Kähler-type embeddings of balls into symplectic manifolds

Michael Entov (Technion)

Joint work with

M.Verbitsky (IMPA, Rio de Janeiro & HSE, Moscow)

Symplectic Zoominar, May 2023

Starting question

 (M^{2n}, ω) – a closed symplectic manifold.

 $B^{2n}(r) \subset \mathbb{R}^{2n}$ – the closed ball of radius r centered at 0.

Q.: When can two symplectic embeddings $\bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (M^{2n}, \omega)$ be mapped into each other by $\operatorname{Symp}_0(M, \omega)$ (\Leftrightarrow by $\operatorname{Ham}(M, \omega)$)? By $\operatorname{Symp}(M, \omega)$? By intermediate subgroups of $\operatorname{Symp}(M, \omega)$?

Thm (McDuff, 1997; previous partial results by McDuff, Lalonde, Biran): If dim_R M = 4 and (M, ω) has "enough non-trivial Gromov-Witten invariants" (e.g. if (M, ω) is a rational or ruled surface), then for any $\bigsqcup_{i=1}^{k} B^{2n}(r_i)$ any two symplectic embeddings $\bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (M^{2n}, \omega)$ (if they exist!) can be mapped into each other by Symp₀(M, ω) (\Leftrightarrow the space of such sympl. emb. is path-connected).

Q.: What can be said about other (in part., higher-dim.) (M, ω) ?

Will consider a more restrictive class of symplectic embeddings that can be studied using the tools of *complex geometry*.

Kähler structures

M – closed connected oriented manifold, dim_{\mathbb{R}} M = 2n.

A **Kähler structure** on a manifold M is a pair (ω, J) , where 1. ω is a symplectic form on M,

2. J is an (*integrable*) complex structure on M compatible with ω .

A symplectic form, or a complex structure, on M is said to be of **Kähler type**, if it appears in *some* Kähler structure.

Further on: ω is a fixed Kähler-type symplectic form on M; all symplectic forms and complex structures on M are assumed to be compatible with the orientation.

 $\operatorname{Symp}_H(M,\omega)$ – the symplectom-s of (M,ω) acting trivially on $H_*(M)$.

 $\mathcal{C}(M)$ – the space of (Kähler-type) complex structures on M.

 $\mathcal{C}(M,\omega) \subset \mathcal{C}(M)$ – the space of (Kähler-type) complex structures on M compatible with ω .

 $\operatorname{Teich}(M) := \mathcal{C}(M)/\operatorname{Diff}_0(M) - \operatorname{Teichmüller space}$ (of Kähler-type complex structures on M),

 $pr: \mathcal{C}(M) \to \texttt{Teich}(M)$ – the natural projection.

[I] := pr(I) – the Diff₀(M)-orbit of I.

Definition

Let $f: \bigsqcup_{i=1}^k B^{2n}(r_i) \to (M, \omega)$ be a symplectic embedding.

First, fix a complex structure $J \in \mathcal{C}(M, \omega)$.

Then f is called **Kähler** (w.r.t. the Kähler structure (ω, J)) if it is both symplectic (w.r.t. ω) and holomorphic (w.r.t. J). For such an f, the Kähler-metric $\omega(\cdot, J \cdot) + \sqrt{-1}\omega(\cdot, \cdot)$ is flat on the image of f.

Now assume that no $J \in \mathcal{C}(M, \omega)$ is fixed in advance.

f is called **Kähler-type** if, in addition to being symplectic w.r.t. ω , it is also holomorphic with respect to some (not a priori fixed) complex structure $J \in \mathcal{C}(M, \omega)$.

If this J can be chosen to lie in the $\text{Diff}_0(M)$ -orbit [I] of a complex structure $I \in \mathcal{C}(M, \omega)$, we say that f is of [I]-Kähler type.

More generally, if such a J can be picked from a certain subset (e.g. a connected component) of $\mathcal{C}(M)$, we say that f favors that subset.

Remarks:

1. f is of **Kähler type** \Leftrightarrow f is of [I]-Kähler type for some $I \in \mathcal{C}(M, \omega)$.

