# CH, GW and the geography of tight convex hypersurfaces 

Russell Avdek

Laboratoire de Mathématiques d'Orsay

Symplectic Zoominar, Oct. 2023

## Overview

Convex hypersurfaces are central to contact topology and a hot research topic.
We currently know $\epsilon \sim 0$ in dim $>3$ : $\exists$ few tools and few well-understood examples.
Today: Characteristic classes don't obstruct tightness in dim $=4+1$. Contrasts with the Thurston-Bennequin bound in dim $=2+1$. Conjectural picture: $\exists$ lots of tight contact structures in high dim, unlike dim $=3$.

Summary for today's lecture:
(1) Review what's known and what's not.
(2) Investigate geography in $\operatorname{dim}=4+1$. Along the way...
(3) New techniques for building interesting convex hypersurfaces.
(9) New techniques for computing contact homologies eg. using relative GW.

Covers upcoming sequel to "An algebraic generalization of Giroux's criterion".

## Crash course in contact topology

Contact manifold is $(M, \xi)$ of $\operatorname{dim}=2 n+1$ with $\xi=\operatorname{ker} \alpha$ and $\alpha \wedge d \alpha^{n}>0$.

Liouville manifold is $(W, \beta)$ with $d \beta$ symplectic $\Longrightarrow(\partial W$, ker $\beta$ ) contact. Most important Liouvilles are Weinstein, built from handles of ind $\leq \frac{1}{2} \operatorname{dim} W$. Ex:
(1) Varieties in $\mathbb{C}^{N}$ intersect $\mathbb{D}(\rho \gg 0)$ with $\beta=x d y-y d x$.
(2) Disk cotangent bundles $\left(\mathbb{D}^{*} Q, \beta=p d q\right)$. Setup for Hamiltonian mechanics on $Q$.

Filling of $(M, \xi)$ is $(W, \omega)$ with $\partial W=M$ and $\omega=d \beta$ Liouville near $\partial W$.
( $M, \xi$ ) are either tight or overtwisted (OT):
(1) Fillable $\Longrightarrow$ tight (Gromov, Niederkrüger).
(2) $\exists$ ! OT $\xi$ for each formal homotopy class of $[\xi]$ on $M$ (Borman-Eliashberg-Murphy).
(3) There are many characterizations of OT (Casals-Murphy-Presas).

## Important questions:

(1) Given a $[\xi]$, are there tight $\xi$ in the class $[\xi]$ ?
(2) Given a $(M, \xi)$, is it tight / fillable?

Convex hypersurfaces powerful tool in $\operatorname{dim}=3$. Want to understand them in dim $>3$ !

## Convex hypersurfaces I: What are they?

$S \subset M^{2 n+1}$ is convex if $\exists N(S)=(-\epsilon, \epsilon)_{\tau} \times S \subset M$, s.t. $\xi$ is $\tau$-invariant. Can assume

$$
\left.\alpha\right|_{N(S)}=f d \tau+\beta, \quad f \in \mathcal{C}^{\infty}(S), \quad \beta \in \Omega^{1}(S) .
$$

$S$ decomposes into a negative region, a dividing set, and a positive region:

$$
\begin{gathered}
S=S^{-} \cup \Gamma \cup S^{+} \\
S^{ \pm}=\{ \pm f>0\}, \quad \text { on which } \beta^{ \pm}= \pm f^{-1} \beta \text { is Liouville } \\
\Gamma=\{ \pm f=0\}, \quad \text { on which } \alpha \text { is contact }
\end{gathered}
$$

Our perspective: $S$ is a pair $\left(S^{-}, S^{+}\right)$of fillings of $\left(\Gamma, \xi_{\Gamma}\right)$ glued along their boundaries.

(1) For $n=1$, determined by simple closed, null-homologous multi-curve $\Gamma$.
(2) For $n=2$, much is known about fillings of $\left(\Gamma^{3}, \xi_{\Gamma}\right) \Longrightarrow$ know many examples.

