Kähler-type embeddings of balls into symplectic manifolds

Michael Entov (Technion)

Joint work with

M. Verbitsky (IMPA, Rio de Janeiro & HSE, Moscow)

Symplectic Zoominar, May 2023
(\(M^{2n}, \omega\)) – a closed symplectic manifold.

\(B^{2n}(r) \subset \mathbb{R}^{2n}\) – the closed ball of radius \(r\) centered at 0.

Q.: When can two symplectic embeddings \(\bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (M^{2n}, \omega)\) be mapped into each other by \(\text{Symp}_0(M, \omega)\) (\(\Leftrightarrow\) by \(\text{Ham}(M, \omega)\))? By \(\text{Symp}(M, \omega)\)? By intermediate subgroups of \(\text{Symp}(M, \omega)\)?

Thm (McDuff, 1997; previous partial results by McDuff, Lalonde, Biran): If \(\dim_{\mathbb{R}} M = 4\) and \((M, \omega)\) has “enough non-trivial Gromov-Witten invariants” (e.g. if \((M, \omega)\) is a rational or ruled surface), then for any \(\bigsqcup_{i=1}^{k} B^{2n}(r_i)\) any two symplectic embeddings \(\bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (M^{2n}, \omega)\) (if they exist!) can be mapped into each other by \(\text{Symp}_0(M, \omega)\) (\(\Leftrightarrow\) the space of such sympl. emb. is path-connected).

Q.: What can be said about other (in part., higher-dim.) \((M, \omega)\)?

Will consider a more restrictive class of symplectic embeddings that can be studied using the tools of complex geometry.
Kähler structures

M – closed connected oriented manifold, $\dim_{\mathbb{R}} M = 2n$.

A Kähler structure on a manifold M is a pair (ω, J), where

1. ω is a symplectic form on M,
2. J is an (integrable) complex structure on M compatible with ω.

A symplectic form, or a complex structure, on M is said to be of Kähler type, if it appears in some Kähler structure.

Further on: ω is a fixed Kähler-type symplectic form on M; all symplectic forms and complex structures on M are assumed to be compatible with the orientation.

$\text{Symp}_H(M, \omega)$ – the symplectom-s of (M, ω) acting trivially on $H_*(M)$.

$\mathcal{C}(M)$ – the space of (Kähler-type) complex structures on M.

$\mathcal{C}(M, \omega) \subset \mathcal{C}(M)$ – the space of (Kähler-type) complex structures on M compatible with ω.
Teichmüller space

$\text{Teich}(M) := \mathcal{C}(M)/\text{Diff}_0(M)$ – Teichmüller space (of Kähler-type complex structures on M),

$pr : \mathcal{C}(M) \to \text{Teich}(M)$ – the natural projection.

$[I] := pr(I)$ – the $\text{Diff}_0(M)$-orbit of I.
Kähler-type embeddings (I)

Definition

Let $f : \bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (M, \omega)$ be a symplectic embedding. First, fix a complex structure $J \in \mathcal{C}(M, \omega)$. Then f is called **Kähler** (w.r.t. the Kähler structure (ω, J)) if it is both symplectic (w.r.t. ω) and holomorphic (w.r.t. J). For such an f, the Kähler-metric $\omega(\cdot, J\cdot) + \sqrt{-1}\omega(\cdot, \cdot)$ is flat on the image of f.

Now assume that no $J \in \mathcal{C}(M, \omega)$ is fixed in advance. f is called **Kähler-type** if, in addition to being symplectic w.r.t. ω, it is also holomorphic with respect to some *(not a priori fixed)* complex structure $J \in \mathcal{C}(M, \omega)$.

If this J can be chosen to lie in the $\text{Diff}_0(M)$-orbit $[I]$ of a complex structure $I \in \mathcal{C}(M, \omega)$, we say that f is of $[I]$-**Kähler type**.

More generally, if such a J can be picked from a certain subset (e.g. a connected component) of $\mathcal{C}(M)$, we say that f **favors** that subset.
Remarks:

1. \(f \) is of \textbf{Kähler type} \(\iff \) \(f \) is of \([I]-\text{Kähler type}\) for some \(I \in \mathcal{C}(M,\omega) \).

2. \(\exists \ [I]-\text{Kähler-type embedding into } (M,\omega) \iff \exists \text{ Kähler embedding into } (M,\omega') \) for some Kähler form \(\omega' \) on \((M,I) \), s.t. \([\omega] = [\omega']\).