2. $\exists [I]$ -Kähler-type embedding into $(M, \omega) \iff \exists K \ddot{a}h ler$ embedding into (M, ω') for some Kähler form ω' on (M, I), s.t. $[\omega] = [\omega']$. For a fixed I, the existence of [I]-Kähler-type embeddings was previously studied from this angle by Eckl, Witt Nystrom, Fleming, Luef-Wang, Trusiani.

3. In principle, a Kähler-type embedding may be of [I]-Kähler type for different non-isotopic $I \in \mathcal{C}(M, \omega)$ and may favor several different connected components of $\mathcal{C}(M, \omega)$ or of $\mathcal{C}(M)$.

4. There do exist symplectic embeddings that are *not* Kähler-type (will see below).

Kähler-type embeddings (III)

Kähler-type embeddings $f, f' : \bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (M, \omega)$ can be connected by a smooth path in the space of the Kähler-type embeddings (isotopy extension)f, f' lie in the same $\operatorname{Symp}_0(M, \omega)$ -orbit

f, f' are holomorphic with respect to complex structures compatible with ω and lying in the same $\operatorname{Symp}_0(M, \omega)$ -orbit, hence in the same path-connected component of $\mathcal{C}(M, \omega)$, hence in the same connected component of $\mathcal{C}(M)$

∜

f, f' favor the same path-connected component of $\mathcal{C}(M, \omega)$ (and the same connected component of $\mathcal{C}(M)$)

In general – very little info on $\operatorname{Symp}_0(M, \omega)$ -orbits in $\mathcal{C}(M, \omega)$... However, in some cases – better info on $\operatorname{Diff}_0(M)$ -orbits of c.s. in $\mathcal{C}(M, \omega)$, leading to results on $\operatorname{Symp}(M, \omega) \cap \operatorname{Diff}_0(M)$ -action on Kähler-type emb. (Note that $\mathcal{C}(M, \omega)$ is <u>not</u> $\operatorname{Diff}_0(M)$ -invariant!)

Blow-ups

 $\hat{M}^k :=$ the space of k-tuples of pairwise distinct points of M, $\mathbf{x} := (x_1, \dots, x_k) \in \hat{M}^k.$

I - a complex structure on M.

 $\widetilde{M}_{I,\mathbf{x}}$ – the complex blow-up of (M, I) at x_1, \ldots, x_k .

 \widetilde{I} – the lift of I to $\widetilde{M}_{I,\mathbf{x}}$.

 $\Pi: \widetilde{M}_{I,\mathfrak{x}} \to M$ – the natural projection.

 $e_1, \ldots, e_k \in H^2(\widetilde{M}_{I,\mathbf{x}}; \mathbb{R})$ – the cohomology classes Poincaré-dual to the homology classes of the exceptional divisors.

Definition

For
$$r_1, \ldots, r_k > 0$$
, $\mathbf{r} = (r_1, \ldots, r_k)$, define $K(\mathbf{r}) \subset \mathcal{C}(M, \omega)$ as
 $K(\mathbf{r}) := \left\{ I \in \mathcal{C}(M, \omega) \mid \exists \mathbf{x} \in \hat{M}^k \ \Pi^*[\omega] - \pi \sum_{i=1}^k r_i^2 e_i \in H^2(\widetilde{M}_{I,\mathbf{x}}; \mathbb{R})$
is Kähler w.r.t. $\widetilde{I} \right\}$.

Remarks:

1. The proof is a modification of the proof of a similar result for *symplectic* embeddings of balls (McDuff-Polterovich, 1994).

2. A similar existence result holds for [I]-Kähler-type embeddings into $(M \setminus \Sigma, \omega)$ for a proper complex submanifold $\Sigma \subset (M, I)$.

Let C_0 be a connected component of C(M). Assume that $pr(K(\mathbf{r}) \cap C_0) \subset \operatorname{Teich}(M)$ is connected. Then any two K.-type embeddings $\bigsqcup_{i=1}^k B^{2n}(r_i) \to (M, \omega)$ favoring C_0 lie in the same $\operatorname{Symp}(M, \omega) \cap \operatorname{Diff}_0(M)$ -orbit. In particular, both embeddings are of [I]-Kähler type for the same I. If, in addition, $\operatorname{Symp}_H(M)$ acts transitively on the set of connected components of C(M) intersecting $C(M, \omega)$, then any two Kähler-type embeddings $\mid \mid_{i=1}^k B^{2n}(r_i) \to (M, \omega)$ lie in the same $\operatorname{Symp}_H(M, \omega)$ -orbit.

