The Toda lattice, billiards and symplectic geometry

Vinicius G. B. Ramos

IMPA (Rio de Janeiro) and IAS (Princeton)

Symplectic topology

Symplectic topology

Let $\omega=\sum_{i} d q_{i} \wedge d p_{i} \in \Omega^{2}\left(\mathbb{R}^{2 n}\right)$.

Symplectic topology

Let $\omega=\sum_{i} d q_{i} \wedge d p_{i} \in \Omega^{2}\left(\mathbb{R}^{2 n}\right)$.

Question 1

Given $X_{1}, X_{2} \subset \mathbb{R}^{2 n}$, does there exist a diffeomorphism $\varphi: X_{1} \rightarrow X_{2}$ such that

$$
\varphi^{*} \omega=\omega ?
$$

Symplectic topology

$$
\text { Let } \omega=\sum_{i} d q_{i} \wedge d p_{i} \in \Omega^{2}\left(\mathbb{R}^{2 n}\right) \text {. }
$$

Question 1

Given $X_{1}, X_{2} \subset \mathbb{R}^{2 n}$, does there exist a diffeomorphism $\varphi: X_{1} \rightarrow X_{2}$ such that

$$
\varphi^{*} \omega=\omega ?
$$

Question 2
Given $X_{1}, X_{2} \subset \mathbb{R}^{2 n}$, does there exist an embedding $\varphi: X_{1} \hookrightarrow X_{2}$ such that $\varphi^{*} \omega=\omega$?

Symplectic embeddings

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

If $\varphi^{*} \omega=\omega$, then $\varphi^{*}\left(\omega^{n}\right)=\omega^{n}$.

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

If $\varphi^{*} \omega=\omega$, then $\varphi^{*}\left(\omega^{n}\right)=\omega^{n}$.
Let

$$
B^{2 n}(r)=\left\{\left.(q, p) \in \mathbb{R}^{2 n}| | q\right|^{2}+|p|^{2}<r^{2}\right\}
$$

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

If $\varphi^{*} \omega=\omega$, then $\varphi^{*}\left(\omega^{n}\right)=\omega^{n}$.
Let

$$
\begin{aligned}
& B^{2 n}(r)=\left\{\left.(q, p) \in \mathbb{R}^{2 n}| | q\right|^{2}+|p|^{2}<r^{2}\right\} \\
& Z^{2 n}(r)=\left\{(q, p) \in \mathbb{R}^{2 n} \mid q_{1}^{2}+p_{1}^{2}<r^{2}\right\}
\end{aligned}
$$

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

If $\varphi^{*} \omega=\omega$, then $\varphi^{*}\left(\omega^{n}\right)=\omega^{n}$.
Let

$$
\begin{aligned}
& B^{2 n}(r)=\left\{\left.(q, p) \in \mathbb{R}^{2 n}| | q\right|^{2}+|p|^{2}<r^{2}\right\} \\
& Z^{2 n}(r)=\left\{(q, p) \in \mathbb{R}^{2 n} \mid q_{1}^{2}+p_{1}^{2}<r^{2}\right\}=B^{2}(r) \times \mathbb{R}^{2 n-2} .
\end{aligned}
$$

Symplectic embeddings

$$
\omega^{n}=\omega \wedge \cdots \wedge \omega=n!d q_{1} \wedge d p_{1} \wedge \cdots \wedge d q_{n} \wedge d p_{n}
$$

If $\varphi^{*} \omega=\omega$, then $\varphi^{*}\left(\omega^{n}\right)=\omega^{n}$.
Let

$$
\begin{aligned}
& B^{2 n}(r)=\left\{\left.(q, p) \in \mathbb{R}^{2 n}| | q\right|^{2}+|p|^{2}<r^{2}\right\} \\
& Z^{2 n}(r)=\left\{(q, p) \in \mathbb{R}^{2 n} \mid q_{1}^{2}+p_{1}^{2}<r^{2}\right\}=B^{2}(r) \times \mathbb{R}^{2 n-2}
\end{aligned}
$$

Nonsqueezing

Gromov's nonsqueezing theorem, 1985

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} Z^{2 n}(R) \Longleftrightarrow r \leq R
$$

Nonsqueezing

Gromov's nonsqueezing theorem, 1985

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} Z^{2 n}(R) \Longleftrightarrow r \leq R
$$

Nonsqueezing

Gromov's nonsqueezing theorem, 1985

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} Z^{2 n}(R) \Longleftrightarrow r \leq R
$$

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} \tilde{Z}^{2 n}(\varepsilon)=\left\{(q, p) \in \mathbb{R}^{2 n} \mid q_{1}^{2}+q_{2}^{2}<\varepsilon^{2}\right\}, \quad \forall r, \varepsilon>0
$$

Nonsqueezing

Gromov's nonsqueezing theorem, 1985

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} Z^{2 n}(R) \Longleftrightarrow r \leq R
$$

$$
B^{2 n}(r) \stackrel{s}{\hookrightarrow} \widetilde{Z}^{2 n}(\varepsilon)=\left\{(q, p) \in \mathbb{R}^{2 n} \mid q_{1}^{2}+q_{2}^{2}<\varepsilon^{2}\right\}, \quad \forall r, \varepsilon>0
$$

$$
\omega=\sum_{i} d q_{i} \wedge d p_{i}
$$

Symplectic capacities

Definition
A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2} \Rightarrow c\left(X_{1}\right) \leq c\left(X_{2}\right)$,

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2} \Rightarrow c\left(X_{1}\right) \leq c\left(X_{2}\right)$,
- $c\left(B^{2 n}(r)\right)>0$ and $c\left(Z^{2 n}(r)\right)<\infty$.

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2} \Rightarrow c\left(X_{1}\right) \leq c\left(X_{2}\right)$,
- $c\left(B^{2 n}(r)\right)>0$ and $c\left(Z^{2 n}(r)\right)<\infty$.
c is said to be normalized if

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2} \Rightarrow c\left(X_{1}\right) \leq c\left(X_{2}\right)$,
- $c\left(B^{2 n}(r)\right)>0$ and $c\left(Z^{2 n}(r)\right)<\infty$.
c is said to be normalized if

$$
c\left(B^{2 n}(r)\right)=c\left(Z^{2 n}(r)\right)=\pi r^{2}
$$

Symplectic capacities

Definition

A symplectic capacity is a function $c: \mathcal{P}\left(\mathbb{R}^{2 n}\right) \rightarrow[0,+\infty]$ satisfying

- $c(r X)=r^{2} c(X)$ for all $r>0$,
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2} \Rightarrow c\left(X_{1}\right) \leq c\left(X_{2}\right)$,
- $c\left(B^{2 n}(r)\right)>0$ and $c\left(Z^{2 n}(r)\right)<\infty$.
c is said to be normalized if

$$
c\left(B^{2 n}(r)\right)=c\left(Z^{2 n}(r)\right)=\pi r^{2}
$$

The existence of a normalized symplectic capacity is equivalent to Gromov's nonsqueezing theorem.