For a fixed \(I \), the existence of \([I]-\text{Kähler-type embeddings}\) was previously studied from this angle by Eckl, Witt Nystrom, Fleming, Luef-Wang, Trusiani.

3. In principle, a Kähler-type embedding may be of \([I]-\text{Kähler type}\) for different non-isotopic \(I \in \mathcal{C}(M,\omega) \) and may favor several different connected components of \(\mathcal{C}(M,\omega) \) or of \(\mathcal{C}(M) \).

4. There do exist symplectic embeddings that are \textit{not} Kähler-type (will see below).
Kähler-type embeddings (III)

Kähler-type embeddings $f, f' : \bigcup_{i=1}^{k} B^{2n}(r_i) \to (M, \omega)$ can be connected by a smooth path in the space of the Kähler-type embeddings

\[\iff (\text{isotopy extension}) \]

\[f, f' \text{ lie in the same } \text{Symp}_0(M, \omega)-\text{orbit} \]

\[f, f' \text{ are holomorphic with respect to complex structures compatible with } \omega \text{ and lying in the same } \text{Symp}_0(M, \omega)-\text{orbit, hence in the same path-connected component of } C(M, \omega), \text{ hence in the same connected component of } C(M) \]

\[f, f' \text{ favor the same path-connected component of } C(M, \omega) \text{ (and the same connected component of } C(M) \text{)} \]

In general – very little info on Symp$_0(M, \omega)$-orbits in $C(M, \omega)$...

However, in some cases – better info on Diff$_0(M)$-orbits of c.s. in $C(M, \omega)$, leading to results on Symp($M, \omega) \cap$ Diff$_0(M)$-action on Kähler-type emb. (Note that $C(M, \omega)$ is not Diff$_0(M)$-invariant!)
\(\hat{M}^k := \text{the space of } k\text{-tuples of pairwise distinct points of } M, \)

\(\mathbf{x} := (x_1, \ldots, x_k) \in \hat{M}^k. \)

\(I \) – a complex structure on \(M \).

\(\widetilde{M}_{I,\mathbf{x}} \) – the complex blow-up of \((M, I)\) at \(x_1, \ldots, x_k \).

\(\widetilde{I} \) – the lift of \(I \) to \(\widetilde{M}_{I,\mathbf{x}} \).

\(\Pi : \widetilde{M}_{I,\mathbf{x}} \to M \) – the natural projection.

\(e_1, \ldots, e_k \in H^2(\widetilde{M}_{I,\mathbf{x}}; \mathbb{R}) \) – the cohomology classes Poincaré-dual to the homology classes of the exceptional divisors.

Definition

For \(r_1, \ldots, r_k > 0, \ \mathbf{r} = (r_1, \ldots, r_k) \), define \(K(\mathbf{r}) \subset C(M, \omega) \) as

\[
K(\mathbf{r}) := \left\{ I \in C(M, \omega) \mid \exists \mathbf{x} \in \hat{M}^k \ \Pi^*[\omega] - \pi \sum_{i=1}^{k} r_i^2 e_i \in H^2(\widetilde{M}_{I,\mathbf{x}}; \mathbb{R}) \text{ is Kähler w.r.t. } \widetilde{I} \right\}.
\]
Existence – main result

Theorem

Let $r_1, \ldots, r_k > 0$, $\mathbf{r} = (r_1, \ldots, r_k)$. The following are equivalent:

- \exists a Kähler-type embedding $\bigcup_{i=1}^{k} B^{2n}(r_i) \rightarrow (M, \omega)$.
- $K(\mathbf{r}) \neq \emptyset$ (i.e., $\exists I \in C(M, \omega)$ and $x \in \hat{M}^k$ s.t. $\Pi^*[\omega] - \pi \sum_{i=1}^{k} r_i^2 e_i \in H^2(\tilde{M}_{I,x}; \mathbb{R})$ is Kähler with respect to \tilde{I}).

More precisely, if $I \in C(M, \omega)$, then the following are equivalent:

- $\exists x \in \hat{M}^k$ s.t. $\Pi^*[\omega] - \pi \sum_{i=1}^{k} r_i^2 e_i \in H^2(\tilde{M}_{I,x}; \mathbb{R})$ is Kähler w.r.t. \tilde{I}.
- $\exists [I]$-Kähler-type embedding $\bigcup_{i=1}^{k} B^{2n}(r_i) \rightarrow (M, \omega)$.

