function B = h(h′)2 sin δ is non-negative.
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Therefore we get: ∫
A

(A−B)dµ ≤
∫

∆A

Adµ. (9)

Next, it can be simplified by Lemma 5.1 of [Bialy-Mironov]

∫
A

(A−B)dµ =
πR4

1024

π∫
0

(µ′′)2 − 4(µ′)2dψ,

where µ(ψ) = cos(2d(ψ)). Now we bound this integral from below, and
bound

∫
∆A

Adµ from above. It holds that

µ(ψ) = cos(2d(ψ)) = 1− 2 sin2 d(ψ) = 1− 2
h2(ψ)

R2
.

As a result, µ′(ψ) = − 2
R2 (h

2)′, and µ′′(ψ) = − 2
R2 (h

2)′′.
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Thus, we have
π∫

0

(µ′′)2 − 4(µ′)2dψ =
4

R4

π∫
0

(
(h2)′′

)2

− 4
(
(h2)′

)2

dψ.

Since γ is a curve in C, the Fourier expansion of h2 is as in equation (6).
Now use Parseval’s identity in L2[0, π]:

π∫
0

(
(h2)′′

)2

− 4
(
(h2)′

)2

dψ = π
∑

n∈2+4Z
(n4 − 4n2)|cn|2 =

= π
∑

n ∈ 2 + 4Z
|n| > 2

(n4 − 4n2)|cn|2 ≥ π
∑

n ∈ 2 + 4Z
|n| > 2

1000|cn|2,

since for |n| ≥ 6, n4 − 4n2 ≥ 1000. By Parseval’s identity again

π∫
0

(
(h2)′′

)2

−4
(
(h2)′

)2

dψ ≥ 1000

π∫
0

|h2−c0−c2e2iψ−c−2e
−2iψ|2dψ ≥

≥ 1000πd2(h2, Span{1, cos(2ψ), sin(2ψ)}),
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d denotes the distance in the L2 norm between the function h2 and a
subspace of L2[0, π]. Denote the subspace of L2[0, π] spanned by
{1, cos(2ψ), sin(2ψ)} by U . Thus we proved

π∫
0

(µ′′)2 − 4(µ′)2dψ ≥ 4000π

R4
d2(h2, U).

As a result, we get the following lower bound:∫
A

(A−B)dµ ≥ πR4

1024
· 4000π

R4
d2(h2, U) =

125π2

32
d2(h2, U). (10)

Now we turn to finding an upper bound for
∫

∆A

Adµ. If N is an upper

bound on A, then ∫
∆A

Adµ ≤ Nµ(∆),

so it is enough to find an upper bound for A.
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|A| = | sin δ cos2 δ(h′′h2 + 3h(h′)2)| ≤ |h′′|h2 + 3h(h′)2.

Since γ is centrally symmetric, h(ψ) is half the width in the direction ψ.
The maximal width is in the direction of the diameter, so by Blaschke

rolling disc theorem, we get h ≤ D

2
≤ 1

β
. Next, since h+ h′′ = ρ, then

|h′′| ≤ ρ+ h ≤ 1

β
+
D

2
≤ 2

β
, where β is the minimal curvature of γ.

Next it follows that |γ(ψ)|2 = h(ψ)2 + h′(ψ)2. Hence

h′(ψ)2 ≤
(D
2

)2

≤ 1

β2
. Altogether we have

|A| ≤ 5

β3
.

As a result,

µ(∆)
5

β3
≥ 125π2

32
d2(h2, U) ⇒ µ(∆) ≥ 25π2

32
β3d2(h2, U),

which is the required inequality.
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Open questions and discussion

1. An interesting question is whether one can consider a smaller region
than A for the approach of Total integrability. For example, can one
replace α with the invariant curve of period 8, 16, etc..?
2. Is it possible to relax the central-symmetry restriction.
3. Recall also the old open problem on coexistence of caustics with
different rotation numbers (cf. V. Kaloshin, C. E. Koudjinan).
4. It would be interesting to establish analogous results for other billiard
models that lead to twist maps of the cylinder, in particular, for Outer
billiards, and the recently introduced Wire billiards [B-M-T, Adv.Math,
368(2020)]. In this perspective together with Daniel Tsodikovich we
studied rigidity and flexibility of billiard tables having symmetry of order
k ≥ 3 and an invariant curve of k-periodic orbits, IMRN 2022.
5. In the light of the main result of the paper, one would like to
reconsider rigidity for continuous-time systems, like geodesic flows and
Hamiltonian systems with a potential.
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