Symplectic capacities

The simplest capacities are

Symplectic capacities

The simplest capacities are

$$
c_{G r}(X)=\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad(\text { Gromov width }),
$$

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity). }
\end{aligned}
$$

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) } .
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) }
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) }
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

- First Ekeland-Hofer capacity $c_{1}^{E H}$ (1989),

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) }
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

- First Ekeland-Hofer capacity $c_{1}^{E H}$ (1989),
- Hofer-Zehnder capacity $c_{H Z}$ (1994),

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity). }
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

- First Ekeland-Hofer capacity $c_{1}^{E H}$ (1989),
- Hofer-Zehnder capacity $c_{H Z}$ (1994),
- Floer-Hofer capacity CSH $^{\text {(1994), }}$

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) } .
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

- First Ekeland-Hofer capacity $c_{1}^{E H}$ (1989),
- Hofer-Zehnder capacity $c_{H Z}$ (1994),
- Floer-Hofer capacity CSH (1994),
- First contact homology capacity $c_{1}^{C H}$ (Gutt-Hutchings 2018),

Symplectic capacities

The simplest capacities are

$$
\begin{aligned}
c_{G r}(X) & =\sup \left\{\pi r^{2} \mid B^{2 n}(r) \stackrel{s}{\hookrightarrow} X\right\} \quad \text { (Gromov width) } \\
c_{Z}(X) & =\inf \left\{\pi r^{2} \mid X \stackrel{s}{\hookrightarrow} Z^{2 n}(r)\right\} \quad \text { (cylindrical capacity) } .
\end{aligned}
$$

It is easy to check that if c is a normalized capacity, then

$$
c_{G r}(X) \leq c(X) \leq c_{Z}(X)
$$

Other examples of normalized capacities:

- First Ekeland-Hofer capacity $c_{1}^{E H}$ (1989),
- Hofer-Zehnder capacity $c_{H Z}$ (1994),
- Floer-Hofer capacity CSH $^{\text {(1994), }}$
- First contact homology capacity $c_{1}^{C H}$ (Gutt-Hutchings 2018),
- First embedded contact homology capacity $c_{1}^{E C H}$ (Hutchings 2011) - only in dimension 4.

The Viterbo conjecture

Exercise

For any compact set X,

$$
\frac{c_{G r}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

The Viterbo conjecture

Exercise
For any compact set X,

$$
\frac{c_{G r}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Idea: If $c_{G r}(X)=\pi r^{2}$, then $(1-\epsilon) B^{2 n}(r) \stackrel{s}{\hookrightarrow} X$.

The Viterbo conjecture

Exercise
For any compact set X,

$$
\frac{c_{G r}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Idea: If $c_{G r}(X)=\pi r^{2}$, then $(1-\epsilon) B^{2 n}(r) \stackrel{s}{\hookrightarrow} X$. So $\operatorname{vol}\left((1-\epsilon) B^{2 n}(r)\right) \leq \operatorname{vol}(X)$.

The Viterbo conjecture

Exercise
For any compact set X,

$$
\frac{c_{G r}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Idea: If $c_{G r}(X)=\pi r^{2}$, then $(1-\epsilon) B^{2 n}(r) \stackrel{s}{\hookrightarrow} X$.
So $\operatorname{vol}\left((1-\epsilon) B^{2 n}(r)\right) \leq \operatorname{vol}(X)$.
Conjecture (Viterbo)
If $X \subset \mathbb{R}^{2 n}$ is a compact and convex set and c is a normalized symplectic capacity, then

$$
\frac{c(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

The Viterbo conjecture

Exercise
For any compact set X,

$$
\frac{c_{G r}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Idea: If $c_{G r}(X)=\pi r^{2}$, then $(1-\epsilon) B^{2 n}(r) \stackrel{s}{\hookrightarrow} X$.
So $\operatorname{vol}\left((1-\epsilon) B^{2 n}(r)\right) \leq \operatorname{vol}(X)$.
Conjecture (Viterbo)
If $X \subset \mathbb{R}^{2 n}$ is a compact and convex set and c is a normalized symplectic capacity, then

$$
\frac{c(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Moreover equality holds if, and only if, $\operatorname{int}(X)$ is symplectomorphic to a ball.

Minimal action

If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, let $A_{\text {min }}(X)$ denote the shortest period of a closed Reeb orbit on ∂X.

Minimal action

If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, let $A_{\min }(X)$ denote the shortest period of a closed Reeb orbit on ∂X.

Theorem (EH, HZ, Abbondandolo-Kang, Irie)
If X is a compact and convex set with smooth boundary, then

$$
c_{1}^{E H}(X)=c_{H Z}(X)=c_{S H}(X)=c_{1}^{C H}(X)=A_{\min }(X)
$$

Minimal action

If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, let $A_{\min }(X)$ denote the shortest period of a closed Reeb orbit on ∂X.

Theorem (EH, HZ, Abbondandolo-Kang, Irie)
If X is a compact and convex set with smooth boundary, then

$$
c_{1}^{E H}(X)=c_{H Z}(X)=c_{S H}(X)=c_{1}^{C H}(X)=A_{\min }(X)
$$

Weak Viterbo conjecture
If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, then

$$
\frac{c_{H Z}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Minimal action

If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, let $A_{\min }(X)$ denote the shortest period of a closed Reeb orbit on ∂X.

Theorem (EH, HZ, Abbondandolo-Kang, Irie)
If X is a compact and convex set with smooth boundary, then

$$
c_{1}^{E H}(X)=c_{H Z}(X)=c_{S H}(X)=c_{1}^{C H}(X)=A_{\min }(X)
$$

Weak Viterbo conjecture

If X is a compact and convex set of $\mathbb{R}^{2 n}$ with smooth boundary, then

$$
\frac{c_{H Z}(X)^{n}}{n!} \leq \operatorname{vol}(X)
$$

Moreover equality holds iff $\operatorname{int}(X) \cong B^{2 n}$.

The Mahler conjecture

The Mahler conjecture

Let $K \subset \mathbb{R}^{n}$ be an origin-symmetric, compact and convex set.

The Mahler conjecture

Let $K \subset \mathbb{R}^{n}$ be an origin-symmetric, compact and convex set. Its polar body K° is defined by

$$
K^{\circ}=\left\{x \in \mathbb{R}^{n} \mid x \cdot y \leq 1 \text { for all } y \in K\right\}
$$

The Mahler conjecture

Let $K \subset \mathbb{R}^{n}$ be an origin-symmetric, compact and convex set. Its polar body K° is defined by

$$
K^{\circ}=\left\{x \in \mathbb{R}^{n} \mid x \cdot y \leq 1 \text { for all } y \in K\right\} .
$$

Conjecture (Mahler 1939)

$$
M(K)=\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{\circ}\right) \geq \frac{4^{n}}{n!}
$$

The Mahler conjecture

Let $K \subset \mathbb{R}^{n}$ be an origin-symmetric, compact and convex set. Its polar body K° is defined by

$$
K^{\circ}=\left\{x \in \mathbb{R}^{n} \mid x \cdot y \leq 1 \text { for all } y \in K\right\} .
$$

Conjecture (Mahler 1939)

$$
M(K)=\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{\circ}\right) \geq \frac{4^{n}}{n!}
$$

Equality is attained for the hypercube $K=I^{n}$.

Hanner polytopes

The Hanner polytopes are the elements of the set generated by an interval $[-1,1]$ and the operations \times and ${ }^{\circ}$.

Hanner polytopes

The Hanner polytopes are the elements of the set generated by an interval $[-1,1]$ and the operations \times and ${ }^{\circ}$.

Hanner polytopes

The Hanner polytopes are the elements of the set generated by an interval $[-1,1]$ and the operations \times and ${ }^{\circ}$.

If $K \subset \mathbb{R}^{n}$ is a Hanner polytope, then

$$
M(K)=\frac{4^{n}}{n!}
$$

Hanner polytopes

The Hanner polytopes are the elements of the set generated by an interval $[-1,1]$ and the operations \times and ${ }^{\circ}$.

