CH, GW and the geography of tight convex hypersurfaces

Russell Avdek

Laboratoire de Mathématiques d'Orsay

Symplectic Zoominar, Oct. 2023

Convex hypersurfaces are central to contact topology and a hot research topic.

We currently know $\epsilon \sim 0$ in dim > 3: \exists few tools and few well-understood examples.

Today: Characteristic classes don't obstruct tightness in dim = 4 + 1. Contrasts with the Thurston-Bennequin bound in dim = 2 + 1. Conjectural picture: \exists lots of tight contact structures in high dim, unlike dim = 3.

Summary for today's lecture:

- Review what's known and what's not.
- Investigate geography in dim = 4 + 1. Along the way...
- New techniques for building interesting convex hypersurfaces.
- New techniques for computing contact homologies eg. using relative GW.

Covers upcoming sequel to "An algebraic generalization of Giroux's criterion".

Contact manifold is (M, ξ) of dim = 2n + 1 with $\xi = \ker \alpha$ and $\alpha \wedge d\alpha^n > 0$.

Liouville manifold is (W, β) with $d\beta$ symplectic $\implies (\partial W, \ker \beta)$ contact. Most important Liouvilles are **Weinstein**, built from handles of ind $\leq \frac{1}{2} \dim W$. Ex:

• Varieties in \mathbb{C}^N intersect $\mathbb{D}(\rho \gg 0)$ with $\beta = xdy - ydx$.

2 Disk cotangent bundles ($\mathbb{D}^*Q, \beta = pdq$). Setup for Hamiltonian mechanics on Q.

Filling of (M, ξ) is (W, ω) with $\partial W = M$ and $\omega = d\beta$ Liouville near ∂W .

(M, ξ) are either tight or overtwisted (OT):

- Fillable \implies tight (Gromov, Niederkrüger).
- **2** \exists ! OT ξ for each formal homotopy class of [ξ] on *M* (Borman-Eliashberg-Murphy).
- There are many characterizations of OT (Casals-Murphy-Presas).

Important questions:

- Given a [ξ], are there tight ξ in the class [ξ]?
- **2** Given a (M, ξ) , is it tight / fillable?

Convex hypersurfaces powerful tool in dim = 3. Want to understand them in dim > 3!

 $S \subset M^{2n+1}$ is **convex** if $\exists N(S) = (-\epsilon, \epsilon)_{\tau} \times S \subset M$, s.t. ξ is τ -invariant. Can assume $\alpha|_{N(S)} = fd\tau + \beta, \quad f \in \mathcal{C}^{\infty}(S), \quad \beta \in \Omega^{1}(S).$

S decomposes into a negative region, a dividing set, and a positive region:

 $S = S^{-} \cup \Gamma \cup S^{+}$ $S^{\pm} = \{\pm f > 0\}, \text{ on which } \beta^{\pm} = \pm f^{-1}\beta \text{ is Liouville}$ $\Gamma = \{\pm f = 0\}, \text{ on which } \alpha \text{ is contact}$

Our perspective: *S* is a pair (S^-, S^+) of fillings of (Γ, ξ_{Γ}) glued along their boundaries.

() For n = 1, determined by simple closed, null-homologous multi-curve Γ .

2 For n = 2, much is known about fillings of $(\Gamma^3, \xi_{\Gamma}) \implies$ know many examples.

Theorem (Giroux, Honda-Huang)

A C^0 -generic $S \subset M^{2n+1}$ is convex with the (S^{\pm}, β^{\pm}) Weinstein.

Theorem (Giroux's criterion for dim(S) = 2)

• If $S = S^2$, then N(S) is tight iff Γ connected.

If $\chi(S) \leq 0$, then N(S) is tight iff S^{\pm} have no \mathbb{D}^2 components.

 \implies Thurston-Bennequin bound, $|e(\xi)[S]| \le |\chi(S)|$ for tight N(S).

TB bound \implies Finitely many $H^2(M)$ elements can be $c_1(\xi)$ for a tight ξ on fixed M.

Mantra: In dim = 3, tight ξ are rare! See Colin-Giroux-Honda for details.

Question

Is there $a \dim > 2 + 1$ Giroux criterion or TB bound?