## Convex hypersurfaces II: Main theorems

## Theorem (Giroux, Honda-Huang)

$A \mathcal{C}^{0}$-generic $S \subset M^{2 n+1}$ is convex with the $\left(S^{ \pm}, \beta^{ \pm}\right)$Weinstein.

## Theorem (Giroux's criterion for $\operatorname{dim}(S)=2$ )

(1) If $S=\mathbb{S}^{2}$, then $N(S)$ is tight iff $\Gamma$ connected.
(2) If $\chi(S) \leq 0$, then $N(S)$ is tight iff $S^{ \pm}$have no $\mathbb{D}^{2}$ components.
$\Longrightarrow$ Thurston-Bennequin bound, $|e(\xi)[S]| \leq|\chi(S)|$ for tight $N(S)$.

TB bound $\Longrightarrow$ Finitely many $H^{2}(M)$ elements can be $c_{1}(\xi)$ for a tight $\xi$ on fixed $M$.
Mantra: In dim $=3$, tight $\xi$ are rare! See Colin-Giroux-Honda for details.

## Question

Is there a dim >2+1 Giroux criterion or TB bound?

## Main results for today

Looking for generalizations of TB, compare invariants of $S$ to Chern numbers of $\xi \mid s$. We focus on $\operatorname{dim} S=4$ and look at $\chi, \sigma$. Chern numbers are $c_{1}(\xi)^{2}, c_{2}(\xi)=\boldsymbol{e}(\xi)$.

$$
\chi=e(\xi) \bmod _{2}, \quad e(\xi)+\sigma=0 \bmod _{4}, \quad c_{1}(\xi)^{2}=3 \sigma+2 e(\xi)
$$

## Theorem

$\forall\left(e(\xi), c_{1}(\xi)^{2}, \chi, \sigma\right) \in \mathbb{Z}^{4}$ as above, $\exists$ connected $S$ of $\operatorname{dim}=4$ with $(N(S), \xi)$ tight.
$\Longrightarrow$ "TB difference" $|\chi|-|e(\xi)|$ takes all $2 \mathbb{Z}$ values for tight $S$ of $\operatorname{dim}=4$.
So characteristic classes don't obstruct tightness in dim $=4+1$.

Outline of the proof:
(1) Build some $(N(S), \xi)$ using "divisor pairs" with specific $e(\xi), \sigma$.
(2) Use contact homology, $\mathrm{CH} \neq \mathrm{O} \Longrightarrow$ tight.

Computations combine relative GW with "Algebraic Giroux Criterion" (AGC).
(3) Modify the $(N(S), \xi)$ using handle attachments to get any $\chi$ with $e(\xi), \sigma$ fixed.
(4) Application of handle attachments preserves $\mathrm{CH} \neq 0$.

En route, we'll see some $C H(N(S), \xi)=0$ ex's via fun GW counts :D

## Divisor pairs I: Definition

$(X, \omega)$ closed, integral symp. mfld with divisor $D=\operatorname{PD}(\omega)$ and neighborhood $\eta$.
(1) $X \backslash D$ is Liouville. Moreover Weinstein when $(X, D)$ algebraic.
(2) $c_{1}(\eta \rightarrow D)=\left.\omega\right|_{D} . \Gamma=\partial \eta$ a prequantization $\mathbb{S}^{1}$ bundle, $\left(\Gamma, \xi_{\Gamma}\right)$.

A divisor pair consists of ( $\left.X^{-}, \omega^{-}, D^{-}\right),\left(X^{+}, \omega^{+}, D^{+}\right)$, and $\phi$ where
(1) $\left(X^{ \pm}, \omega^{ \pm}\right)$are closed symp mflds with divisors $D^{ \pm}$.
(2) $\phi:\left(D^{-}, \omega_{D^{-}}^{-}\right) \rightarrow\left(D^{+}, \omega_{D^{+}}^{-}\right)$a symplectomorphism.

From divisor pair, build convex hypersurface $S=S\left(X^{ \pm}, \omega^{ \pm}, D^{ \pm}, \phi\right)$ so that
(1) $S^{ \pm}=X^{ \pm} \backslash D^{ \pm}$,
(2) boundaries are identified by lifting $\phi$ to the $\mathbb{S}^{1}$-bundles.