If $K \subset \mathbb{R}^{n}$ is a Hanner polytope, then

$$
M(K)=\frac{4^{n}}{n!}
$$

Conjecture
$M(K)$ is minimized precisely by the Hanner polytopes.

Mahler's conjecture

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
The weak Viterbo conjecture implies the Mahler conjecture.

Mahler's conjecture

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
The weak Viterbo conjecture implies the Mahler conjecture.
Viterbo \Rightarrow Weak Viterbo \Rightarrow Mahler

Lagrangian products

$$
\text { Let } K \times T=\left\{(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2 n} \mid \mathbf{q} \in K \text { and } \mathbf{p} \in T\right\} .
$$

Lagrangian products

$$
\begin{aligned}
& \text { Let } K \times T=\left\{(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2 n} \mid \mathbf{q} \in K \text { and } \mathbf{p} \in T\right\} \text {. Then } \\
& \partial(K \times T)=H^{-1}(1) \text {, where } H=\max \left(\|\cdot\|_{K},\|\cdot\|_{L}\right) \text {. }
\end{aligned}
$$

Lagrangian products

$$
\begin{aligned}
& \text { Let } K \times T=\left\{(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2 n} \mid \mathbf{q} \in K \text { and } \mathbf{p} \in T\right\} \text {. Then } \\
& \partial(K \times T)=H^{-1}(1) \text {, where } H=\max \left(\|\cdot\|_{K},\|\cdot\|_{L}\right) \text {. }
\end{aligned}
$$

$$
X_{H}=-J \nabla H=\left\{\begin{array}{cc}
\sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } & K \times \partial T \\
-\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on } & \partial K \times T
\end{array}\right.
$$

Lagrangian products

$$
\begin{aligned}
& \text { Let } K \times T=\left\{(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2 n} \mid \mathbf{q} \in K \text { and } \mathbf{p} \in T\right\} \text {. Then } \\
& \partial(K \times T)=H^{-1}(1) \text {, where } H=\max \left(\|\cdot\|_{K},\|\cdot\|_{L}\right) \text {. }
\end{aligned}
$$

$$
X_{H}=-J \nabla H=\left\{\begin{array}{cc}
\sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } & K \times \partial T \\
-\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on } & \partial K \times T
\end{array}\right.
$$

Lagrangian products

$$
\begin{aligned}
& \text { Let } K \times T=\left\{(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2 n} \mid \mathbf{q} \in K \text { and } \mathbf{p} \in T\right\} \text {. Then } \\
& \partial(K \times T)=H^{-1}(1) \text {, where } H=\max \left(\|\cdot\|_{K},\|\cdot\|_{L}\right) \text {. }
\end{aligned}
$$

$$
X_{H}=-J \nabla H=\left\{\begin{array}{cc}
\sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } & K \times \partial T \\
-\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on } & \partial K \times T
\end{array}\right.
$$

Lagrangian products

$$
\begin{aligned}
& \text { Let } K \times T=\left\{(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2 n} \mid \mathbf{q} \in K \text { and } \mathbf{p} \in T\right\} \text {. Then } \\
& \partial(K \times T)=H^{-1}(1) \text {, where } H=\max \left(\|\cdot\|_{K},\|\cdot\|_{L}\right) \text {. }
\end{aligned}
$$

$$
X_{H}=-J \nabla H=\left\{\begin{array}{cc}
\sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } & K \times \partial T \\
-\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on } & \partial K \times T
\end{array}\right.
$$

Lagrangian products

$$
\begin{aligned}
& \text { Let } K \times T=\left\{(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2 n} \mid \mathbf{q} \in K \text { and } \mathbf{p} \in T\right\} \text {. Then } \\
& \partial(K \times T)=H^{-1}(1) \text {, where } H=\max \left(\|\cdot\|_{K},\|\cdot\|_{L}\right) \text {. }
\end{aligned}
$$

$$
X_{H}=-J \nabla H=\left\{\begin{array}{cc}
\sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } & K \times \partial T \\
-\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on } & \partial K \times T
\end{array}\right.
$$

Lagrangian products

$$
\begin{aligned}
& \text { Let } K \times T=\left\{(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2 n} \mid \mathbf{q} \in K \text { and } \mathbf{p} \in T\right\} \text {. Then } \\
& \partial(K \times T)=H^{-1}(1) \text {, where } H=\max \left(\|\cdot\|_{K},\|\cdot\|_{L}\right) \text {. }
\end{aligned}
$$

$$
X_{H}=-J \nabla H=\left\{\begin{array}{cc}
\sum_{i} \nu_{\mathbf{p}}^{i} \frac{\partial}{\partial q_{i}} \text { on } & K \times \partial T \\
-\sum_{i} \nu_{\mathbf{q}}^{i} \frac{\partial}{\partial p_{i}} \text { on } & \partial K \times T
\end{array}\right.
$$

Viterbo implies Mahler

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
Let $K \subset \mathbb{R}^{n}$ be a symmetric compact convex set.

Viterbo implies Mahler

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
Let $K \subset \mathbb{R}^{n}$ be a symmetric compact convex set. Then

$$
c_{H Z}\left(K \times K^{\circ}\right)=4
$$

Viterbo implies Mahler

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
Let $K \subset \mathbb{R}^{n}$ be a symmetric compact convex set. Then

$$
c_{H Z}\left(K \times K^{\circ}\right)=4
$$

Viterbo implies Mahler

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
Let $K \subset \mathbb{R}^{n}$ be a symmetric compact convex set. Then

$$
c_{H Z}\left(K \times K^{\circ}\right)=4
$$

$$
\frac{4^{n}}{n!}=\frac{c_{H Z}\left(K \times K^{\circ}\right)^{n}}{n!}
$$

Viterbo implies Mahler

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
Let $K \subset \mathbb{R}^{n}$ be a symmetric compact convex set. Then

$$
c_{H Z}\left(K \times K^{\circ}\right)=4
$$

$$
\frac{4^{n}}{n!}=\frac{c_{H Z}\left(K \times K^{\circ}\right)^{n}}{n!} \leq \operatorname{vol}\left(K \times K^{\circ}\right)
$$

Viterbo implies Mahler

Theorem (Artstein-Avidan, Karasev, Ostrover 2014)
Let $K \subset \mathbb{R}^{n}$ be a symmetric compact convex set. Then

$$
c_{H Z}\left(K \times K^{\circ}\right)=4
$$

$$
\frac{4^{n}}{n!}=\frac{c_{H Z}\left(K \times K^{\circ}\right)^{n}}{n!} \leq \operatorname{vol}\left(K \times K^{\circ}\right)=\operatorname{vol}(K) \cdot \operatorname{vol}\left(K^{\circ}\right) .
$$

Symplectic balls in disguise

Proposition

The product $I^{n} \times\left(I^{n}\right)^{\circ}=B_{\infty}^{n} \times B_{1}^{n}$ satisfies the equality in Viterbo's conjecture.

Symplectic balls in disguise

Proposition

The product $I^{n} \times\left(I^{n}\right)^{\circ}=B_{\infty}^{n} \times B_{1}^{n}$ satisfies the equality in Viterbo's conjecture.
More generally, if K is a Hanner polytope,

Symplectic balls in disguise

Proposition

The product $I^{n} \times\left(I^{n}\right)^{\circ}=B_{\infty}^{n} \times B_{1}^{n}$ satisfies the equality in Viterbo's conjecture.
More generally, if K is a Hanner polytope, $K \times K^{\circ}$ always does.

