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Question 1
Given X1, Xo C R?", does there exist a diffeomorphism
i : X1 — Xo such that

Prw=w?

Question 2
Given X1, Xo C R?", does there exist an embedding p: Xy = Xo
such that ¢*w = w?
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Symplectic embeddings

Ww'=wA---Aw=nldgs Adpy A --- A dgn A dpp.

n

If *w = w, then p*(w") = wW".
Let

B2"(r) = {(
z2(r) = {(

) € R* | |g|* + |pf* < r?}

q,p
q,p) €R?™ | ¢ + p? < r?} = B?(r) x R*"2,
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Gromov’s nonsqueezing theorem, 1985

B>"(r) < Z?"(R) <= r<R.
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B2(r) <% Z%"(c) = {(q,p) € R*" | ¢? + ¢3 <2}, Vr,e>0.

w = qu,— A dp;.
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Symplectic capacities

Definition
A symplectic capacity is a function ¢ : P(R?") — [0, +o0]
satisfying
> c(rX) = r?¢(X) for all r >0,
> X < X = c(X1) < ¢(X2),
» ¢(B2"(r)) > 0 and c(Z?"(r)) < cc.
c is said to be normalized if

c(B>(r)) = c(Z"(r)) = wr*.

The existence of a normalized symplectic capacity is equivalent to
Gromov's nonsqueezing theorem.
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Symplectic capacities

The simplest capacities are

cer(X) = sup{nr? | B*(r) < X} (Gromov width),
cz(X) = inf{nr? | X < Z2"(r)}  (cylindrical capacity).

It is easy to check that if ¢ is a normalized capacity, then
cer(X) < ¢(X) < cz(X).

Other examples of normalized capacities:
> First Ekeland-Hofer capacity ¢ (1989),
» Hofer-Zehnder capacity cyz (1994),
» Floer-Hofer capacity csy (1994),
» First contact homology capacity c1CH (Gutt-Hutchings 2018),
» First embedded contact homology capacity ClECH (Hutchings
2011) - only in dimension 4.
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The Viterbo conjecture

Exercise
For any compact set X,

CG,(X)"

n!

< vol(X).

Idea: If c,(X) = 7r2, then (1 — €)B2(r) <> X.
So vol((1 — €)B27(r)) < vol(X).
Conjecture (Viterbo)

If X C R?" is a compact and convex set and ¢ is a normalized
symplectic capacity, then

c(nX!)” < vol(X).

Moreover equality holds if, and only if, int(X) is symplectomorphic
to a ball.
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Minimal action

If X is a compact and convex set of R?” with smooth boundary, let
Amin(X) denote the shortest period of a closed Reeb orbit on 9X.
Theorem (EH, HZ, Abbondandolo—Kang, Irie)

If X is a compact and convex set with smooth boundary, then

(X)) = cHz(X) = csn(X) = o7 (X) = Amin(X).

Weak Viterbo conjecture
If X is a compact and convex set of R?” with smooth boundary,
then

CHZ,S!X)n < vol(X).

Moreover equality holds iff int(X) = B2".
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The Mahler conjecture

Let K C R" be an origin-symmetric, compact and convex set. lts
polar body K° is defined by

Ke={xeR"|x-y<1lforall y € K}.

Conjecture (Mahler 1939)

M(K) = vol(K) - vol(K®) > *

n
nl’

Equality is attained for the hypercube K = /.
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Hanner polytopes

The Hanner polytopes are the elements of the set generated by an
interval [—1, 1] and the operations x and °.

If K C R" is a Hanner polytope, then

M(K) = %

Conjecture
M(K) is minimized precisely by the Hanner polytopes.
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Mahler’s conjecture

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
The weak Viterbo conjecture implies the Mahler conjecture.

Viterbo = Weak Viterbo = Mahler
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Viterbo implies Mahler

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
Let K C R" be a symmetric compact convex set. Then

chz(K x K°) = 4.