Idea comes from Gompf's fiber sum construction.
$\operatorname{dim} S=$ 2: $X^{ \pm}$closed surfaces, $D^{ \pm}$points. Every $S$ comes from a divisor pair.

## Divisor pairs II: Examples

$\operatorname{dim} S=4$ : The $\eta(D) \subset X$ are determined entirely by $[D]^{2}$ self-intersection and $\chi(D)$.
Ex 1: $D_{k}^{-} \subset X^{-}=\mathbb{P}^{2}, \operatorname{deg}=(2 k), D_{k}^{+} \subset X^{+}=\mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{deg}=(2 k, k)$,

$$
\left[D_{k}^{ \pm}\right]^{2}=4 k^{2}, \quad \chi\left(D_{k}^{ \pm}\right)=2 k(3-2 k) .
$$

$S_{k}^{ \pm}=X^{ \pm} \backslash D_{k}^{ \pm}$are Weinstein with Lefschetz fibrations given by algebraic pencils. $k=1$ : unique fillings of $L(4,1)$ (McDuff), LFs give lantern relation (Auroux-Smith).


Ex 2: $D_{1}^{-} \subset X^{-}=\Sigma_{2} \times \Sigma_{2}, \operatorname{deg}=(2 /, 2 I), D_{1}^{+} \subset X^{+}=\Sigma_{2} \times \Sigma_{1}, \operatorname{deg}=(4 /, /)$,

$$
\left[D_{l}^{ \pm}\right]^{2}=8 I^{2}, \quad \chi\left(D_{I}^{ \pm}\right)=-8 I(I+1) .
$$

For the main theorem, we'll use as building blocks
(1) $S_{k}$ from Ex 1 series all with $e(\xi)=1, \sigma=-1$
(2) $S_{l}$ from Ex 2 series all with $e(\xi)=4, \sigma=0$.

## CH background

We use contact homology CH to verify tightness of our $(N(S), \xi)$.

## Theorem (Bourgeois-van Koert, Eliashberg, M.L. Yau)

$C H(M, \xi) \neq 0 \Longrightarrow(M, \xi)$ tight.

On chain level, get graded-comm DGA $(C C, \partial)$ from $V$ the $\mathbb{Q}$ space of Reeb orbits

$$
C C=\mathcal{S}(V)=\bigoplus_{0}^{\infty} v^{\otimes k} / \sim, \quad x y \sim(-1)^{|x| \cdot|y|} y x, \quad \partial(x y)=(\partial x) y+(-1)^{|x|} x(\partial y) .
$$

$\partial$ counts holo-curves in $\mathbb{R}_{s} \times M$ and breaks up as $\partial=\sum_{0}^{\infty} \partial_{k}$


Liouville fillings give augmentations, $\epsilon:(C C, \partial) \rightarrow\left(\mathbb{Q}, \partial_{\mathbb{Q}}=0\right)$.

## Bilinearization

For $S=S^{-} \cup \Gamma \cup S^{+}$get two augmentations $\epsilon^{-}, \epsilon^{+}: C C_{\Gamma} \rightarrow \mathbb{Q}$.
Use $\vec{\epsilon}=\left(\epsilon^{-}, \epsilon^{+}\right)$and $\partial_{\Gamma, k \geq 1}$ to define deg $=-1$ maps on $\widehat{V}=V[1]$


$$
\partial_{1}^{\vec{e}}: \widehat{V} \rightarrow \widehat{v}, \quad \partial_{0}^{\vec{e}}: \widehat{v} \rightarrow \mathbb{Q}, \quad \partial_{0}^{\vec{Q}} \hat{v}=\epsilon^{+} v-\epsilon^{-} v
$$

Get commutative versions of LCH objects (Bourgeois-Chantraine + Bourgeois-Galant):
(1) $\left(\partial_{1}^{\vec{\epsilon}}\right)^{2}=0$ and defines bilinearized homology $H^{\vec{\epsilon}}=H\left(\widehat{V}, \partial_{1}^{\vec{\epsilon}}\right)$
(2) $\partial_{0}^{\vec{\epsilon}} \partial_{1}^{\vec{\epsilon}}=0 \Longrightarrow \partial_{0}^{\vec{\epsilon}}$ induces map $H^{\vec{\epsilon}} \rightarrow \mathbb{Q}$, the fundamental class.

$$
\Longrightarrow\left(\widehat{C C}=\mathcal{S}(\widehat{V}), \partial^{\vec{\epsilon}}=\partial_{0}^{\vec{\epsilon}}+\partial_{1}^{\vec{\epsilon}}\right)
$$

is a free CDGA, called the bilinearized DGA.