Symplectic balls in disguise

Proposition

The product $I^{n} \times\left(I^{n}\right)^{\circ}=B_{\infty}^{n} \times B_{1}^{n}$ satisfies the equality in
Viterbo's conjecture.
More generally, if K is a Hanner polytope, $K \times K^{\circ}$ always does.
Theorem (R.- Sepe, 2019)
$I^{n} \times\left(I^{n}\right)^{\circ}$ is symplectomorphic to a ball.

Symplectic balls in disguise

Proposition

The product $I^{n} \times\left(I^{n}\right)^{\circ}=B_{\infty}^{n} \times B_{1}^{n}$ satisfies the equality in
Viterbo's conjecture.
More generally, if K is a Hanner polytope, $K \times K^{\circ}$ always does.
Theorem (R.- Sepe, 2019)
$I^{n} \times\left(I^{n}\right)^{\circ}$ is symplectomorphic to a ball.
Conjecture
For any Hanner polytope, $K \times K^{\circ}$ is symplectomorphic to a ball.

Symplectic balls in disguise

Proposition

The product $I^{n} \times\left(I^{n}\right)^{\circ}=B_{\infty}^{n} \times B_{1}^{n}$ satisfies the equality in
Viterbo's conjecture.
More generally, if K is a Hanner polytope, $K \times K^{\circ}$ always does.
Theorem (R.- Sepe, 2019)
$I^{n} \times\left(I^{n}\right)^{\circ}$ is symplectomorphic to a ball.
Conjecture
For any Hanner polytope, $K \times K^{\circ}$ is symplectomorphic to a ball.

Proposition

The product $\triangle \times \square$ satisfies the equality in Viterbo's conjecture.

Symplectic balls in disguise

$$
\Delta^{n}=\left\{\mathbf{q} \in \mathbb{R}^{n+1} \mid \sum_{i} q_{i}=0, q_{i}-q_{i+1}<1 \text { for all } i\right\}
$$

Symplectic balls in disguise

$$
\begin{aligned}
& \Delta^{n}=\left\{\mathbf{q} \in \mathbb{R}^{n+1} \mid \sum_{i} q_{i}=0, q_{i}-q_{i+1}<1 \text { for all } \mathrm{i}\right\} \\
& \mathcal{R}^{n}=\left\{\mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_{i} p_{i}=0, \max _{i} p_{i}-\min _{i} p_{i}<1\right\}
\end{aligned}
$$

Symplectic balls in disguise

$$
\begin{aligned}
& \Delta^{n}=\left\{\mathbf{q} \in \mathbb{R}^{n+1} \mid \sum_{i} q_{i}=0, q_{i}-q_{i+1}<1 \text { for all } i\right\}, \\
& \mathcal{R}^{n}=\left\{\mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_{i} p_{i}=0, \max _{i} p_{i}-\min _{i} p_{i}<1\right\} .
\end{aligned}
$$

Remark
$\Delta^{2}=\Delta$ and $\mathcal{R}^{2}=\square$.

Symplectic balls in disguise

$$
\begin{aligned}
& \Delta^{n}=\left\{\mathbf{q} \in \mathbb{R}^{n+1} \mid \sum_{i} q_{i}=0, q_{i}-q_{i+1}<1 \text { for all } i\right\}, \\
& \mathcal{R}^{n}=\left\{\mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_{i} p_{i}=0, \max _{i} p_{i}-\min _{i} p_{i}<1\right\} .
\end{aligned}
$$

Remark
$\Delta^{2}=\Delta$ and $\mathcal{R}^{2}=\square$.
Theorem (Ostrover-R.-Sepe 2023)
$\Delta^{n} \times \mathcal{R}^{n}$ is symplectomorphic to a ball.

Symplectic balls in disguise

$$
\begin{aligned}
& \Delta^{n}=\left\{\mathbf{q} \in \mathbb{R}^{n+1} \mid \sum_{i} q_{i}=0, q_{i}-q_{i+1}<1 \text { for all } i\right\}, \\
& \mathcal{R}^{n}=\left\{\mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_{i} p_{i}=0, \max _{i} p_{i}-\min _{i} p_{i}<1\right\} .
\end{aligned}
$$

Remark
$\Delta^{2}=\Delta$ and $\mathcal{R}^{2}=\square$.
Theorem (Ostrover-R.-Sepe 2023)
$\Delta^{n} \times \mathcal{R}^{n}$ is symplectomorphic to a ball.

Toric domains

Definition

A toric domain $\mathbb{X}_{\Omega} \subset \mathbb{C}^{n}$ is a set of the form $\mathbb{X}_{\Omega}=\mu^{-1}(\Omega)$, where $\Omega \subset[0, \infty)^{n}$ is an open set and

$$
\mu: \mathbb{C}^{n} \rightarrow[0, \infty)^{n} \quad \mu\left(z_{1}, \ldots, z_{n}\right)=\left(\pi\left|z_{1}\right|^{2}, \ldots, \pi\left|z_{n}\right|^{2}\right)
$$

Toric domains

Definition

A toric domain $\mathbb{X}_{\Omega} \subset \mathbb{C}^{n}$ is a set of the form $\mathbb{X}_{\Omega}=\mu^{-1}(\Omega)$, where $\Omega \subset[0, \infty)^{n}$ is an open set and

$$
\mu: \mathbb{C}^{n} \rightarrow[0, \infty)^{n} \quad \mu\left(z_{1}, \ldots, z_{n}\right)=\left(\pi\left|z_{1}\right|^{2}, \ldots, \pi\left|z_{n}\right|^{2}\right)
$$

Example (Cylinder)

$Z(a):=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}|\pi| z_{1}\right|^{2} \leq a\right\}$

Toric domains

Definition

A toric domain $\mathbb{X}_{\Omega} \subset \mathbb{C}^{n}$ is a set of the form $\mathbb{X}_{\Omega}=\mu^{-1}(\Omega)$, where $\Omega \subset[0, \infty)^{n}$ is an open set and

$$
\mu: \mathbb{C}^{n} \rightarrow[0, \infty)^{n} \quad \mu\left(z_{1}, \ldots, z_{n}\right)=\left(\pi\left|z_{1}\right|^{2}, \ldots, \pi\left|z_{n}\right|^{2}\right)
$$

Example (Cylinder)

$Z(a):=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}|\pi| z_{1}\right|^{2} \leq a\right\}$

Example (Ellipsoid)

$E(a, b):=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b} \leq 1\right.\right\}$

Symmetric domains

Definition

Let $A \subset\left\{\mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_{i} p_{i}=0\right\}$ be relatively open and star-shaped.

Symmetric domains

Definition

Let $A \subset\left\{\mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_{i} p_{i}=0\right\}$ be relatively open and star-shaped.

- A is symmetric if A is S_{n+1}-invariant.

Symmetric domains

Definition

Let $A \subset\left\{\mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_{i} p_{i}=0\right\}$ be relatively open and star-shaped.

- A is symmetric if A is S_{n+1}-invariant.
- A is balanced if A is symmetric and for $\left(p_{1}, \ldots, p_{n+1}\right) \in A$,

$$
\text { convex hull }\left\{\left(p_{\sigma(1)}, \ldots, p_{\sigma(n+1)}\right) \mid \sigma \in S_{n+1}\right\} \subset A
$$

Symmetric domains

Definition

Let $A \subset\left\{\mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_{i} p_{i}=0\right\}$ be relatively open and star-shaped.