Remark:

Assume $\dim_{\mathbb{R}} M = 4$ and (M, ω) has "enough non-trivial Gromov-Witten invariants" (e.g. if (M, ω) is a rational or ruled surface).

Then, for any $\bigsqcup_{i=1}^{k} B^4(r_i)$, any two Kähler-type embeddings $\bigsqcup_{i=1}^{k} B^4(r_i) \to (M^4, \omega)$ (if they exist!) can be mapped into each other by $\operatorname{Symp}_0(M, \omega)$ (since, by McDuff's thm., the same is true for any two symplectic embeddings).

Consequently, as long as there exists a Kähler-type embedding $\bigsqcup_{i=1}^{k} B^4(r_i) \to (M^4, \omega)$, all symplectic embeddings $\bigsqcup_{i=1}^{k} B^4(r_i) \to (M^4, \omega)$ are of Kähler-type – because the set of Kähler-type embeddings is $\operatorname{Symp}_0(M, \omega)$ -invariant.

In the following cases we have necessary and sufficient conditions for the existence of Kähler-type embeddings $\bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (\mathbb{C}P^n, \omega_{FS})$: A. $k = l^n, r_1 = \ldots = r_k =: r: \operatorname{Vol}(\bigsqcup_{i=1}^{k} B^{2n}(r)) < \operatorname{Vol}(\mathbb{C}P^n, \omega_{FS})$. B. $n = 2, 1 \le k \le 8: \operatorname{Vol}(\bigsqcup_{i=1}^{k} B^4(r_i)) < \operatorname{Vol}(\mathbb{C}P^2, \omega_{FS})$ & additional explicit quadratic inequalities on $r_1, \ldots, r_k > 0$ (coming from the description of the Kähler cone of the blow-up of $\mathbb{C}P^2$ at k generic points).

In both cases for any complex structure I on $\mathbb{C}P^n$ compatible with ω_{FS} (and, in particular, for the standard complex structure I_{st}), there exists an [I]-Kähler-type embedding $\bigsqcup_{i=1}^k B^{2n}(r_i) \to (\mathbb{C}P^n, \omega_{FS})$.

Corollary

Let I_{st} be the standard complex structure on $\mathbb{C}P^n$. Assume that $\operatorname{Vol}(B^{2n}(r)) < \operatorname{Vol}(\mathbb{C}P^n, \omega_{FS})$. Then there exists a Kähler form ω on $(\mathbb{C}P^n, I_{st})$ isotopic to ω_{FS} and such that the Kähler manifold $(\mathbb{C}P^n, I_{st}, \omega)$ admits a Kähler (that is, both holomorphic and symplectic) embedding of $B^{2n}(r)$ with the standard flat Kähler metric on it.

For n = 2 this was previously proved by Eckl (2017).

Remark:

For any $\bigsqcup_{i=1}^{k} B^{4}(r_{i})$, any Kähler-type embedding $\bigsqcup_{i=1}^{k} B^{4}(r_{i}) \rightarrow (\mathbb{C}P^{2}, \omega_{FS})$ (if it exists!) is, in fact, of $[I_{st}]$ -Kähler-type. If $k = l^{2}$ and $r_{1} = \ldots = r_{k}$ or if $1 \leq k \leq 8$, then any symplectic embedding $\bigsqcup_{i=1}^{k} B^{4}(r_{i}) \rightarrow (\mathbb{C}P^{2}, \omega_{FS})$ is of Kähler-type – in fact, of $[I_{st}]$ -Kähler-type.