N
N

47 - M < vol(K x K°) = vol(K) - vol(K°).
n! n:
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Symplectic balls in disguise

Proposition

The product /" x (I")° = B, x By satisfies the equality in
Viterbo's conjecture.

More generally, if K is a Hanner polytope, K x K° always does.

Theorem (R.— Sepe, 2019)
1" x (I")° is symplectomorphic to a ball.

Conjecture
For any Hanner polytope, K x K° is symplectomorphic to a ball.

Proposition
The product A x O satisfies the equality in Viterbo's conjecture.
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Symplectic balls in disguise

A" = {qeR"+1|Zq,—:O, gi — qi+1 < 1 for all i},

1

R" = {peR"H | Zp,-:O, max p; — min p; < 1}.
- i i

1

Remark
A?2 = A and R?2 = Q.

Theorem (Ostrover—R.-Sepe 2023)
A" x R" is symplectomorphic to a ball.
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Toric domains

Definition
A toric domain Xq C C" is a set of the form Xq = u~1(Q), where
Q C [0,00)" is an open set and

p:C"—=[0,00)" p(z1,...,2,) = (w|z1]?, ..., 7|za|?)
Example (Cylinder) Example (Ellipsoid)
m|z|? m|z|?
b
p 7|z |? 3 7|z |?

2 2
Z(a) = {(21,2) € C| 7|21 < a} E(a,b) = {(z1,22) e 2| Tl 4 72l <4




Symmetric domains

Definition
Let A C {p eER™L S pi = O} be relatively open and
star-shaped.



Symmetric domains

Definition
Let A C {p eER™L S pi = O} be relatively open and
star-shaped.

» Ais symmetric if Ais Sp11-invariant.



Symmetric domains

Definition
Let A C {p eER™L S pi = O} be relatively open and
star-shaped.

» Ais symmetric if Ais Sp11-invariant.

» Ais balanced if A is symmetric and for (p1,...,pnt+1) € A,

convex hull{(py(1); - - s Po(n+1)) | O € Sny1} C A.



Symmetric domains

Definition
Let A C {p eER™L S pi = O} be relatively open and
star-shaped.

» Ais symmetric if Ais Sp11-invariant.

» Ais balanced if A is symmetric and for (p1,...,pnt+1) € A,

convex hull{(py(1); - - s Po(n+1)) | O € Sny1} C A.

Let p: R™1 — [0, 00)" defined by

P(P1; -+ - Pnt1) = (Po(1) = Po(2)s - - s Po(n) = Po(n+1))s



Symmetric domains

Definition
Let A C {p eER™L S pi = O} be relatively open and
star-shaped.

» Ais symmetric if Ais Sp11-invariant.
» Ais balanced if A is symmetric and for (p1,...,pnt+1) € A,

convex hull{(py(1); - - s Po(n+1)) | O € Sny1} C A.

Let p: R™1 — [0, 00)" defined by

P(P1; -+ - Pnt1) = (Po(1) = Po(2)s - - s Po(n) = Po(n+1))s

where o € Spi1 such that py(1) > py(2) = = Po(ns1)-



Symmetric domains

Definition
Let A C {p eER™L S pi = O} be relatively open and
star-shaped.

» Ais symmetric if Ais Sp11-invariant.
» Ais balanced if A is symmetric and for (p1,...,pnt+1) € A,

convex hull{(py(1); - - s Po(n+1)) | O € Sny1} C A.

Let p: R™1 — [0, 00)" defined by

P(P1; -+ - Pnt1) = (Po(1) = Po(2)s - - s Po(n) = Po(n+1))s

where o € Spi1 such that py(1) > py(2) = = Po(ns1)-

If Ais symmetric, then A is determined by p(A).
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Symplectic equivalences

Theorem (Ostrover—R.—Sepe, 2023)

» If A is symmetric, then for every € > 0,

(]_ — E)An X A= X(n+1)p(A) — (1 —I—E)A" X A.