Main results for today

Looking for generalizations of TB, compare invariants of *S* to Chern numbers of $\xi|_S$. We focus on dim S = 4 and look at χ, σ . Chern numbers are $c_1(\xi)^2, c_2(\xi) = e(\xi)$.

 $\chi = e(\xi) \mod 2$, $e(\xi) + \sigma = 0 \mod 4$, $c_1(\xi)^2 = 3\sigma + 2e(\xi)$.

Theorem

 $\forall (e(\xi), c_1(\xi)^2, \chi, \sigma) \in \mathbb{Z}^4$ as above, \exists connected *S* of dim = 4 with ($N(S), \xi$) tight. \implies "TB difference" $|\chi| - |e(\xi)|$ takes all 2 \mathbb{Z} values for tight *S* of dim = 4. So characteristic classes don't obstruct tightness in dim = 4 + 1.

Outline of the proof:

- **1** Build some $(N(S), \xi)$ using "divisor pairs" with specific $e(\xi), \sigma$.
- Solution With Water Computations combine relative GW with "Algebraic Giroux Criterion" (AGC).
- **(a)** Modify the $(N(S), \xi)$ using handle attachments to get any χ with $e(\xi), \sigma$ fixed.
- Application of handle attachments preserves $CH \neq 0$.

En route, we'll see some $CH(N(S), \xi) = 0$ ex's via fun GW counts :D

Divisor pairs I: Definition

 (X, ω) closed, integral symp. mfld with divisor $D = PD_X(\omega)$ and neighborhood η . $X \setminus D$ is Liouville. Moreover Weinstein when (X, D) algebraic.

2
$$c_1(\eta \to D) = \omega|_D$$
. $\Gamma = \partial \eta$ a prequantization \mathbb{S}^1 bundle, (Γ, ξ_{Γ}) .

A divisor pair consists of $(X^-, \omega^-, D^-), (X^+, \omega^+, D^+)$, and ϕ where

From divisor pair, build convex hypersurface ${\cal S}={\cal S}({\it X}^{\pm},\omega^{\pm},{\it D}^{\pm},\phi)$ so that

$$S^{\pm} = X^{\pm} \setminus D^{\pm}$$

2 boundaries are identified by lifting ϕ to the \mathbb{S}^1 -bundles.

Idea comes from Gompf's fiber sum construction.

dim S = 2: X^{\pm} closed surfaces, D^{\pm} points. Every S comes from a divisor pair.

dim S = 4: The $\eta(D) \subset X$ are determined entirely by $[D]^2$ self-intersection and $\chi(D)$.

Ex 1: $D_k^- \subset X^- = \mathbb{P}^2$, deg = (2k), $D_k^+ \subset X^+ = \mathbb{P}^1 \times \mathbb{P}^1$, deg = (2k, k),

$$[D_k^{\pm}]^2 = 4k^2, \quad \chi(D_k^{\pm}) = 2k(3-2k).$$

 $S_k^{\pm} = X^{\pm} \setminus D_k^{\pm}$ are Weinstein with Lefschetz fibrations given by algebraic pencils. k = 1: unique fillings of L(4, 1) (McDuff), LFs give lantern relation (Auroux-Smith).

 $\textbf{Ex 2: } D_l^- \subset X^- = \Sigma_2 \times \Sigma_2, \textbf{deg} = (2l, 2l), D_l^+ \subset X^+ = \Sigma_2 \times \Sigma_1, \textbf{deg} = (4l, l),$

$$[D_l^{\pm}]^2 = 8l^2, \quad \chi(D_l^{\pm}) = -8l(l+1).$$

For the main theorem, we'll use as building blocks

- S_k from **Ex 1** series all with $e(\xi) = 1, \sigma = -1$
- **2** S_l from **Ex 2** series all with $e(\xi) = 4, \sigma = 0$.

We use contact homology *CH* to verify tightness of our $(N(S), \xi)$.

