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Overview

Convex hypersurfaces are central to contact topology and a hot research topic.

We currently know ε ∼ 0 in dim > 3: ∃ few tools and few well-understood examples.

Today: Characteristic classes don’t obstruct tightness in dim = 4 + 1.
Contrasts with the Thurston-Bennequin bound in dim = 2 + 1.
Conjectural picture: ∃ lots of tight contact structures in high dim, unlike dim = 3.

Summary for today’s lecture:
1 Review what’s known and what’s not.
2 Investigate geography in dim = 4 + 1. Along the way...
3 New techniques for building interesting convex hypersurfaces.
4 New techniques for computing contact homologies eg. using relative GW.

Covers upcoming sequel to “An algebraic generalization of Giroux’s criterion”.
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Crash course in contact topology

Contact manifold is (M, ξ) of dim = 2n + 1 with ξ = kerα and α ∧ dαn > 0.

Liouville manifold is (W , β) with dβ symplectic =⇒ (∂W , ker β) contact.
Most important Liouvilles are Weinstein, built from handles of ind ≤ 1

2 dim W . Ex:
1 Varieties in CN intersect D(ρ� 0) with β = xdy − ydx .
2 Disk cotangent bundles (D∗Q, β = pdq). Setup for Hamiltonian mechanics on Q.

Filling of (M, ξ) is (W , ω) with ∂W = M and ω = dβ Liouville near ∂W .

(M, ξ) are either tight or overtwisted (OT):
1 Fillable =⇒ tight (Gromov, Niederkrüger).
2 ∃! OT ξ for each formal homotopy class of [ξ] on M (Borman-Eliashberg-Murphy).
3 There are many characterizations of OT (Casals-Murphy-Presas).

Important questions:
1 Given a [ξ], are there tight ξ in the class [ξ]?
2 Given a (M, ξ), is it tight / fillable?

Convex hypersurfaces powerful tool in dim = 3. Want to understand them in dim > 3!
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Convex hypersurfaces I: What are they?

S ⊂ M2n+1 is convex if ∃N(S) = (−ε, ε)τ × S ⊂ M, s.t. ξ is τ -invariant. Can assume

α|N(S) = fdτ + β, f ∈ C∞(S), β ∈ Ω1(S).

S decomposes into a negative region, a dividing set, and a positive region:

S = S− ∪ Γ ∪ S+

S± = {±f > 0}, on which β± = ±f−1β is Liouville

Γ = {±f = 0}, on which α is contact

Our perspective: S is a pair (S−,S+) of fillings of (Γ, ξΓ) glued along their boundaries.

1 For n = 1, determined by simple closed, null-homologous multi-curve Γ.
2 For n = 2, much is known about fillings of (Γ3, ξΓ) =⇒ know many examples.
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Convex hypersurfaces II: Main theorems

Theorem (Giroux, Honda-Huang)

A C0-generic S ⊂ M2n+1 is convex with the (S±, β±) Weinstein.

Theorem (Giroux’s criterion for dim(S) = 2)
1 If S = S2, then N(S) is tight iff Γ connected.
2 If χ(S) ≤ 0, then N(S) is tight iff S± have no D2 components.

=⇒ Thurston-Bennequin bound, |e(ξ)[S]| ≤ |χ(S)| for tight N(S).

TB bound =⇒ Finitely many H2(M) elements can be c1(ξ) for a tight ξ on fixed M.

Mantra: In dim = 3, tight ξ are rare! See Colin-Giroux-Honda for details.

Question
Is there a dim > 2 + 1 Giroux criterion or TB bound?
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Main results for today

Looking for generalizations of TB, compare invariants of S to Chern numbers of ξ|S .
We focus on dim S = 4 and look at χ, σ. Chern numbers are c1(ξ)2, c2(ξ) = e(ξ).

χ = e(ξ) mod 2, e(ξ) + σ = 0 mod 4, c1(ξ)2 = 3σ + 2e(ξ).