Remarks:

1. The proof is a modification of the proof of a similar result for symplectic embeddings of balls (McDuff-Polterovich, 1994).

2. A similar existence result holds for $[I]$-Kähler-type embeddings into $(M \setminus \Sigma, \omega)$ for a proper complex submanifold $\Sigma \subset (M, I)$.
Theorem

Let C_0 be a connected component of $C(M)$. Assume that $\text{pr} \left(K(\mathbb{R}) \cap C_0 \right) \subset \text{Teich}(M)$ is connected.

Then any two K-type embeddings $\bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (M, \omega)$ favoring C_0 lie in the same $\text{Symp}(M, \omega) \cap \text{Diff}_0(M)$-orbit. In particular, both embeddings are of $[I]$-Kähler type for the same I.

If, in addition, $\text{Symp}_H(M)$ acts transitively on the set of connected components of $C(M)$ intersecting $C(M, \omega)$, then any two Kähler-type embeddings $\bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (M, \omega)$ lie in the same $\text{Symp}_H(M, \omega)$-orbit.
Remark:

Assume \(\dim_{\mathbb{R}} M = 4 \) and \((M, \omega)\) has “enough non-trivial Gromov-Witten invariants” (e.g. if \((M, \omega)\) is a rational or ruled surface).

Then, for any \(\bigsqcup_{i=1}^{k} B^4(r_i) \), any two Kähler-type embeddings \(\bigsqcup_{i=1}^{k} B^4(r_i) \to (M^4, \omega) \) (if they exist!) can be mapped into each other by \(\text{Symp}_0(M, \omega) \) (since, by McDuff’s thm., the same is true for any two symplectic embeddings).

Consequently, as long as there exists a Kähler-type embedding \(\bigsqcup_{i=1}^{k} B^4(r_i) \to (M^4, \omega) \), all symplectic embeddings \(\bigsqcup_{i=1}^{k} B^4(r_i) \to (M^4, \omega) \) are of Kähler-type – because the set of Kähler-type embeddings is \(\text{Symp}_0(M, \omega) \)-invariant.
Theorem

In the following cases we have necessary and sufficient conditions for the existence of Kähler-type embeddings \(\bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (\mathbb{C}P^n, \omega_{FS}) \):

A. \(k = l^n, r_1 = \ldots = r_k =: r \): \(\text{Vol} (\bigsqcup_{i=1}^{k} B^{2n}(r)) < \text{Vol} (\mathbb{C}P^n, \omega_{FS}) \).

B. \(n = 2, 1 \leq k \leq 8 \): \(\text{Vol} (\bigsqcup_{i=1}^{k} B^{4}(r_i)) < \text{Vol} (\mathbb{C}P^2, \omega_{FS}) \) & additional explicit quadratic inequalities on \(r_1, \ldots, r_k > 0 \) (coming from the description of the Kähler cone of the blow-up of \(\mathbb{C}P^2 \) at \(k \) generic points).

In both cases for any complex structure \(I \) on \(\mathbb{C}P^n \) compatible with \(\omega_{FS} \) (and, in particular, for the standard complex structure \(I_{st} \)), there exists an \([I]-\text{Kähler-type embedding} \bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (\mathbb{C}P^n, \omega_{FS}) \).
Corollary

Let I_{st} be the standard complex structure on $\mathbb{C}P^n$. Assume that $\text{Vol}(B^{2n}(r)) < \text{Vol}(\mathbb{C}P^n, \omega_{FS})$.

Then there exists a Kähler form ω on $(\mathbb{C}P^n, I_{st})$ isotopic to ω_{FS} and such that the Kähler manifold $(\mathbb{C}P^n, I_{st}, \omega)$ admits a Kähler (that is, both holomorphic and symplectic) embedding of $B^{2n}(r)$ with the standard flat Kähler metric on it.

For $n = 2$ this was previously proved by Eckl (2017).

Remark:

For any $\bigsqcup_{i=1}^{k} B^4(r_i)$, any Kähler-type embedding $\bigsqcup_{i=1}^{k} B^4(r_i) \to (\mathbb{C}P^2, \omega_{FS})$ (if it exists!) is, in fact, of $[I_{st}]$-Kähler-type.