Theorem (Bourgeois-van Koert, Eliashberg, M.L. Yau)

 $CH(M,\xi) \neq 0 \implies (M,\xi) \text{ tight.}$

On chain level, get graded-comm DGA (CC, ∂) from V the \mathbb{Q} space of Reeb orbits

$$CC = \mathcal{S}(V) = \bigoplus_{0}^{\infty} V^{\otimes k} / \sim, \quad xy \sim (-1)^{|x| \cdot |y|} yx, \quad \partial(xy) = (\partial x)y + (-1)^{|x|} x(\partial y).$$

 ∂ counts holo-curves in $\mathbb{R}_s \times M$ and breaks up as $\partial = \sum_{k=0}^{\infty} \partial_k$

Liouville fillings give **augmentations**, $\epsilon : (CC, \partial) \to (\mathbb{Q}, \partial_{\mathbb{Q}} = 0)$.

Bilinearization

For $S = S^- \cup \Gamma \cup S^+$ get two augmentations $\epsilon^-, \epsilon^+ : CC_{\Gamma} \to \mathbb{Q}$.

Get commutative versions of LCH objects (Bourgeois-Chantraine + Bourgeois-Galant):

- $(\partial_1^{\vec{\epsilon}})^2 = 0$ and defines bilinearized homology $H^{\vec{\epsilon}} = H(\hat{V}, \partial_1^{\vec{\epsilon}})$

$$\implies (\widehat{CC} = \mathcal{S}(\widehat{V}), \partial^{\vec{\epsilon}} = \partial_0^{\vec{\epsilon}} + \partial_1^{\vec{\epsilon}})$$

is a free CDGA, called the bilinearized DGA.

Theorem (Algebraic Giroux Criterion (AGC))

∃ geometric data so that $(CC_{N(S)}, \partial_{N(S)})$ is the bilinearized algebra. Therefore... $CH(N(S), \xi) \neq 0$ iff fundamental class $\partial_0^{\vec{e}} = 0$ on $H(\hat{V}, \partial_1^{\vec{e}})$.

Sounds complicated... The ϵ^{\pm} are usually difficult to compute :(

For convex hypersurfaces determined by divisor pairs...

- **()** have easy formulas for indices, \implies can often say $\epsilon^{\pm} = 0$ for index reasons.
- Otherwise can use relative GW, often boiling down to classical counting :D

To compute *CH* we need to count augmentation planes in $X \setminus D$.

 $D \subset X^{2n}$ divisor with neighborhood η , $\partial \eta = \Gamma$. $f \in C^{\infty}(D)$ Morse. Get Reeb with

closed orbits = { γ_p^{cm} : $p \in Crit(f)$ }, all cover \mathbb{S}^1 fibers of $\Gamma \to D$.

Basis of $T_{\rho}D$ gives framing of orbits γ_{ρ}^{cm} , $\rho \in Crit(f)$ so that

$$\mathsf{CZ}(\gamma_p^{\mathsf{cm}}) = \mathsf{ind}_{\mathit{Mo}}(f,p) - n + 1, \quad |\gamma_p^{\mathsf{cm}}| = \mathsf{ind}_{\mathit{Mo}}(f,p) - 2.$$

For a $u : \mathbb{C} \to X \setminus D$ asymptotic to γ_p^{cm} , get $\overline{u} : \mathbb{P}^1 \to X$ by filling in the point at ∞ .

Use GW index formula to relate ind(u), $ind(\overline{u})$, and cm by

 $\operatorname{cm} = [D] \cdot [\overline{u}], \quad \operatorname{ind}(u) = 2(c_1(X) - [D])[\overline{u}] + \operatorname{ind}_{Mo}(f, p) - 2.$

This is super easy to use when *D* is algebraic inside of Kähler *X*.

Plane sphere correspondence II

 $D \subset X^{2n}$ divisor neighborhood η and $\partial \eta = \Gamma$. $f \in \mathcal{C}^{\infty}(D)$ Morse.

$$\begin{split} & u: \mathbb{C} \to X \setminus D, \quad \infty \to \gamma_{\rho}^{\text{cm}}, \ p \in \operatorname{Crit}(f) \quad \rightsquigarrow \quad \overline{u}: \mathbb{P}^{1} \to X \\ & \operatorname{cm} = [D] \cdot [\overline{u}], \quad \operatorname{ind}(u) = 2(c_{1}(X) - [D])[\overline{u}] + \operatorname{ind}_{Mo}(f, p) - 2. \end{split}$$

Often formula tells us there are no ind(u) = 0 augmentation planes in $X \setminus D$.