For any $k \in \mathbb{Z}_{>0}$ and $r_1, \ldots, r_k > 0$, any two Kähler-type embeddings $\bigsqcup_{i=1}^k B^{2n}(r_i) \to (\mathbb{C}P^n, \omega_{FS})$ can be mapped into each other by $\operatorname{Symp}(\mathbb{C}P^n, \omega_{FS}) = \operatorname{Symp}_H(\mathbb{C}P^n, \omega_{FS})$. They can be mapped into each other by $\operatorname{Symp}(\mathbb{C}P^n, \omega_{FS}) \cap \operatorname{Diff}_0(\mathbb{C}P^n)$ if and only if they favor the same connected component of $\mathcal{C}(\mathbb{C}P^n)$.

Remarks:

1. For n = 2 the group Symp($\mathbb{C}P^2, \omega_{FS}$) is connected (Gromov) and thus for any $k \in \mathbb{Z}_{>0}$ and $r_1, \ldots, r_k > 0$ the space of Kähler-type embeddings $\bigsqcup_{i=1}^k B^4(r_i) \to (\mathbb{C}P^2, \omega_{FS})$ is path-connected (as also follows from McDuff's thm. about symplectic embeddings in dim. 4). 2. For n = 3 (Kreck-Su) and n = 4 (Brumfiel) the space $\mathcal{C}(\mathbb{C}P^n)$ has more than one connected component. Unknown for other n.

3. For n > 2 it is unknown if $\text{Symp}(\mathbb{C}P^n, \omega_{FS})$ is connected or lies in $\text{Diff}_0(\mathbb{C}P^n)$.

Sample applications: tori and K3 surfaces (I)

Assume M is either $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$ or a smooth manifold underlying a K3 surface; ω is a Kähler-type symplectic form on M.

Remark: The Kähler-type symplectic/complex structures on \mathbb{T}^{2n} (compatible with the standard orientation) are exactly the ones that can be mapped by a diffeomorphism of \mathbb{T}^{2n} to a linear symplectic/complex structure. It is unknown if there exist non-Kähler-type symplectic forms on \mathbb{T}^{2n} , n > 1, or on K3 surfaces.

Definition

The form ω is called **rational** if $[\omega] \in H^2(M; \mathbb{R})$ is proportional to a rational homology class, and **irrational** otherwise.

Sample applications: tori and K3 surfaces (II)

Theorem

Assume M is either $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$ or a smooth manifold underlying a K3 surface. Let ω be a Kähler-type symplectic form on M. Assume that either ω is irrational or $M = \mathbb{T}^2$. Then:

Remark:

For $M = \mathbb{T}^{2n}$ and one *ellipsoid* – and, in particular, for one ball – this was previously proved by Luef and Wang (2021) using a similar method. Their work relates the problem for $M = \mathbb{T}^{2n}$ to Gabor frames (an important notion in signal processing).

Let ω be a Kähler-type symplectic form on M. Assume that either ω is irrational or $M = \mathbb{T}^2$. Then for any $k \in \mathbb{Z}_{>0}$ and any $r_1, \ldots, r_k > 0$ any two Kähler-type embeddings $\bigsqcup_{i=1}^k B^{2n}(r_i) \to (M, \omega)$ can be mapped into each other by $\operatorname{Symp}_H(M, \omega)$. They can be mapped into each other by $\operatorname{Symp}(M, \omega) \cap \operatorname{Diff}_0(M)$ if and only if they favor the same connected component of $\mathcal{C}(M)$.

Remarks:

1. It is unknown whether $\operatorname{Symp}_{H}(\mathbb{T}^{2n},\omega) = \operatorname{Symp}_{0}(\mathbb{T}^{2n},\omega)$ for any Kähler-type symplectic form ω on \mathbb{T}^{2n} , n > 1.

2. In the K3 case, for at least some irrational ω : $\operatorname{Symp}_0(M,\omega) \subsetneqq \operatorname{Symp}_H(M,\omega)$ (Sheridan-Smith, 2020), $\operatorname{Symp}_0(M,\omega) \subsetneqq \operatorname{Symp}(M,\omega) \cap \operatorname{Diff}_0(M)$ (Seidel, 2000; Smirnov, 2022). **Remark:** If the Kähler-type form ω on \mathbb{T}^{2n} is rational, then there may be obstructions to the existence of Kähler-type embeddings of balls into (M, ω) that are independent of the symplectic volume – for instance, obstructions coming from Seshadri constants.