## The Algebraic Giroux Criterion

For $S=S^{-} \cup \Gamma \cup S^{+}$get augmentations $\epsilon^{-}, \epsilon^{+}: C C_{\Gamma} \rightarrow \mathbb{Q}$ and bilinearized algebra...

$$
\partial^{\epsilon} \widehat{\gamma}=⿹-\circlearrowleft+\square+\Omega+\square+\infty+\ldots
$$

## Theorem (Algebraic Giroux Criterion (AGC))

$\exists$ geometric data so that $\left(C C_{N(S)}, \partial_{N(S)}\right)$ is the bilinearized algebra. Therefore... $\mathrm{CH}(N(S), \xi) \neq 0$ iff fundamental class $\partial_{0}^{\vec{\epsilon}}=0$ on $H\left(\widehat{V}, \partial_{1}^{\vec{\epsilon}}\right)$.

Sounds complicated... The $\epsilon^{ \pm}$are usually difficult to compute :(
For convex hypersurfaces determined by divisor pairs...
(1) have easy formulas for indices, $\Longrightarrow$ can often say $\epsilon^{ \pm}=0$ for index reasons.
(2) otherwise can use relative GW, often boiling down to classical counting :D

## Plane sphere correspondence I

To compute CH we need to count augmentation planes in $X \backslash D$.
$D \subset X^{2 n}$ divisor with neighborhood $\eta, \partial \eta=\Gamma . f \in \mathcal{C}^{\infty}(D)$ Morse. Get Reeb with

$$
\text { closed orbits }=\left\{\gamma_{p}^{\mathrm{cm}}: p \in \operatorname{Crit}(f)\right\}, \quad \text { all cover } \mathbb{S}^{1} \text { fibers of } \Gamma \rightarrow D .
$$

Basis of $T_{p} D$ gives framing of orbits $\gamma_{p}^{c m}, p \in \operatorname{Crit}(f)$ so that

$$
\operatorname{CZ}\left(\gamma_{p}^{\mathrm{cm}}\right)=\operatorname{ind}_{M o}(f, p)-n+1, \quad\left|\gamma_{p}^{\mathrm{cm}}\right|=\operatorname{ind}_{M o}(f, p)-2 .
$$

For a $u: \mathbb{C} \rightarrow X \backslash D$ asymptotic to $\gamma_{p}^{c m}$, get $\bar{u}: \mathbb{P}^{1} \rightarrow X$ by filling in the point at $\infty$.
Use GW index formula to relate ind $(u)$, ind $(\bar{u})$, and cm by

$$
\mathrm{cm}=[D] \cdot[\bar{u}], \quad \operatorname{ind}(u)=2\left(c_{1}(X)-[D]\right)[\bar{u}]+\operatorname{ind}_{M o}(f, p)-2 .
$$

This is super easy to use when $D$ is algebraic inside of Kähler $X$.

## Plane sphere correspondence II

$D \subset X^{2 n}$ divisor neighborhood $\eta$ and $\partial \eta=\Gamma . f \in \mathcal{C}^{\infty}(D)$ Morse.

$$
\begin{gathered}
u: \mathbb{C} \rightarrow X \backslash D, \quad \infty \rightarrow \gamma_{p}^{c m}, p \in \operatorname{Crit}(f) \quad \rightsquigarrow \quad \bar{u}: \mathbb{P}^{1} \rightarrow X \\
\mathrm{~cm}=[D] \cdot[\bar{u}], \quad \operatorname{ind}(u)=2\left(c_{1}(X)-[D]\right)[\bar{u}]+\operatorname{ind}_{M_{0}}(f, p)-2 .
\end{gathered}
$$

Often formula tells us there are no ind $(u)=0$ augmentation planes in $X \backslash D$.
Suppose $f$ has unique $p_{\text {min }}, p_{\text {max }}$ of ind ${ }_{M o}\left(f, p_{\min }\right)=0$ and ind $M_{M o}\left(f, p_{\max }\right)=2 n-2$.