- A is symmetric if A is S_{n+1}-invariant.
- A is balanced if A is symmetric and for $\left(p_{1}, \ldots, p_{n+1}\right) \in A$,

$$
\text { convex hull }\left\{\left(p_{\sigma(1)}, \ldots, p_{\sigma(n+1)}\right) \mid \sigma \in S_{n+1}\right\} \subset A
$$

Let $\rho: \mathbb{R}^{n+1} \rightarrow[0, \infty)^{n}$ defined by

$$
\rho\left(p_{1}, \ldots, p_{n+1}\right)=\left(p_{\sigma(1)}-p_{\sigma(2)}, \ldots, p_{\sigma(n)}-p_{\sigma(n+1)}\right),
$$

Symmetric domains

Definition

Let $A \subset\left\{\mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_{i} p_{i}=0\right\}$ be relatively open and star-shaped.

- A is symmetric if A is S_{n+1}-invariant.
- A is balanced if A is symmetric and for $\left(p_{1}, \ldots, p_{n+1}\right) \in A$,

$$
\text { convex hull }\left\{\left(p_{\sigma(1)}, \ldots, p_{\sigma(n+1)}\right) \mid \sigma \in S_{n+1}\right\} \subset A
$$

Let $\rho: \mathbb{R}^{n+1} \rightarrow[0, \infty)^{n}$ defined by

$$
\rho\left(p_{1}, \ldots, p_{n+1}\right)=\left(p_{\sigma(1)}-p_{\sigma(2)}, \ldots, p_{\sigma(n)}-p_{\sigma(n+1)}\right)
$$

where $\sigma \in S_{n+1}$ such that $p_{\sigma(1)} \geq p_{\sigma(2)} \geq \cdots \geq p_{\sigma(n+1)}$.

Symmetric domains

Definition

Let $A \subset\left\{\mathbf{p} \in \mathbb{R}^{n+1} \mid \sum_{i} p_{i}=0\right\}$ be relatively open and star-shaped.

- A is symmetric if A is S_{n+1}-invariant.
- A is balanced if A is symmetric and for $\left(p_{1}, \ldots, p_{n+1}\right) \in A$,

$$
\text { convex hull }\left\{\left(p_{\sigma(1)}, \ldots, p_{\sigma(n+1)}\right) \mid \sigma \in S_{n+1}\right\} \subset A
$$

Let $\rho: \mathbb{R}^{n+1} \rightarrow[0, \infty)^{n}$ defined by

$$
\rho\left(p_{1}, \ldots, p_{n+1}\right)=\left(p_{\sigma(1)}-p_{\sigma(2)}, \ldots, p_{\sigma(n)}-p_{\sigma(n+1)}\right)
$$

where $\sigma \in S_{n+1}$ such that $p_{\sigma(1)} \geq p_{\sigma(2)} \geq \cdots \geq p_{\sigma(n+1)}$.
If A is symmetric, then A is determined by $\rho(A)$.

Symplectic equivalences

Theorem (Ostrover-R.-Sepe, 2023)

- If A is symmetric, then for every $\varepsilon>0$,

$$
(1-\epsilon) \Delta^{n} \times_{L} A \hookrightarrow \mathbb{X}_{(n+1) \rho(A)} \hookrightarrow(1+\epsilon) \Delta^{n} \times_{L} A .
$$

Symplectic equivalences

Theorem (Ostrover-R.-Sepe, 2023)

- If A is symmetric, then for every $\varepsilon>0$,

$$
(1-\epsilon) \Delta^{n} \times_{L} A \hookrightarrow \mathbb{X}_{(n+1) \rho(A)} \hookrightarrow(1+\epsilon) \Delta^{n} \times_{L} A .
$$

- If A is balanced, then $\Delta^{n} \times_{L} A$ is symplectomorphic to $\mathbb{X}_{(n+1) \rho(A)}$.

Symplectic equivalences

Theorem (Ostrover-R.-Sepe, 2023)

- If A is symmetric, then for every $\varepsilon>0$,

$$
(1-\epsilon) \Delta^{n} \times_{L} A \hookrightarrow \mathbb{X}_{(n+1) \rho(A)} \hookrightarrow(1+\epsilon) \Delta^{n} \times_{L} A .
$$

- If A is balanced, then $\Delta^{n} \times_{L} A$ is symplectomorphic to $\mathbb{X}_{(n+1) \rho(A)}$.

Corollary
The ball is symplectomorphic to $\Delta^{n} \times \mathcal{R}^{n}$.

Symplectic equivalences

Theorem (Ostrover-R.-Sepe, 2023)

- If A is symmetric, then for every $\varepsilon>0$,

$$
(1-\epsilon) \Delta^{n} \times_{L} A \hookrightarrow \mathbb{X}_{(n+1) \rho(A)} \hookrightarrow(1+\epsilon) \Delta^{n} \times_{L} A .
$$

- If A is balanced, then $\Delta^{n} \times_{L} A$ is symplectomorphic to $\mathbb{X}_{(n+1) \rho(A)}$.

Corollary
The ball is symplectomorphic to $\Delta^{n} \times \mathcal{R}^{n}$.
Proof.
We first note that \mathcal{R}^{n} is balanced.

Symplectic equivalences

Theorem (Ostrover-R.-Sepe, 2023)

- If A is symmetric, then for every $\varepsilon>0$,

$$
(1-\epsilon) \Delta^{n} \times_{L} A \hookrightarrow \mathbb{X}_{(n+1) \rho(A)} \hookrightarrow(1+\epsilon) \Delta^{n} \times_{L} A .
$$

- If A is balanced, then $\Delta^{n} \times_{L} A$ is symplectomorphic to $\mathbb{X}_{(n+1) \rho(A)}$.

Corollary
The ball is symplectomorphic to $\Delta^{n} \times \mathcal{R}^{n}$.
Proof.
We first note that \mathcal{R}^{n} is balanced.
If $\left(r_{1}, \ldots, r_{n}\right)=\rho(\mathbf{p})$, then $r_{1}+\cdots+r_{n}=$
$p_{\sigma(1)}-p_{\sigma(2)}+\cdots+p_{\sigma(n)}-p_{\sigma(n+1)}=\max _{i} p_{i}-\min _{i} p_{i}$.

Examples

Figure: The domain A for which $\mathbb{X}_{\rho(A)}$ is the ellipsoid $E(a, b)$.

Examples

Figure: The domain A for which $\mathbb{X}_{\rho(A)}$ is the ellipsoid $E(a, b)$.