Theorem

∀(e(ξ), c1(ξ)2, χ, σ) ∈ Z4 as above, ∃ connected S of dim = 4 with (N(S), ξ) tight.
=⇒ “TB difference” |χ| − |e(ξ)| takes all 2Z values for tight S of dim = 4.

So characteristic classes don’t obstruct tightness in dim = 4 + 1.

Outline of the proof:
1 Build some (N(S), ξ) using “divisor pairs” with specific e(ξ), σ.
2 Use contact homology, CH 6= 0 =⇒ tight.

Computations combine relative GW with “Algebraic Giroux Criterion” (AGC).
3 Modify the (N(S), ξ) using handle attachments to get any χ with e(ξ), σ fixed.
4 Application of handle attachments preserves CH 6= 0.

En route, we’ll see some CH(N(S), ξ) = 0 ex’s via fun GW counts :D
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Divisor pairs I: Definition

(X , ω) closed, integral symp. mfld with divisor D = PDX (ω) and neighborhood η.
1 X \ D is Liouville. Moreover Weinstein when (X ,D) algebraic.
2 c1(η → D) = ω|D . Γ = ∂η a prequantization S1 bundle, (Γ, ξΓ).

A divisor pair consists of (X−, ω−,D−), (X +, ω+,D+), and φ where
1 (X±, ω±) are closed symp mflds with divisors D±.
2 φ : (D−, ω−D−)→ (D+, ω−D+ ) a symplectomorphism.

From divisor pair, build convex hypersurface S = S(X±, ω±,D±, φ) so that
1 S± = X± \ D±,
2 boundaries are identified by lifting φ to the S1-bundles.

Idea comes from Gompf’s fiber sum construction.

dim S = 2dim S = 2dim S = 2: X± closed surfaces, D± points. Every S comes from a divisor pair.
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Divisor pairs II: Examples

dim S = 4dim S = 4dim S = 4: The η(D) ⊂ X are determined entirely by [D]2 self-intersection and χ(D).

Ex 1: D−k ⊂ X− = P2, deg = (2k), D+
k ⊂ X + = P1 × P1, deg = (2k , k),

[D±k ]2 = 4k2, χ(D±k ) = 2k(3− 2k).

S±k = X± \ D±k are Weinstein with Lefschetz fibrations given by algebraic pencils.
k = 1: unique fillings of L(4, 1) (McDuff), LFs give lantern relation (Auroux-Smith).

=

Ex 2: D−l ⊂ X− = Σ2 × Σ2, deg = (2l , 2l), D+
l ⊂ X + = Σ2 × Σ1, deg = (4l , l),

[D±l ]2 = 8l2, χ(D±l ) = −8l(l + 1).

For the main theorem, we’ll use as building blocks
1 Sk from Ex 1 series all with e(ξ) = 1, σ = −1
2 Sl from Ex 2 series all with e(ξ) = 4, σ = 0.
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CH background

We use contact homology CH to verify tightness of our (N(S), ξ).

Theorem (Bourgeois-van Koert, Eliashberg, M.L. Yau)

CH(M, ξ) 6= 0 =⇒ (M, ξ) tight.

On chain level, get graded-comm DGA (CC, ∂) from V the Q space of Reeb orbits

CC = S(V ) =
∞⊕
0

V⊗k/ ∼, xy ∼ (−1)|x|·|y|yx , ∂(xy) = (∂x)y + (−1)|x|x(∂y).

∂ counts holo-curves in Rs ×M and breaks up as ∂ =
∑∞

0 ∂k

∂γ = + + + + . . .

Liouville fillings give augmentations, εεε : (CC, ∂)→ (Q, ∂Q = 0).
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Bilinearization

For S = S− ∪ Γ ∪ S+ get two augmentations εεε−, εεε+ : CCΓ → Q.

Use~εεε = (εεε−, εεε+) and ∂Γ,k≥1 to define deg = −1 maps on V̂ = V [1]

∂~εεε1 γ̂ = + + + + + + . . .