» If A is balanced, then A" x; A is symplectomorphic to
X(n+1)p(4)-

Corollary
The ball is symplectomorphic to A" x R".

Proof.

We first note that R" is balanced.

If (r,...,rm)=p(p) thenrp+---4+r,=

Po(1) = Po(2) + =+ + Po(n) = Po(n+1) = MaXx; pi — min; p;.
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Examples

X2 X2 X2
a< b<2a b=2a b > 2a

Figure: The domain A for which X,y is the ellipsoid E(a, b).

:/
L\

X2

ST
~ L

Figure: The domain A for which X4y is P(1,1) and P(1,3)
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A deformation of the Toda lattice

For ¢ > 0, let

n+1 n+1

He(a.p) Zp, +ce” Ze %=1,

As ¢ — o0, the potential converges to

o0, if g —qiy1 > 1, forsomei=1,...,n

{ 0,ifgi—qir1 <1, foralli=1,...,n,

The flow of Xy, converges to the billiard flow in

{qeR"|qgi— g1 <1, foralli=1,...,

n}.
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The Toda lattice

n+1 n+1

H(a,p) ZP, - Z i,

Flaschka coordinates:
— A2(gi—git1) _
aj = ez ,  bi=—pi.

Hamiltonian system:

n+1 n+1

Zb2+Za

b 2 2
bi=af —ai_;

é,' = *a;(b;+1 — b,').

2
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Lax pair formulation

There exists a Lax pair (L, B) such that the Hamiltonian system

above is equivalent to L = [L, B],

b1 al 0 PN dn+1

ai by a ... 0

L = 0 an b3 e 0
dn+1 0 0 . bn+1

Proposition
The spectrum of L is preserved by the flow of the system.

Theorem (Hénon 1973)
The Toda lattice is completely integrable.
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The Arnold-Liouville theorem
Fix (M?" w) and let F = (Hy,...,H,) : M — R" such that
{Hi, H;j} =0 for all i,j.
» If ¢ € R is a regular value of F and F~1(c) is compact and
connected, then F~1(c) = T".
» Let U be an open set such that F(U) is simply-connected and
does not contain critical values. Then there exists a
diffeomorphism ¢ : F(U) — Q and a symplectomorphism
® : U — Xgq such that the following diagram commutes.

U LXQ

b

FlU) 2~ Q

> The map ¢ can be obtained by action coordinates:

qs(c):(jicx,...,]{gA).

1
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Spectral theory for the Toda lattice

Difference equation related to the eigenvalue problem of L:

ak—1Yk—1(A) + beyi(A) + akyk+1(X) = Ayi(A).

Let yx(A) be the solution to this difference equation such that
yo =1and y; =0. Then yx(A) is a polynomial of degree k — 2.

Let 1 < --- < up, be the roots of y,12(A) and let
fi = —log |ynt1(pi)l-
Theorem (Flaschka—McLaughlin, van Moerbeke, Moser)

The map {(q,p) € R*"™2 |3, pi = >, qi = 0} — R?" defined by
(q,p) — (fi,..., o, i1, ..., ptn) is @ symplectomorphism.
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Action-angle coordinates for the Toda lattice

Let D(X) be the discriminant of the difference equation in the
previous slide.

A is an eigenvalue of L <= D(\) =2.

Theorem (van Moerbeke)

Let A1 < Mo < -+ < Apnyo be the roots of D(A\)? — 4.Then
i € [Mai, A2iy1]. Moreover, f; = +cosh™! ‘%‘
Using the Arnold-Liouville theorem:

The action coordinates ¢ = (J1,...,J,) are given by

A2iy1
Ji = 2/ cosh™! M
A

du,
2i 2

and they induce a symplectomorphism

CD:{(q,p)ERz”H]Zq;_Zp;—O} — R?".
i i
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Question 2
Do other root systems B, C,, D,,, G, etc, give rise to interesting
symplectomorphisms?