Suppose f has unique p_{min} , p_{max} of $ind_{Mo}(f, p_{min}) = 0$ and $ind_{Mo}(f, p_{max}) = 2n - 2$.

Theorem (Simplified plane-sphere correspondence)

Suppose \mathcal{M} involved are transversely cut out. Then

•
$$\#(u)$$
 asymptotic to $\gamma_{p_{min}}^{cm}$ is GW count of \overline{u} touching D only at $p_{min} \in D$.

- **2** #(u) asymptotic to $\gamma_{p_{max}}^{cm}$ is GW count of \overline{u} touching D exactly once.
- **3** Covering multiplicity cm \iff order of contact for $\overline{u} \cap D$.

Comes from Diogo-Lisi's SH computations for divisor complements.

Simplified case above enough to compute in n = 2 case of interest today.

Russell Avdek (LMO)

Computational examples

Ex 1: S_k from $D_k^- \subset X^- = \mathbb{P}^2$, deg = (2k), $D_k^+ \subset X^+ = \mathbb{P}^1 \times \mathbb{P}^1$, deg = (2k, k),

$$[D_k^{\pm}]^2 = 4k^2, \quad \chi(D_k^{\pm}) = 2k(3-2k).$$

Ex 2: S_l from $D_l^- \subset X^- = \Sigma_2 \times \Sigma_2$, deg = (2*l*, 2*l*), $D_l^+ \subset X^+ = \Sigma_2 \times \Sigma_1$, deg = (4*l*, *l*),

$$[D_l^{\pm}]^2 = 8l^2, \quad \chi(D_l^{\pm}) = -8l(l+1).$$

Theorem

 $CH(N(S_k), \xi_k) \neq 0 \iff k \geq 3. CH(N(S_l), \xi_l) \neq 0$ for all *l*.

The S_l case is easy. $\pi_2(\Sigma_{g\geq 1})=0 \implies \epsilon^{\pm}=0$.

We'll only need that some of the $(N(S_k), \xi_k)$ are tight to prove our geography theorem.

But the k = 1, 2 cases are too fun to skip :D

Orbit γ_{min}^1 has least action. So $\partial^{\vec{\epsilon}} \gamma_{min}^1$ counts only augmentation planes.

There can be no u^- because for any \overline{u} , cm = $[D^-] \cdot [\overline{u}] \ge 2$.

For
$$u^+$$
 with $[\overline{u}^+] = a[\mathbb{P}^1 \times \{pt\}] + b[\{pt\} \times \mathbb{P}^1]$, want $cm = 1$, $ind(u^+) = 0$ from
 $cm = a + 2b$, $ind(u) = 2a - 2 \implies [\overline{u}^+] = [\mathbb{P}^1 \times \{pt\}].$

There is **exactly one** such $[\overline{u}^+]$ passing through $p_{min} \in D_1^+$.

So $\partial^{\vec{\epsilon}} \widehat{\gamma}^1_{\rho_{min}} = 1 \implies CH(N(S_1),\xi) = 0.$

 $D_2^- \subset X^- = \mathbb{P}^2, \deg = (4), D_2^+ \subset X^+ = \mathbb{P}^1 \times \mathbb{P}^1, \deg = (4, 2).$ Here $D_2^\pm \simeq \Sigma_{g=3}$.

 $\partial_{CH(\Gamma)} = 0. \ CH(N(S))$ differential counts only aug planes. Study γ_{max}^2 .

There can be no u^- because for any \overline{u} , cm = $[D^-] \cdot [\overline{u}] \ge 4$.

For
$$u^+$$
 with $[\overline{u}^+] = a[\mathbb{P}^1 \times \{pt\}] + b[\{pt\} \times \mathbb{P}^1]$, want cm = 2, ind $(u^+) = 0$ from
cm = 2a + 4b, ind $(u) = -4b \implies [\overline{u}^+] = [\mathbb{P}^1 \times \{pt\}]$.