∂
~εεε
1 : V̂ → V̂ , ∂

~εεε
0 : V̂ → Q, ∂

~εεε
0 v̂ = εεε+v − εεε−v

Get commutative versions of LCH objects (Bourgeois-Chantraine + Bourgeois-Galant):
1 (∂~εεε1)2 = 0 and defines bilinearized homology H~εεε = H(V̂ , ∂~εεε1)

2 ∂~εεε0∂
~εεε
1 = 0 =⇒ ∂~εεε0 induces map H~εεε → Q, the fundamental class.

=⇒ (ĈC = S(V̂ ), ∂~εεε = ∂
~εεε
0 + ∂

~εεε
1)

is a free CDGA, called the bilinearized DGA.
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The Algebraic Giroux Criterion

For S = S− ∪ Γ ∪ S+ get augmentations εεε−, εεε+ : CCΓ → Q and bilinearized algebra...

∂~εεεγ̂ = − + + + + + + . . .

Theorem (Algebraic Giroux Criterion (AGC))
∃ geometric data so that (CCN(S), ∂N(S)) is the bilinearized algebra. Therefore...
CH(N(S), ξ) 6= 0 iff fundamental class ∂~εεε0 = 0 on H(V̂ , ∂~εεε1).

Sounds complicated... The εεε± are usually difficult to compute :(

For convex hypersurfaces determined by divisor pairs...
1 have easy formulas for indices, =⇒ can often say εεε± = 0 for index reasons.
2 otherwise can use relative GW, often boiling down to classical counting :D

Russell Avdek (LMO) CH, GW, TB Symplectic Zoominar, Oct. 2023 11 / 22



Plane sphere correspondence I

To compute CH we need to count augmentation planes in X \ D.

D ⊂ X 2n divisor with neighborhood η, ∂η = Γ. f ∈ C∞(D) Morse. Get Reeb with

closed orbits = {γcm
p : p ∈ Crit(f )}, all cover S1 fibers of Γ→ D.

Basis of TpD gives framing of orbits γcm
p , p ∈ Crit(f ) so that

CZ(γcm
p ) = indMo(f , p)− n + 1, |γcm

p | = indMo(f , p)− 2.

For a u : C→ X \ D asymptotic to γcm
p , get u : P1 → X by filling in the point at∞.

Use GW index formula to relate ind(u), ind(u), and cm by

cm = [D] · [u], ind(u) = 2(c1(X )− [D])[u] + indMo(f , p)− 2.

This is super easy to use when D is algebraic inside of Kähler X .
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Plane sphere correspondence II

D ⊂ X 2n divisor neighborhood η and ∂η = Γ. f ∈ C∞(D) Morse.

u : C→ X \ D, ∞→ γcm
p , p ∈ Crit(f )  u : P1 → X

cm = [D] · [u], ind(u) = 2(c1(X )− [D])[u] + indMo(f , p)− 2.

Often formula tells us there are no ind(u) = 0 augmentation planes in X \ D.

Suppose f has unique pmin, pmax of indMo(f , pmin) = 0 and indMo(f , pmax ) = 2n − 2.

Theorem (Simplified plane-sphere correspondence)
SupposeM involved are transversely cut out. Then

1 #(u) asymptotic to γcm
pmin

is GW count of u touching D only at pmin ∈ D.
2 #(u) asymptotic to γcm

pmax is GW count of u touching D exactly once.
3 Covering multiplicity cm ⇐⇒ order of contact for u ∩ D.

Comes from Diogo-Lisi’s SH computations for divisor complements.

Simplified case above enough to compute in n = 2 case of interest today.
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Computational examples

Ex 1: Sk from D−k ⊂ X− = P2, deg = (2k), D+
k ⊂ X + = P1 × P1, deg = (2k , k),

[D±k ]2 = 4k2, χ(D±k ) = 2k(3− 2k).

Ex 2: Sl from D−l ⊂ X− = Σ2 × Σ2, deg = (2l , 2l), D+
l ⊂ X + = Σ2 × Σ1, deg = (4l , l),

[D±l ]2 = 8l2, χ(D±l ) = −8l(l + 1).