If $k = l^2$ and $r_1 = \ldots = r_k$ or if $1 \leq k \leq 8$, then any symplectic embedding $\bigsqcup_{i=1}^{k} B^4(r_i) \to (\mathbb{C}P^2, \omega_{FS})$ is of Kähler-type – in fact, of $[I_{st}]$-Kähler-type.
Sample applications: $\mathbb{C}P^n$ (III)

Theorem

For any $k \in \mathbb{Z}_{>0}$ and $r_1, \ldots, r_k > 0$, any two Kähler-type embeddings

$$\bigsqcup_{i=1}^k B^{2n}(r_i) \to (\mathbb{C}P^n, \omega_{FS})$$

can be mapped into each other by $\text{Symp}(\mathbb{C}P^n, \omega_{FS}) = \text{Symp}_H(\mathbb{C}P^n, \omega_{FS})$. They can be mapped into each other by $\text{Symp}(\mathbb{C}P^n, \omega_{FS}) \cap \text{Diff}_0(\mathbb{C}P^n)$ if and only if they favor the same connected component of $\mathcal{C}(\mathbb{C}P^n)$.

Remarks:

1. For $n = 2$ the group $\text{Symp}(\mathbb{C}P^2, \omega_{FS})$ is connected (Gromov) and thus for any $k \in \mathbb{Z}_{>0}$ and $r_1, \ldots, r_k > 0$ the space of Kähler-type embeddings $\bigsqcup_{i=1}^k B^4(r_i) \to (\mathbb{C}P^2, \omega_{FS})$ is path-connected (as also follows from McDuff’s thm. about symplectic embeddings in dim. 4).

2. For $n = 3$ (Kreck-Su) and $n = 4$ (Brumfiel) the space $\mathcal{C}(\mathbb{C}P^n)$ has more than one connected component. Unknown for other n.

3. For $n > 2$ it is unknown if $\text{Symp}(\mathbb{C}P^n, \omega_{FS})$ is connected or lies in $\text{Diff}_0(\mathbb{C}P^n)$.
Assume M is either $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$ or a smooth manifold underlying a K3 surface; ω is a Kähler-type symplectic form on M.

Remark: The Kähler-type symplectic/complex structures on \mathbb{T}^{2n} (compatible with the standard orientation) are exactly the ones that can be mapped by a diffeomorphism of \mathbb{T}^{2n} to a linear symplectic/complex structure. It is unknown if there exist non-Kähler-type symplectic forms on \mathbb{T}^{2n}, $n > 1$, or on K3 surfaces.

Definition

The form ω is called **rational** if $[\omega] \in H^2(M; \mathbb{R})$ is proportional to a rational homology class, and **irrational** otherwise.
Theorem

Assume M is either $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$ or a smooth manifold underlying a K3 surface. Let ω be a Kähler-type symplectic form on M. Assume that either ω is irrational or $M = \mathbb{T}^2$. Then:

$$\text{Vol} \left(\bigcup_{i=1}^{k} B^{2n}(r_i) \right) < \text{Vol} (M, \omega)$$

$$\exists \text{ a Kähler-type embedding } \bigcup_{i=1}^{k} B^{2n}(r_i) \to (M, \omega)$$

Remark:

For $M = \mathbb{T}^{2n}$ and one ellipsoid – and, in particular, for one ball – this was previously proved by Luef and Wang (2021) using a similar method. Their work relates the problem for $M = \mathbb{T}^{2n}$ to Gabor frames (an important notion in signal processing).
Theorem

Let ω be a Kähler-type symplectic form on M. Assume that either ω is irrational or $M = \mathbb{T}^2$.

Then for any $k \in \mathbb{Z}_{>0}$ and any $r_1, \ldots, r_k > 0$ any two Kähler-type embeddings $\bigsqcup_{i=1}^{k} B^{2n}(r_i) \to (M, \omega)$ can be mapped into each other by $\text{Symp}_H(M, \omega)$. They can be mapped into each other by $\text{Symp}(M, \omega) \cap \text{Diff}_0(M)$ if and only if they favor the same connected component of $\mathcal{C}(M)$.

Remarks:

1. It is unknown whether $\text{Symp}_H(\mathbb{T}^{2n}, \omega) = \text{Symp}_0(\mathbb{T}^{2n}, \omega)$ for any Kähler-type symplectic form ω on \mathbb{T}^{2n}, $n > 1$.