Generic line (1,0) touches D_2^+ \pitchfork in two points. Special lines touch D_2^+ once with multiplicity two! Special lines $\mathbb{P}^1 \times \{z_2\} \iff$ critical points $(z_1, z_2) \in D_2^+$ of

$$D_2^+\simeq \Sigma_{g=3} \xrightarrow{\phi} \mathbb{P}^1, \quad (z_1,z_2)\mapsto z_2, \quad \deg(\phi)=2.$$

We can count with Riemann-Hurwitz:

$$\partial^{\vec{\epsilon}} \widehat{\gamma}^2_{\rho_{max}} = \#(\text{special lines}) = \#(\text{Crit}(\Sigma_{g=3} \to \mathbb{P}^1)) = 8 \implies CH(N(S_2),\xi) = 0.$$

In remaining cases, ind(u) computations show there is nothing to count. So...

Ex 1: S_k from $D_k^- \subset X^- = \mathbb{P}^2$, deg = (2k), $D_k^+ \subset X^+ = \mathbb{P}^1 \times \mathbb{P}^1$, deg = (2k, k)

$$\sigma(S_k) = -1, \quad e(\xi)[S_k] = 1, \quad CH(N(S_k), \xi_k) \neq 0 \text{ for } k \geq 3$$

Ex 2: S_l from $D_l^- \subset X^- = \Sigma_2 \times \Sigma_2$, deg = (2*l*, 2*l*), $D_l^+ \subset X^+ = \Sigma_2 \times \Sigma_1$, deg = (4*l*, *l*),

$$\sigma(S_l) = 0, \quad e(\xi)[S_l] = -4, \quad CH(N(S_l), \xi_l) \neq 0.$$

In general characteristic numbers satisfy

$$\chi = e(\xi) \mod 2$$
, $e(\xi) + \sigma = 0 \mod 4$, $c_1(\xi)^2 = 3\sigma + 2e(\xi)$.

and we want to prove ...

Theorem

 $\forall (e(\xi), c_1(\xi)^2, \chi, \sigma) \in \mathbb{Z}^4 \text{ as above, } \exists \text{ connected } S \text{ of } \dim = 4 \text{ with } (N(S), \xi) \text{ tight.}$

$$\chi = e(\xi) \mod 2$$
, $e(\xi) + \sigma = 0 \mod 4$, $c_1(\xi)^2 = 3\sigma + 2e(\xi)$.

Theorem

 $\forall (e(\xi), c_1(\xi)^2, \chi, \sigma) \in \mathbb{Z}^4 \text{ as above, } \exists \text{ connected } S \text{ of } \dim = 4 \text{ with } (N(S), \xi) \text{ tight.}$

Ex 1:
$$\sigma(S_k) = -1$$
, $e(\xi)[S_k] = 1$, $CH(N(S_k), \xi_k) \neq 0$ for $k \ge 3$.
Ex 2: $\sigma(S_l) = 0$, $e(\xi)[S_l] = -4$, $CH(N(S_l), \xi_l) \neq 0$.

To get $\sigma = \sigma_0$ and $e(\xi) = e_0$ as desired take \sqcup of

- $|\sigma_0|$ copies of $S_{k\geq 3}$ with $\mp \operatorname{sgn}(\sigma_0)$ orientation.
- 2 $|e_0 + e(\xi)[S_k]|/4$ copies of S_l with $\mp \operatorname{sgn}(\cdots)$ orientation.

Result is tight because $CH(\sqcup N(S_i)) = \bigotimes CH(N(S_i)) \neq 0$.

We want the result to be connected with specific χ . $c_1(\xi)^2$ is determined. We will

- **(**) add handles to this disjoint union to make connected and correct χ , and
- Show that handle addition preserves $CH \neq 0$.

In $(N(S) = [-1, 1]_{\tau} \times S, \xi)$ neighborhood of $\{1\} \times \Gamma$ looks like $[-1, 1]_t \times [0, 1]_s \times \Gamma, \quad \alpha = dt + e^s \alpha_{\Gamma}$

with corners rounded. So it's the contactization of symplectization of $(\Gamma^{2n-1}, \alpha_{\Gamma})$. Contactization of ind $= i \leq n$, dim = 2n Weinstein handle H_w is a **contact handle** H_c . Can attach H_c to the boundary of any (M, ξ) , when ∂M is convex.

After rounding corners, convex boundary is changed by

$$S = (S^-, S^+) \rightsquigarrow S_H = (S^- \cup H_w, S^+ \cup H_w), \quad \chi \rightsquigarrow \chi + 2 \operatorname{ind}(H_w).$$

 σ and $e(\xi)$ unaffected as they are cobordism/homological invariants.