Example: Let
$$M = \mathbb{T}^4$$
, $\omega = dp_1 \wedge dq_1 + dp_2 \wedge dq_2$, $\operatorname{Vol}(\mathbb{T}^4, \omega) = 2$.

For any complex structure I on \mathbb{T}^4 compatible with ω one can biholomorphically identify (\mathbb{T}^4, I) with a *principally polarized* abelian variety. A universal upper bound on the Seshadri constants for all such varieties (Steffens, 1998) yields that if $(4/3)^2 < \operatorname{Vol}(B^4(r)) < 2$, then there are <u>no</u> Kähler-type embeddings $B^4(r) \to (\mathbb{T}^4, \omega)$.

However, for such r there do exist symplectic embeddings $B^4(r) \to (\mathbb{T}^4, \omega)$ (Latschev-McDuff-Schlenk, 2013; E.-Verbitsky, 2016).

Definition

Assume:

 M^{2n} is a closed manifold, ω is a Kähler-type symplectic form on M; \mathbb{W} is a disjoint union of compact domains with boundary in \mathbb{R}^{2n} .

For $\varepsilon > 0$, a symplectic embedding $\mathbb{W} \to (M, \omega)$ is called ε -tame if it is holomorphic w.r.t some (not a priori fixed!) complex structure I on M which is " ε -almost compatible with ω " – i.e., such that

- I is tamed by ω ,
- the cohomology class $[\omega]_I^{1,1}$ is Kähler,

•
$$\left|\left\langle \left(\left[\omega\right]_{I}^{2,0}+\left[\omega\right]_{I}^{0,2}\right)^{n},\left[M\right]\right
ight
angle \right|$$

Remark: For symplectic embeddings $\mathbb{W} \to (M, \omega)$: Kähler-type $\Longrightarrow \varepsilon$ -tame for every $\varepsilon > 0$.

Assume that M is either \mathbb{T}^{2n} or a smooth manifold underlying a K3 surface and $\mathbb{W} := \bigsqcup_{i=1}^{k} W_i$ is a disjoint union of compact domains with boundary specified in the next slide.

Then for any $\varepsilon > 0$ there exists a Diff⁺(M)-invariant open dense set $\Theta(\mathbb{W}, \varepsilon)$ of Kähler-type symplectic forms on M (depending on \mathbb{W} and ε and containing, in particular, all irrational Kähler-type symplectic forms on M), so that for each $\omega \in \Theta(\mathbb{W}, \varepsilon)$, the only obstruction to the existence of ε -tame symplectic embeddings $\mathbb{W} \to (M, \omega)$ is the symplectic volume.

This holds (at least) if \mathbb{W} is either of the following...

Theorem (continued)

- ... This holds (at least) if \mathbb{W} is either of the following:
 - a disjoint union of k (possibly different) 2n-dimensional balls,
 - a disjoint union of k identical copies of a parallelepiped $P(e_1, \ldots, e_{2n}) := \left\{ \sum_{j=1}^{2n} s_j e_j, 0 \le s_j \le 1, j = 1, \ldots, 2n \right\}, \text{ spanned}$ by a basis e_1, \ldots, e_{2n} of \mathbb{R}^{2n} .

If $M = \mathbb{T}^{2n}$, we also allow \mathbb{W} to be a disjoint union of k identical copies of a 2n-dim. polydisk $B^{2n_1}(r_1) \times \ldots \times B^{2n_l}(r_l), n_1 + \ldots + n_l = n$.

Remark: If $M = \mathbb{T}^{2n}$, then for all \mathbb{W} above and all $\varepsilon > 0$, the open dense set $\Theta(\mathbb{W}, \varepsilon)$ appearing in the theorem contains a Diff⁺(\mathbb{T}^{2n})-orbit of an irrational K.-type form, so that for each form ω in the orbit, the only obstruction to the existence of <u>Kähler-type</u> symplectic embeddings $\mathbb{W} \to (M, \omega)$ is the symplectic volume. (The orbit is dense in the set of all Kähler-type symplectic forms of a fixed volume on \mathbb{T}^{2n}).

THANK YOU!