Figure: The domain A for which $\mathbb{X}_{\rho(A)}$ is $P(1,1)$ and $P(1,3)$

Other toric domains in disguise

Other toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)

Other toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^{p} sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2022)

Other toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^{p} sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2022)
- The unit disk bundle $D^{*} S_{+}^{2}$ is symplectomorphic to $B(2 \pi)$. (Ferreira- R. 2022)

Other toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^{p} sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2022)
- The unit disk bundle $D^{*} S_{+}^{2}$ is symplectomorphic to $B(2 \pi)$. (Ferreira- R. 2022)
- $D^{*}\left(S^{2} \backslash\{x\}\right)$ is symplectomorphic to $P(2 \pi, 2 \pi)$. (Ferreira- R. 2022)

Other toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^{p} sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2022)
- The unit disk bundle $D^{*} S_{+}^{2}$ is symplectomorphic to $B(2 \pi)$. (Ferreira- R. 2022)
- $D^{*}\left(S^{2} \backslash\{x\}\right)$ is symplectomorphic to $P(2 \pi, 2 \pi)$. (Ferreira- R. 2022)
- $D^{*}\left(\mathcal{E}^{2}(1,1, a) \backslash\{(0,0, a)\}\right)$ is symplectomorphic to a toric domain. (Ferreira-R.-Vicente, 2023)

Other toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^{p} sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2022)
- The unit disk bundle $D^{*} S_{+}^{2}$ is symplectomorphic to $B(2 \pi)$. (Ferreira- R. 2022)
- $D^{*}\left(S^{2} \backslash\{x\}\right)$ is symplectomorphic to $P(2 \pi, 2 \pi)$. (Ferreira- R. 2022)
- $D^{*}\left(\mathcal{E}^{2}(1,1, a) \backslash\{(0,0, a)\}\right)$ is symplectomorphic to a toric domain. (Ferreira-R.-Vicente, 2023)
Large class of examples:
- The Lagrangian product of the hypercube I^{n} and an I^{n}-balanced region in $\mathbb{R}^{2 n}$ is symplectomorphic to a toric domain. (R.-Sepe, 2019)

Other toric domains in disguise

Specific examples:

- The Lagrangian bidisk $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ is symplectomorphic to a concave toric domain. (R. 2017)
- The L^{p} sum of two disks is symplectomorphic to a toric domain. (Ostrover- R. 2022)
- The unit disk bundle $D^{*} S_{+}^{2}$ is symplectomorphic to $B(2 \pi)$. (Ferreira- R. 2022)
- $D^{*}\left(S^{2} \backslash\{x\}\right)$ is symplectomorphic to $P(2 \pi, 2 \pi)$. (Ferreira- R. 2022)
- $D^{*}\left(\mathcal{E}^{2}(1,1, a) \backslash\{(0,0, a)\}\right)$ is symplectomorphic to a toric domain. (Ferreira-R.-Vicente, 2023)
Large class of examples:
- The Lagrangian product of the hypercube I^{n} and an I^{n}-balanced region in $\mathbb{R}^{2 n}$ is symplectomorphic to a toric domain. (R.-Sepe, 2019)

The Toda lattice

$$
H(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+\sum_{i=1}^{n+1} e^{q_{i}-q_{i+1}}
$$

The Toda lattice

$$
H(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+\sum_{i=1}^{n+1} e^{q_{i}-q_{i+1}}
$$

Hamiltonian system:

$$
\left\{\begin{array}{l}
\dot{q}_{i}=p_{i} \\
\dot{p}_{i}=e^{q_{i-1}-q_{i}}-e^{q_{i}-q_{i+1}}
\end{array}\right.
$$

The Toda lattice

$$
H(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+\sum_{i=1}^{n+1} e^{q_{i}-q_{i+1}}
$$

Hamiltonian system:

$$
\left\{\begin{array}{l}
\dot{q}_{i}=p_{i} \\
\dot{p}_{i}=e^{q_{i-1}-q_{i}}-e^{q_{i}-q_{i+1}}
\end{array}\right.
$$

A deformation of the Toda lattice

For $c>0$, let

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+c e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

A deformation of the Toda lattice

For $c>0$, let

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+c e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

As $c \rightarrow \infty$, the potential converges to

A deformation of the Toda lattice

For $c>0$, let

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+c e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

As $c \rightarrow \infty$, the potential converges to

$$
\left\{0, \text { if } q_{i}-q_{i+1}<1, \text { for all } i=1, \ldots, n,\right.
$$

A deformation of the Toda lattice

For $c>0$, let

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+c e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

As $c \rightarrow \infty$, the potential converges to

$$
\left\{\begin{array}{c}
0, \text { if } q_{i}-q_{i+1}<1, \text { for all } i=1, \ldots, n, \\
\infty, \text { if } q_{i}-q_{i+1} \geq 1, \text { for some } i=1, \ldots, n
\end{array}\right.
$$

A deformation of the Toda lattice

For $c>0$, let

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+c e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

As $c \rightarrow \infty$, the potential converges to

$$
\left\{\begin{aligned}
0, & \text { if } q_{i}-q_{i+1}<1, \text { for all } i=1, \ldots, n, \\
\infty, & \text { if } q_{i}-q_{i+1} \geq 1, \text { for some } i=1, \ldots, n
\end{aligned}\right.
$$

The flow of $X_{H_{c}}$ converges to the billiard flow in

$$
\left\{\mathbf{q} \in \mathbb{R}^{n} \mid q_{i}-q_{i+1}<1, \text { for all } i=1, \ldots, n\right\}
$$

The Toda lattice

$$
H(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+\sum_{i=1}^{n+1} e^{q_{i}-q_{i+1}}
$$

The Toda lattice

$$
H(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+\sum_{i=1}^{n+1} e^{q_{i}-q_{i+1}}
$$

Flaschka coordinates:

$$
a_{i}=e^{\frac{1}{2}\left(q_{i}-q_{i+1}\right)}, \quad b_{i}=-p_{i}
$$

The Toda lattice

$$
H(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+\sum_{i=1}^{n+1} e^{q_{i}-q_{i+1}}
$$

Flaschka coordinates:

$$
a_{i}=e^{\frac{1}{2}\left(q_{i}-q_{i+1}\right)}, \quad b_{i}=-p_{i} .
$$

Hamiltonian system:

$$
H(a, b)=\frac{1}{2} \sum_{i=1}^{n+1} b_{i}^{2}+\sum_{i=1}^{n+1} a_{i}^{2}
$$

The Toda lattice

$$
H(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+\sum_{i=1}^{n+1} e^{q_{i}-q_{i+1}}
$$

Flaschka coordinates:

$$
a_{i}=e^{\frac{1}{2}\left(q_{i}-q_{i+1}\right)}, \quad b_{i}=-p_{i} .
$$

Hamiltonian system:

$$
\begin{aligned}
& H(a, b)=\frac{1}{2} \sum_{i=1}^{n+1} b_{i}^{2}+\sum_{i=1}^{n+1} a_{i}^{2} \\
&\left\{\begin{array}{l}
\dot{b}_{i}
\end{array}=a_{i}^{2}-a_{i-1}^{2}\right. \\
& \dot{a}_{i}=\frac{1}{2} a_{i}\left(b_{i+1}-b_{i}\right)
\end{aligned}
$$

Lax pair formulation

There exists a Lax pair (L, B) such that the Hamiltonian system above is equivalent to $\dot{L}=[L, B]$,

$$
L=\left(\begin{array}{ccccc}
b_{1} & a_{1} & 0 & \ldots & a_{n+1} \\
a_{1} & b_{2} & a_{2} & \ldots & 0 \\
0 & a_{2} & b_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n+1} & 0 & 0 & \ldots & b_{n+1}
\end{array}\right) .
$$

Lax pair formulation

There exists a Lax pair (L, B) such that the Hamiltonian system above is equivalent to $\dot{L}=[L, B]$,

$$
L=\left(\begin{array}{ccccc}
b_{1} & a_{1} & 0 & \ldots & a_{n+1} \\
a_{1} & b_{2} & a_{2} & \ldots & 0 \\
0 & a_{2} & b_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n+1} & 0 & 0 & \ldots & b_{n+1}
\end{array}\right) .
$$

Proposition

The spectrum of L is preserved by the flow of the system.