Theorem (implicit in Colin-Ghiggini-Honda-Hutchings)

Adding an ind \leq n contact handle to the boundary of a (M, ξ) leaves CH unaffected.

$$\chi = e(\xi) \mod 2$$
, $e(\xi) + \sigma = 0 \mod 4$, $c_1(\xi)^2 = 3\sigma + 2e(\xi)$.

Theorem $\forall (e(\xi), c_1(\xi)^2, \chi, \sigma) \in \mathbb{Z}^4 \text{ as above, } \exists \text{ connected } S \text{ of } \dim = 4 \text{ with } (N(S), \xi) \text{ tight.}$

We already have $CH \neq 0$ convex hypersurface *S* with desired σ , $e(\xi)$. To make connected connected add 1-handles. To correct χ add ind = 1, 2 handles.

Need to see that S_H after handle addition has $CH \neq 0$.

- **●** Inclusion $N(S) \rightarrow N(S) \cup H_c$ induces iso on *CH*. $CH(N(S) \cup H_c) \neq 0$.
- ② $N(S_h) \subset N(S) \cup H_c$ induces $CH(N(S_H)) \rightarrow CH(N(S) \cup H_c)$ by CGHH.
- Unital algebra morphism $\implies CH(N(S_H)) \neq 0.$

That completes the proof!

$$\chi = \boldsymbol{e}(\xi) \mod 2$$
, $\boldsymbol{e}(\xi) + \sigma = 0 \mod 4$, $c_1(\xi)^2 = 3\sigma + 2\boldsymbol{e}(\xi)$.

Theorem

 $\forall (e(\xi), c_1(\xi)^2, \chi, \sigma) \in \mathbb{Z}^4 \text{ as above, } \exists \text{ connected } S \text{ of } \dim = 4 \text{ with } (N(S), \xi) \text{ tight.}$

Broader context:

- See also results of Mori on non-convex surfaces violating a *TB* bound in high dim.
- **2** Fits into POV of Bowden-Gironella-Moreno-Zhou: \exists many tight ξ in high dim!
- **③** Conjecture: \nexists generalized *TB* bound involving characteristic numbers in dim \ge 5.
- For today's strategy to general, need more divisor pairs in high dim...

Here's one interesting high dim example studied from the symplectic POV by Oba:

- $D^{-} \subset X^{-} = \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}, \deg = (1, 1, 1),$
- $D^{\pm} \simeq \mathbb{P}^2 \# 3\overline{\mathbb{P}}^2$ are deg = 6 del Pezzo surfaces.
- I can show $CH(N(S), \xi) = 0$ by GW count.

Let me know if you have further $\dim_{\mathbb{C}} > 2$ examples!

Russell Avdek (LMO)

See me in next Symplectix (Zoom-able) to hear about contact submanifolds in high dim!

References:

- Auroux and Smith, "Lefschetz pencils, branched covers, and symplectic invariants"
- Avdek, "An algebraic generalization of Giroux's criterion"
- Bennequin, "Entrelacements et equations de Pfaff"
- Sorman, Eliashberg, Murphy, "Existence and classification of overtwisted..."
- Sourgeois and Chantraine, "Bilinearised Legendrian contact homology..."
- Bougeois and Galant, "Geography of bilinearized LCH"
- Bourgeois and van Koert, "Contact homology of left-handed stabilizations..."
- Bowden, Gironella, Moreno, Zhou, "Non-standard contact structures on spheres"
- Oasals, Murphy, Presas, "Geometric criteria for overtwistedness"
- Colin, Ghiggini, Honda, Hutchings, "Sutures and contact homology I"
- Colin, Giroux, Honda, "Notes on the isotopy finiteness"
- Ø Diogo and Lisi, "Symplectic Homology of complements of smooth divisors"
- Giroux, "Structures de contact sur les varietées fibrées"
- Gompf, "New constructions of symplectic manifolds"
- 6 Honda and Huang, "Convex hypersurface theory in contact topology"
- McDuff, "The structure of Rational and Ruled symplectic 4-manifolds"
- Ø Oba, "A four-dimensional mapping class group relation"
- Yau (+ Eliashberg appendix), "Vanishing of contact homology..."