## Theorem (Simplified plane-sphere correspondence)

Suppose $\mathcal{M}$ involved are transversely cut out. Then
(1) \#(u) asymptotic to $\gamma_{p_{\min }}^{\mathrm{cm}}$ is GW count of $\bar{u}$ touching $D$ only at $p_{\min } \in D$.
(2) \#(u) asymptotic to $\gamma_{p_{\text {max }}}^{\mathrm{cm}}$ is GW count of $\bar{u}$ touching $D$ exactly once.
( Covering multiplicity $\mathrm{cm} \Longleftrightarrow$ order of contact for $\bar{u} \cap D$.

Comes from Diogo-Lisi's SH computations for divisor complements.
Simplified case above enough to compute in $n=2$ case of interest today.

## Computational examples

Ex 1: $S_{k}$ from $D_{k}^{-} \subset X^{-}=\mathbb{P}^{2}, \operatorname{deg}=(2 k), D_{k}^{+} \subset X^{+}=\mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{deg}=(2 k, k)$,

$$
\left[D_{k}^{ \pm}\right]^{2}=4 k^{2}, \quad \chi\left(D_{k}^{ \pm}\right)=2 k(3-2 k)
$$

Ex 2: $S_{I}$ from $D_{l}^{-} \subset X^{-}=\Sigma_{2} \times \Sigma_{2}$, $\operatorname{deg}=(2 I, 2 I), D_{l}^{+} \subset X^{+}=\Sigma_{2} \times \Sigma_{1}, \operatorname{deg}=(4 /, I)$,

$$
\left[D_{l}^{ \pm}\right]^{2}=8 l^{2}, \quad \chi\left(D_{l}^{ \pm}\right)=-8 I(I+1) .
$$

## Theorem

$\mathrm{CH}\left(N\left(S_{k}\right), \xi_{k}\right) \neq 0 \Longleftrightarrow k \geq 3 . \mathrm{CH}\left(N\left(S_{l}\right), \xi_{l}\right) \neq 0$ for all I.

The $S_{\text {, case }}$ is easy. $\pi_{2}\left(\Sigma_{g \geq 1}\right)=0 \Longrightarrow \epsilon^{ \pm}=0$.
We'll only need that some of the $\left(N\left(S_{k}\right), \xi_{k}\right)$ are tight to prove our geography theorem.
But the $k=1,2$ cases are too fun to skip :D

## Scenic detour: Computation $k=1$

$$
D_{1}^{-} \subset X^{-}=\mathbb{P}^{2}, \operatorname{deg}=(2), D_{1}^{+} \subset X^{+}=\mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{deg}=(2,1) . \text { Here } D_{1}^{ \pm} \simeq \mathbb{P}^{1} .
$$



Orbit $\gamma_{\text {min }}^{1}$ has least action. So $\partial^{\vec{\epsilon}} \gamma_{\text {min }}^{1}$ counts only augmentation planes.
There can be no $u^{-}$because for any $\bar{u}, \mathrm{~cm}=\left[D^{-}\right] \cdot[\bar{u}] \geq 2$.
For $u^{+}$with $\left[\bar{u}^{+}\right]=a\left[\mathbb{P}^{1} \times\{p t\}\right]+b\left[\{p t\} \times \mathbb{P}^{1}\right]$, want $\mathrm{cm}=1, \operatorname{ind}\left(u^{+}\right)=0$ from

$$
\mathrm{cm}=a+2 b, \quad \operatorname{ind}(u)=2 a-2 \Longrightarrow\left[\bar{u}^{+}\right]=\left[\mathbb{P}^{1} \times\{p t\}\right] .
$$

There is exactly one such $\left[\bar{u}^{+}\right]$passing through $p_{\text {min }} \in D_{1}^{+}$.