Lax pair formulation

There exists a Lax pair (L, B) such that the Hamiltonian system above is equivalent to $\dot{L}=[L, B]$,

$$
L=\left(\begin{array}{ccccc}
b_{1} & a_{1} & 0 & \ldots & a_{n+1} \\
a_{1} & b_{2} & a_{2} & \ldots & 0 \\
0 & a_{2} & b_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n+1} & 0 & 0 & \ldots & b_{n+1}
\end{array}\right)
$$

Proposition

The spectrum of L is preserved by the flow of the system.
Theorem (Hénon 1973)
The Toda lattice is completely integrable.

The Arnold-Liouville theorem

Fix $\left(M^{2 n}, \omega\right)$ and let $F=\left(H_{1}, \ldots, H_{n}\right): M \rightarrow \mathbb{R}^{n}$ such that $\left\{H_{i}, H_{j}\right\}=0$ for all i, j.

The Arnold-Liouville theorem

Fix $\left(M^{2 n}, \omega\right)$ and let $F=\left(H_{1}, \ldots, H_{n}\right): M \rightarrow \mathbb{R}^{n}$ such that $\left\{H_{i}, H_{j}\right\}=0$ for all i, j.

- If $c \in \mathbb{R}^{n}$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^{n}$.

The Arnold-Liouville theorem

Fix $\left(M^{2 n}, \omega\right)$ and let $F=\left(H_{1}, \ldots, H_{n}\right): M \rightarrow \mathbb{R}^{n}$ such that $\left\{H_{i}, H_{j}\right\}=0$ for all i, j.

- If $c \in \mathbb{R}^{n}$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^{n}$.
- Let U be an open set such that $F(U)$ is simply-connected and does not contain critical values.

The Arnold-Liouville theorem

Fix $\left(M^{2 n}, \omega\right)$ and let $F=\left(H_{1}, \ldots, H_{n}\right): M \rightarrow \mathbb{R}^{n}$ such that $\left\{H_{i}, H_{j}\right\}=0$ for all i, j.

- If $c \in \mathbb{R}^{n}$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^{n}$.
- Let U be an open set such that $F(U)$ is simply-connected and does not contain critical values. Then there exists a diffeomorphism $\phi: F(U) \rightarrow \Omega$ and a symplectomorphism $\Phi: U \rightarrow \mathbb{X}_{\Omega}$ such that the following diagram commutes.

The Arnold-Liouville theorem

Fix $\left(M^{2 n}, \omega\right)$ and let $F=\left(H_{1}, \ldots, H_{n}\right): M \rightarrow \mathbb{R}^{n}$ such that $\left\{H_{i}, H_{j}\right\}=0$ for all i, j.

- If $c \in \mathbb{R}^{n}$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^{n}$.
- Let U be an open set such that $F(U)$ is simply-connected and does not contain critical values. Then there exists a diffeomorphism $\phi: F(U) \rightarrow \Omega$ and a symplectomorphism $\Phi: U \rightarrow \mathbb{X}_{\Omega}$ such that the following diagram commutes.

- The map ϕ can be obtained by action coordinates:

$$
\phi(c)=\left(\oint_{\gamma_{1}^{c}} \lambda, \ldots, \oint_{\gamma_{n}^{c}} \lambda\right) .
$$

Spectral theory for the Toda lattice

Difference equation related to the eigenvalue problem of L :

$$
a_{k-1} y_{k-1}(\lambda)+b_{k} y_{k}(\lambda)+a_{k} y_{k+1}(\lambda)=\lambda y_{k}(\lambda)
$$

Spectral theory for the Toda lattice

Difference equation related to the eigenvalue problem of L :

$$
a_{k-1} y_{k-1}(\lambda)+b_{k} y_{k}(\lambda)+a_{k} y_{k+1}(\lambda)=\lambda y_{k}(\lambda)
$$

Let $y_{k}(\lambda)$ be the solution to this difference equation such that $y_{0} \equiv 1$ and $y_{1} \equiv 0$.

Spectral theory for the Toda lattice

Difference equation related to the eigenvalue problem of L :

$$
a_{k-1} y_{k-1}(\lambda)+b_{k} y_{k}(\lambda)+a_{k} y_{k+1}(\lambda)=\lambda y_{k}(\lambda)
$$

Let $y_{k}(\lambda)$ be the solution to this difference equation such that $y_{0} \equiv 1$ and $y_{1} \equiv 0$. Then $y_{k}(\lambda)$ is a polynomial of degree $k-2$.

Spectral theory for the Toda lattice

Difference equation related to the eigenvalue problem of L :

$$
a_{k-1} y_{k-1}(\lambda)+b_{k} y_{k}(\lambda)+a_{k} y_{k+1}(\lambda)=\lambda y_{k}(\lambda)
$$

Let $y_{k}(\lambda)$ be the solution to this difference equation such that $y_{0} \equiv 1$ and $y_{1} \equiv 0$. Then $y_{k}(\lambda)$ is a polynomial of degree $k-2$.

Let $\mu_{1} \leq \cdots \leq \mu_{n}$ be the roots of $y_{n+2}(\lambda)$ and let $f_{i}=-\log \left|y_{n+1}\left(\mu_{i}\right)\right|$.

Spectral theory for the Toda lattice

Difference equation related to the eigenvalue problem of L :

$$
a_{k-1} y_{k-1}(\lambda)+b_{k} y_{k}(\lambda)+a_{k} y_{k+1}(\lambda)=\lambda y_{k}(\lambda)
$$

Let $y_{k}(\lambda)$ be the solution to this difference equation such that $y_{0} \equiv 1$ and $y_{1} \equiv 0$. Then $y_{k}(\lambda)$ is a polynomial of degree $k-2$.

Let $\mu_{1} \leq \cdots \leq \mu_{n}$ be the roots of $y_{n+2}(\lambda)$ and let $f_{i}=-\log \left|y_{n+1}\left(\mu_{i}\right)\right|$.
Theorem (Flaschka-McLaughlin, van Moerbeke, Moser)
The $\operatorname{map}\left\{(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2 n+2} \mid \sum_{i} p_{i}=\sum_{i} q_{i}=0\right\} \rightarrow \mathbb{R}^{2 n}$ defined by $(q, p) \mapsto\left(f_{1}, \ldots, f_{n}, \mu_{1}, \ldots, \mu_{n}\right)$ is a symplectomorphism.

Action-angle coordinates for the Toda lattice

Let $D(\lambda)$ be the discriminant of the difference equation in the previous slide.

Action-angle coordinates for the Toda lattice

Let $D(\lambda)$ be the discriminant of the difference equation in the previous slide.
λ is an eigenvalue of $L \Longleftrightarrow D(\lambda)=2$.

Action-angle coordinates for the Toda lattice

Let $D(\lambda)$ be the discriminant of the difference equation in the previous slide.
λ is an eigenvalue of $L \Longleftrightarrow D(\lambda)=2$.

Theorem (van Moerbeke)
Let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{2 n+2}$ be the roots of $D(\lambda)^{2}-4$.

Action-angle coordinates for the Toda lattice

Let $D(\lambda)$ be the discriminant of the difference equation in the previous slide.
λ is an eigenvalue of $L \Longleftrightarrow D(\lambda)=2$.

Theorem (van Moerbeke)
Let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{2 n+2}$ be the roots of $D(\lambda)^{2}-4$. Then
$\mu_{i} \in\left[\lambda_{2 i}, \lambda_{2 i+1}\right]$. Moreover, $f_{i}= \pm \cosh ^{-1}\left|\frac{D\left(\mu_{i}\right)}{2}\right|$.