Theorem
CH(N(Sk ), ξk ) 6= 0 ⇐⇒ k ≥ 3. CH(N(Sl ), ξl ) 6= 0 for all l .

The Sl case is easy. π2(Σg≥1) = 0 =⇒ εεε± = 0.

We’ll only need that some of the (N(Sk ), ξk ) are tight to prove our geography theorem.

But the k = 1, 2 cases are too fun to skip :D
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Scenic detour: Computation k = 1

D−1 ⊂ X− = P2, deg = (2), D+
1 ⊂ X + = P1 × P1, deg = (2, 1). Here D±1 ' P1.

=

Orbit γ1
min has least action. So ∂~εεεγ1

min counts only augmentation planes.

There can be no u− because for any u, cm = [D−] · [u] ≥ 2.

For u+ with [u+] = a[P1 × {pt}] + b[{pt} × P1], want cm = 1, ind(u+) = 0 from

cm = a + 2b, ind(u) = 2a− 2 =⇒ [u+] = [P1 × {pt}].

There is exactly one such [u+] passing through pmin ∈ D+
1 .

P1

P1

pmin

P1 × {pt}

D+
1

So ∂~εεεγ̂1
pmin

= 1 =⇒ CH(N(S1), ξ) = 0.
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Scenic detour: Computation k = 2

D−2 ⊂ X− = P2, deg = (4), D+
2 ⊂ X + = P1 × P1, deg = (4, 2). Here D±2 ' Σg=3.

∂CH(Γ) = 0. CH(N(S)) differential counts only aug planes. Study γ2
max .

There can be no u− because for any u, cm = [D−] · [u] ≥ 4.

For u+ with [u+] = a[P1 × {pt}] + b[{pt} × P1], want cm = 2, ind(u+) = 0 from

cm = 2a + 4b, ind(u) = −4b =⇒ [u+] = [P1 × {pt}].

Generic line (1, 0) touches D+
2 t in two points. Special lines touch D+

2 once with
multiplicity two! Special lines P1 × {z2} ⇐⇒ critical points (z1, z2) ∈ D+

2 of

D+
2 ' Σg=3

φ−→ P1, (z1, z2) 7→ z2, deg(φ) = 2.

We can count with Riemann-Hurwitz:

∂
~εεεγ̂2

pmax = #(special lines) = #(Crit(Σg=3 → P1)) = 8 =⇒ CH(N(S2), ξ) = 0.
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Summary and setup for geography theorem

In remaining cases, ind(u) computations show there is nothing to count. So...

Ex 1: Sk from D−k ⊂ X− = P2, deg = (2k), D+
k ⊂ X + = P1 × P1, deg = (2k , k)

σ(Sk ) = −1, e(ξ)[Sk ] = 1, CH(N(Sk ), ξk ) 6= 0 for k ≥ 3

Ex 2: Sl from D−l ⊂ X− = Σ2 × Σ2, deg = (2l , 2l), D+
l ⊂ X + = Σ2 × Σ1, deg = (4l , l),

σ(Sl ) = 0, e(ξ)[Sl ] = −4, CH(N(Sl ), ξl ) 6= 0.

In general characteristic numbers satisfy

χ = e(ξ) mod 2, e(ξ) + σ = 0 mod 4, c1(ξ)2 = 3σ + 2e(ξ).

and we want to prove...

Theorem

∀(e(ξ), c1(ξ)2, χ, σ) ∈ Z4 as above, ∃ connected S of dim = 4 with (N(S), ξ) tight.
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Getting the correct σ, e(ξ)

χ = e(ξ) mod 2, e(ξ) + σ = 0 mod 4, c1(ξ)2 = 3σ + 2e(ξ).

Theorem

∀(e(ξ), c1(ξ)2, χ, σ) ∈ Z4 as above, ∃ connected S of dim = 4 with (N(S), ξ) tight.