$D_{1}^{+}$ $\mathbb{P}^{1} \times\{p t\}$

So $\partial^{\vec{\epsilon}} \widehat{\gamma}_{p_{\text {min }}}^{1}=1 \Longrightarrow \operatorname{CH}\left(N\left(S_{1}\right), \xi\right)=0$.

## Scenic detour: Computation $k=2$

$D_{2}^{-} \subset X^{-}=\mathbb{P}^{2}, \operatorname{deg}=(4), D_{2}^{+} \subset X^{+}=\mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{deg}=(4,2)$. Here $D_{2}^{ \pm} \simeq \Sigma_{g=3}$.
$\partial_{C H(\Gamma)}=0 . C H(N(S))$ differential counts only aug planes. Study $\gamma_{\text {max }}^{2}$.
There can be no $u^{-}$because for any $\bar{u}, \mathrm{~cm}=\left[D^{-}\right] \cdot[\bar{u}] \geq 4$.
For $u^{+}$with $\left[\bar{u}^{+}\right]=a\left[\mathbb{P}^{1} \times\{p t\}\right]+b\left[\{p t\} \times \mathbb{P}^{1}\right]$, want $c m=2, \operatorname{ind}\left(u^{+}\right)=0$ from

$$
\mathrm{cm}=2 a+4 b, \quad \operatorname{ind}(u)=-4 b \Longrightarrow\left[\bar{u}^{+}\right]=\left[\mathbb{P}^{1} \times\{p t\}\right] .
$$

Generic line $(1,0)$ touches $D_{2}^{+} \pitchfork$ in two points. Special lines touch $D_{2}^{+}$once with multiplicity two! Special lines $\mathbb{P}^{1} \times\left\{z_{2}\right\} \Longleftrightarrow$ critical points $\left(z_{1}, z_{2}\right) \in D_{2}^{+}$of

$$
D_{2}^{+} \simeq \Sigma_{g=3} \xrightarrow{\phi} \mathbb{P}^{1}, \quad\left(z_{1}, z_{2}\right) \mapsto z_{2}, \quad \operatorname{deg}(\phi)=2 .
$$



We can count with Riemann-Hurwitz:

$$
\partial^{\vec{\epsilon}} \widehat{\gamma}_{p_{\text {max }}}^{2}=\#(\text { special lines })=\#\left(\operatorname{Crit}\left(\Sigma_{g=3} \rightarrow \mathbb{P}^{1}\right)\right)=8 \Longrightarrow C H\left(N\left(S_{2}\right), \xi\right)=0 .
$$

## Summary and setup for geography theorem

In remaining cases, ind $(u)$ computations show there is nothing to count. So...
Ex 1: $S_{k}$ from $D_{k}^{-} \subset X^{-}=\mathbb{P}^{2}, \operatorname{deg}=(2 k), D_{k}^{+} \subset X^{+}=\mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{deg}=(2 k, k)$

$$
\sigma\left(S_{k}\right)=-1, \quad e(\xi)\left[S_{k}\right]=1, \quad C H\left(N\left(S_{k}\right), \xi_{k}\right) \neq 0 \text { for } k \geq 3
$$

Ex 2: $S_{I}$ from $D_{l}^{-} \subset X^{-}=\Sigma_{2} \times \Sigma_{2}$, $\operatorname{deg}=(2 /, 2 I), D_{l}^{+} \subset X^{+}=\Sigma_{2} \times \Sigma_{1}, \operatorname{deg}=(4 /, I)$,

$$
\sigma\left(S_{l}\right)=0, \quad e(\xi)\left[S_{l}\right]=-4, \quad C H\left(N\left(S_{l}\right), \xi_{l}\right) \neq 0 .
$$

In general characteristic numbers satisfy

$$
\chi=e(\xi) \bmod _{2}, \quad e(\xi)+\sigma=0 \bmod _{4}, \quad c_{1}(\xi)^{2}=3 \sigma+2 e(\xi) .
$$

and we want to prove...