2. In the K3 case, for at least some irrational ω:
 $\text{Symp}_0(M, \omega) \subset \subset \text{Symp}_H(M, \omega)$ (Sheridan-Smith, 2020),
 $\text{Symp}_0(M, \omega) \subset \subset \text{Symp}(M, \omega) \cap \text{Diff}_0(M)$ (Seidel, 2000; Smirnov, 2022).
Remark: If the Kähler-type form ω on \mathbb{T}^{2n} is rational, then there may be obstructions to the existence of Kähler-type embeddings of balls into (M, ω) that are independent of the symplectic volume – for instance, obstructions coming from Seshadri constants.

Example: Let $M = \mathbb{T}^{4}$, $\omega = dp_{1} \wedge dq_{1} + dp_{2} \wedge dq_{2}$, $\text{Vol}(\mathbb{T}^{4}, \omega) = 2$. For any complex structure I on \mathbb{T}^{4} compatible with ω one can biholomorphically identify (\mathbb{T}^{4}, I) with a principally polarized abelian variety. A universal upper bound on the Seshadri constants for all such varieties (Steffens, 1998) yields that if $(4/3)^{2} < \text{Vol}(B^{4}(r)) < 2$, then there are no Kähler-type embeddings $B^{4}(r) \rightarrow (\mathbb{T}^{4}, \omega)$. However, for such r there do exist symplectic embeddings $B^{4}(r) \rightarrow (\mathbb{T}^{4}, \omega)$ (Latschev-McDuff-Schlenk, 2013; E.-Verbitsky, 2016).
Definition

Assume:

M^{2n} is a closed manifold, ω is a Kähler-type symplectic form on M;
\mathbb{W} is a disjoint union of compact domains with boundary in \mathbb{R}^{2n}.

For $\varepsilon > 0$, a symplectic embedding $\mathbb{W} \to (M, \omega)$ is called ε-tame if it is holomorphic w.r.t some (not a priori fixed!) complex structure I on M which is “ε-almost compatible with ω” – i.e., such that

1. I is tamed by ω,
2. the cohomology class $[\omega]^{1,1}_I$ is Kähler,
3. $\left| \langle \left([\omega]^{2,0}_I + [\omega]^{0,2}_I \right)^n , [M] \rangle \right| < \varepsilon$.

Remark: For symplectic embeddings $\mathbb{W} \to (M, \omega)$:
Kähler-type \implies ε-tame for every $\varepsilon > 0$.
Theorem

Assume that M is either \mathbb{T}^{2n} or a smooth manifold underlying a K3 surface and $\mathbb{W} := \bigcup_{i=1}^{k} W_i$ is a disjoint union of compact domains with boundary specified in the next slide.

Then for any $\varepsilon > 0$ there exists a $\text{Diff}^+(M)$-invariant open dense set $\Theta(\mathbb{W}, \varepsilon)$ of Kähler-type symplectic forms on M (depending on \mathbb{W} and ε and containing, in particular, all irrational Kähler-type symplectic forms on M), so that for each $\omega \in \Theta(\mathbb{W}, \varepsilon)$, the only obstruction to the existence of ε-tame symplectic embeddings $\mathbb{W} \to (M, \omega)$ is the symplectic volume.

This holds (at least) if \mathbb{W} is either of the following...
... This holds (at least) if W is either of the following:

- a disjoint union of k (possibly different) $2n$-dimensional balls,
- a disjoint union of k identical copies of a parallelepiped $P(e_1,\ldots,e_{2n}) := \left\{ \sum_{j=1}^{2n} s_j e_j, 0 \leq s_j \leq 1, j = 1,\ldots,2n \right\}$, spanned by a basis e_1,\ldots,e_{2n} of \mathbb{R}^{2n}.

If $M = \mathbb{T}^{2n}$, we also allow W to be a disjoint union of k identical copies of a $2n$-dim. polydisk $B^{2n_1}(r_1) \times \ldots \times B^{2n_l}(r_l)$, $n_1 + \ldots + n_l = n$.

Remark: If $M = \mathbb{T}^{2n}$, then for all W above and all $\varepsilon > 0$, the open dense set $\Theta(W,\varepsilon)$ appearing in the theorem contains a $\text{Diff}^+(\mathbb{T}^{2n})$-orbit of an irrational K.-type form, so that for each form ω in the orbit, the only obstruction to the existence of Kähler-type symplectic embeddings $W \to (M,\omega)$ is the symplectic volume. (The orbit is dense in the set of all Kähler-type symplectic forms of a fixed volume on \mathbb{T}^{2n}).
THANK YOU!