Ex 1: σ(Sk ) = −1 , e(ξ)[Sk ] = 1,CH(N(Sk ), ξk ) 6= 0 for k ≥ 3.

Ex 2: σ(Sl ) = 0, e(ξ)[Sl ] = −4 ,CH(N(Sl ), ξl ) 6= 0.

To get σ = σ0 and e(ξ) = e0 as desired take t of
1 |σ0| copies of Sk≥3 with ∓ sgn(σ0) orientation.
2 |e0 + e(ξ)[Sk ]|/4 copies of Sl with ∓ sgn(· · · ) orientation.

Result is tight because CH(tN(Si )) =
⊗

CH(N(Si )) 6= 0.

We want the result to be connected with specific χ. c1(ξ)2 is determined. We will
1 add handles to this disjoint union to make connected and correct χ, and
2 show that handle addition preserves CH 6= 0.
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Contact handle attachments

In (N(S) = [−1, 1]τ × S, ξ) neighborhood of {1} × Γ looks like

[−1, 1]t × [0, 1]s × Γ, α = dt + esαΓ

with corners rounded. So it’s the contactization of symplectization of (Γ2n−1, αΓ).
Contactization of ind = i ≤ n, dim = 2n Weinstein handle Hw is a contact handle Hc .
Can attach Hc to the boundary of any (M, ξ), when ∂M is convex.

 

After rounding corners, convex boundary is changed by

S = (S−,S+) SH = (S− ∪ Hw ,S+ ∪ Hw ), χ χ+ 2 ind(Hw ).

σ and e(ξ) unaffected as they are cobordism/homological invariants.

Theorem (implicit in Colin-Ghiggini-Honda-Hutchings)

Adding an ind ≤ n contact handle to the boundary of a (M, ξ) leaves CH unaffected.
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Wrapping up

χ = e(ξ) mod 2, e(ξ) + σ = 0 mod 4, c1(ξ)2 = 3σ + 2e(ξ).

Theorem

∀(e(ξ), c1(ξ)2, χ, σ) ∈ Z4 as above, ∃ connected S of dim = 4 with (N(S), ξ) tight.

We already have CH 6= 0 convex hypersurface S with desired σ, e(ξ).
To make connected connected add 1-handles. To correct χ add ind = 1, 2 handles.

Need to see that SH after handle addition has CH 6= 0.
1 Inclusion N(S)→ N(S) ∪ Hc induces iso on CH. CH(N(S) ∪ Hc) 6= 0.
2 N(Sh) ⊂ N(S) ∪ Hc induces CH(N(SH))→ CH(N(S) ∪ Hc) by CGHH.
3 Unital algebra morphism =⇒ CH(N(SH)) 6= 0.

That completes the proof!
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Epilogue

χ = e(ξ) mod 2, e(ξ) + σ = 0 mod 4, c1(ξ)2 = 3σ + 2e(ξ).

Theorem

∀(e(ξ), c1(ξ)2, χ, σ) ∈ Z4 as above, ∃ connected S of dim = 4 with (N(S), ξ) tight.

Broader context:
1 See also results of Mori on non-convex surfaces violating a TB bound in high dim.
2 Fits into POV of Bowden-Gironella-Moreno-Zhou: ∃ many tight ξ in high dim!
3 Conjecture: @ generalized TB bound involving characteristic numbers in dim ≥ 5.
4 For today’s strategy to general, need more divisor pairs in high dim...

Here’s one interesting high dim example studied from the symplectic POV by Oba:
1 D− ⊂ X− = P1 × P1 × P1, deg = (1, 1, 1),
2 X + = deg(1, 1) ⊂ P2 × P2, D = deg(1, 1) ⊂ X +.
3 D± ' P2#3P2

are deg = 6 del Pezzo surfaces.
4 I can show CH(N(S), ξ) = 0 by GW count.

Let me know if you have further dimC > 2 examples!
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Thanks for having me!

See me in next Symplectix (Zoom-able) to hear about contact submanifolds in high dim!
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