## Theorem

$\forall\left(e(\xi), c_{1}(\xi)^{2}, \chi, \sigma\right) \in \mathbb{Z}^{4}$ as above, $\exists$ connected $S$ of $\operatorname{dim}=4$ with $(N(S), \xi)$ tight.

## Getting the correct $\sigma, e(\xi)$

$$
\chi=e(\xi) \bmod _{2}, \quad e(\xi)+\sigma=0 \bmod _{4}, \quad c_{1}(\xi)^{2}=3 \sigma+2 e(\xi)
$$

## Theorem

$\forall\left(e(\xi), c_{1}(\xi)^{2}, \chi, \sigma\right) \in \mathbb{Z}^{4}$ as above, $\exists$ connected $S$ of $\operatorname{dim}=4$ with $(N(S), \xi)$ tight.

Ex 1: $\sigma\left(S_{k}\right)=-1, e(\xi)\left[S_{k}\right]=1, C H\left(N\left(S_{k}\right), \xi_{k}\right) \neq 0$ for $k \geq 3$.
Ex 2: $\sigma\left(S_{l}\right)=0, e(\xi)\left[S_{l}\right]=-4, C H\left(N\left(S_{l}\right), \xi_{l}\right) \neq 0$.
To get $\sigma=\sigma_{0}$ and $e(\xi)=e_{0}$ as desired take $\sqcup$ of
(1) $\left|\sigma_{0}\right|$ copies of $S_{k \geq 3}$ with $\mp \operatorname{sgn}\left(\sigma_{0}\right)$ orientation.
(2) $\mid e_{0}+e(\xi)\left[S_{k}\right] / / 4$ copies of $S_{l}$ with $\mp \operatorname{sgn}(\cdots)$ orientation.

Result is tight because $\mathrm{CH}\left(\sqcup N\left(S_{i}\right)\right)=\otimes \mathrm{CH}\left(N\left(S_{i}\right)\right) \neq 0$.
We want the result to be connected with specific $\chi \cdot c_{1}(\xi)^{2}$ is determined. We will
(1) add handles to this disjoint union to make connected and correct $\chi$, and
(2) show that handle addition preserves $\mathrm{CH} \neq 0$.

## Contact handle attachments

In $\left(N(S)=[-1,1]_{\tau} \times S, \xi\right)$ neighborhood of $\{1\} \times \Gamma$ looks like

$$
[-1,1]_{t} \times[0,1]_{s} \times \Gamma, \quad \alpha=d t+e^{s} \alpha_{\Gamma}
$$

with corners rounded. So it's the contactization of symplectization of ( $\Gamma^{2 n-1}, \alpha_{\Gamma}$ ). Contactization of ind $=i \leq n, \operatorname{dim}=2 n$ Weinstein handle $H_{w}$ is a contact handle $H_{c}$. Can attach $H_{c}$ to the boundary of any $(M, \xi)$, when $\partial M$ is convex.


After rounding corners, convex boundary is changed by

$$
S=\left(S^{-}, S^{+}\right) \rightsquigarrow S_{H}=\left(S^{-} \cup H_{w}, S^{+} \cup H_{w}\right), \quad \chi \rightsquigarrow \chi+2 \operatorname{ind}\left(H_{w}\right) .
$$

$\sigma$ and $e(\xi)$ unaffected as they are cobordism/homological invariants.

## Theorem (implicit in Colin-Ghiggini-Honda-Hutchings)

Adding an ind $\leq n$ contact handle to the boundary of a $(M, \xi)$ leaves $C H$ unaffected.

## Wrapping up

$$
\chi=e(\xi) \bmod _{2}, \quad e(\xi)+\sigma=0 \bmod _{4}, \quad c_{1}(\xi)^{2}=3 \sigma+2 e(\xi)
$$

## Theorem

$\forall\left(e(\xi), c_{1}(\xi)^{2}, \chi, \sigma\right) \in \mathbb{Z}^{4}$ as above, $\exists$ connected $S$ of $\operatorname{dim}=4$ with $(N(S), \xi)$ tight.