Action-angle coordinates for the Toda lattice

Let $D(\lambda)$ be the discriminant of the difference equation in the previous slide.
λ is an eigenvalue of $L \Longleftrightarrow D(\lambda)=2$.

Theorem (van Moerbeke)
Let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{2 n+2}$ be the roots of $D(\lambda)^{2}-4$. Then $\mu_{i} \in\left[\lambda_{2 i}, \lambda_{2 i+1}\right]$. Moreover, $f_{i}= \pm \cosh ^{-1}\left|\frac{D\left(\mu_{i}\right)}{2}\right|$.
Using the Arnold-Liouville theorem:
The action coordinates $\phi=\left(J_{1}, \ldots, J_{n}\right)$ are given by

$$
J_{i}=2 \int_{\lambda_{2 i}}^{\lambda_{2 i+1}} \cosh ^{-1}\left|\frac{D(\mu)}{2}\right| d \mu
$$

Action-angle coordinates for the Toda lattice

Let $D(\lambda)$ be the discriminant of the difference equation in the previous slide.
λ is an eigenvalue of $L \Longleftrightarrow D(\lambda)=2$.

Theorem (van Moerbeke)
Let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{2 n+2}$ be the roots of $D(\lambda)^{2}-4$. Then $\mu_{i} \in\left[\lambda_{2 i}, \lambda_{2 i+1}\right]$. Moreover, $f_{i}= \pm \cosh ^{-1}\left|\frac{D\left(\mu_{i}\right)}{2}\right|$.
Using the Arnold-Liouville theorem:
The action coordinates $\phi=\left(J_{1}, \ldots, J_{n}\right)$ are given by

$$
J_{i}=2 \int_{\lambda_{2 i}}^{\lambda_{2 i+1}} \cosh ^{-1}\left|\frac{D(\mu)}{2}\right| d \mu
$$

and they induce a symplectomorphism

$$
\Phi:\left\{(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{2 n+1} \mid \sum_{i} q_{i}=\sum_{i} p_{i}=0\right\} \longrightarrow \mathbb{R}^{2 n}
$$

A deformation of the Toda system

We can define action coordinates for the deformation of the Toda lattice:

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+c e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

A deformation of the Toda system

We can define action coordinates for the deformation of the Toda lattice:

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+c e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

As $c \rightarrow \infty$, the action function ϕ_{c} converges to

$$
\phi_{\infty}(\mathbf{q}, \mathbf{p})=(n+1)\left(p_{\sigma(1)}-p_{\sigma(2)}, \ldots, p_{\sigma(n)}-p_{\sigma(n+1)}\right),
$$

where $p_{\sigma(1)} \geq p_{\sigma(2)} \geq \cdots \geq p_{\sigma(n+1)}$.

A deformation of the Toda system

We can define action coordinates for the deformation of the Toda lattice:

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+c e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

As $c \rightarrow \infty$, the action function ϕ_{c} converges to

$$
\phi_{\infty}(\mathbf{q}, \mathbf{p})=(n+1)\left(p_{\sigma(1)}-p_{\sigma(2)}, \ldots, p_{\sigma(n)}-p_{\sigma(n+1)}\right),
$$

where $p_{\sigma(1)} \geq p_{\sigma(2)} \geq \cdots \geq p_{\sigma(n+1)}$. So $\phi_{\infty}(\mathbf{q}, \mathbf{p})=\rho(\mathbf{p})$.

A deformation of the Toda system

We can define action coordinates for the deformation of the Toda lattice:

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+c e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

As $c \rightarrow \infty$, the action function ϕ_{c} converges to

$$
\phi_{\infty}(\mathbf{q}, \mathbf{p})=(n+1)\left(p_{\sigma(1)}-p_{\sigma(2)}, \ldots, p_{\sigma(n)}-p_{\sigma(n+1)}\right),
$$

where $p_{\sigma(1)} \geq p_{\sigma(2)} \geq \cdots \geq p_{\sigma(n+1)}$. So $\phi_{\infty}(\mathbf{q}, \mathbf{p})=\rho(\mathbf{p})$.
Theorem (Ostrover-R.-Sepe, 2023)

- If A is symmetric, then for every $\varepsilon>0$,

$$
(1-\varepsilon) \Delta^{n} \times_{L} A \hookrightarrow \mathbb{X}_{(n+1) \rho(A)} \hookrightarrow(1+\varepsilon) \Delta^{n} \times_{L} A .
$$

A deformation of the Toda system

We can define action coordinates for the deformation of the Toda lattice:

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+c e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

As $c \rightarrow \infty$, the action function ϕ_{c} converges to

$$
\phi_{\infty}(\mathbf{q}, \mathbf{p})=(n+1)\left(p_{\sigma(1)}-p_{\sigma(2)}, \ldots, p_{\sigma(n)}-p_{\sigma(n+1)}\right),
$$

where $p_{\sigma(1)} \geq p_{\sigma(2)} \geq \cdots \geq p_{\sigma(n+1)}$. So $\phi_{\infty}(\mathbf{q}, \mathbf{p})=\rho(\mathbf{p})$.
Theorem (Ostrover-R.-Sepe, 2023)

- If A is symmetric, then for every $\varepsilon>0$,

$$
(1-\varepsilon) \Delta^{n} \times_{L} A \hookrightarrow \mathbb{X}_{(n+1) \rho(A)} \hookrightarrow(1+\varepsilon) \Delta^{n} \times_{L} A .
$$

- If A is balanced, then $\Delta^{n} \times_{L} A$ is symplectomorphic to

$$
\mathbb{X}_{(n+1) \rho(A)}
$$

A deformation of the Toda system

We can define action coordinates for the deformation of the Toda lattice:

$$
H_{c}(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{i=1}^{n+1} p_{i}^{2}+c e^{-c} \sum_{i=1}^{n+1} e^{c\left(q_{i}-q_{i+1}\right)}
$$

As $c \rightarrow \infty$, the action function ϕ_{c} converges to

$$
\phi_{\infty}(\mathbf{q}, \mathbf{p})=(n+1)\left(p_{\sigma(1)}-p_{\sigma(2)}, \ldots, p_{\sigma(n)}-p_{\sigma(n+1)}\right),
$$

where $p_{\sigma(1)} \geq p_{\sigma(2)} \geq \cdots \geq p_{\sigma(n+1)}$. So $\phi_{\infty}(\mathbf{q}, \mathbf{p})=\rho(\mathbf{p})$.
Theorem (Ostrover-R.-Sepe, 2023)

- If A is symmetric, then for every $\varepsilon>0$,

$$
(1-\varepsilon) \Delta^{n} \times_{L} A \hookrightarrow \mathbb{X}_{(n+1) \rho(A)} \hookrightarrow(1+\varepsilon) \Delta^{n} \times_{L} A .
$$

- If A is balanced, then $\Delta^{n} \times_{L} A$ is symplectomorphic to

$$
\mathbb{X}_{(n+1) \rho(A)}
$$

Open questions

Question 1

For which polytopes P is the product $\Delta^{n} \times P$ symplectomorphic to a ball?

Open questions

Question 1

For which polytopes P is the product $\Delta^{n} \times P$ symplectomorphic to a ball?

Figure: The Fedorov polyhedra

Open questions

Question 1

For which polytopes P is the product $\Delta^{n} \times P$ symplectomorphic to a ball?

Figure: The Fedorov polyhedra

Question 2

Do other root systems $B_{n}, C_{n}, D_{n}, G_{2}$, etc, give rise to interesting symplectomorphisms?