We already have $\mathrm{CH} \neq 0$ convex hypersurface $S$ with desired $\sigma, e(\xi)$.
To make connected connected add 1-handles. To correct $\chi$ add ind $=1$, 2 handles.
Need to see that $S_{H}$ after handle addition has $\mathrm{CH} \neq 0$.
(1) Inclusion $N(S) \rightarrow N(S) \cup H_{c}$ induces iso on $\mathrm{CH} . \mathrm{CH}\left(N(S) \cup H_{c}\right) \neq 0$.
(2) $N\left(S_{h}\right) \subset N(S) \cup H_{c}$ induces $\mathrm{CH}\left(N\left(S_{H}\right)\right) \rightarrow C H\left(N(S) \cup H_{c}\right)$ by CGHH.
(3) Unital algebra morphism $\Longrightarrow \mathrm{CH}\left(N\left(S_{H}\right)\right) \neq 0$.

That completes the proof!

## Epilogue

$$
\chi=e(\xi) \bmod _{2}, \quad e(\xi)+\sigma=0 \bmod _{4}, \quad c_{1}(\xi)^{2}=3 \sigma+2 e(\xi)
$$

## Theorem

$\forall\left(e(\xi), c_{1}(\xi)^{2}, \chi, \sigma\right) \in \mathbb{Z}^{4}$ as above, $\exists$ connected $S$ of $\operatorname{dim}=4$ with $(N(S), \xi)$ tight.

## Broader context:

(1) See also results of Mori on non-convex surfaces violating a $T B$ bound in high dim.
(2) Fits into POV of Bowden-Gironella-Moreno-Zhou: $\exists$ many tight $\xi$ in high dim!
(3) Conjecture: $\nexists$ generalized $T B$ bound involving characteristic numbers in $\operatorname{dim} \geq 5$.
(-) For today's strategy to general, need more divisor pairs in high dim...
Here's one interesting high dim example studied from the symplectic POV by Oba:
(1) $D^{-} \subset X^{-}=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{deg}=(1,1,1)$,
(2) $X^{+}=\operatorname{deg}(1,1) \subset \mathbb{P}^{2} \times \mathbb{P}^{2}, D=\operatorname{deg}(1,1) \subset X^{+}$.
(3) $D^{ \pm} \simeq \mathbb{P}^{2} \# 3 \overline{\mathbb{P}}^{2}$ are deg $=6$ del Pezzo surfaces.
(- I can show $\mathrm{CH}(N(S), \xi)=0$ by GW count.
Let me know if you have further $\operatorname{dim}_{\mathbb{C}}>2$ examples!

## Thanks for having me!

See me in next Symplectix (Zoom-able) to hear about contact submanifolds in high dim!
References:

- Auroux and Smith, "Lefschetz pencils, branched covers, and symplectic invariants"
(2) Avdek, "An algebraic generalization of Giroux's criterion"
(3) Bennequin, "Entrelacements et equations de Pfaff"
(9) Borman, Eliashberg, Murphy, "Existence and classification of overtwisted..."
(0 Bourgeois and Chantraine, "Bilinearised Legendrian contact homology..."
(0) Bougeois and Galant, "Geography of bilinearized LCH"

O Bourgeois and van Koert, "Contact homology of left-handed stabilizations..."
(B) Bowden, Gironella, Moreno, Zhou, "Non-standard contact structures on spheres"

- Casals, Murphy, Presas, "Geometric criteria for overtwistedness"
(0) Colin, Ghiggini, Honda, Hutchings, "Sutures and contact homology l"
(1) Colin, Giroux, Honda, "Notes on the isotopy finiteness"
(3) Diogo and Lisi, "Symplectic Homology of complements of smooth divisors"
(3) Giroux, "Structures de contact sur les varietées fibrées"
(1) Gompf, "New constructions of symplectic manifolds"
(5) Honda and Huang, "Convex hypersurface theory in contact topology"
(10) McDuff, "The structure of Rational and Ruled symplectic 4-manifolds"
(1) Oba, "A four-dimensional mapping class group relation"
(B) Yau (+ Eliashberg appendix), "Vanishing of contact homology..."

