A metric on the contactomorphism group of an orderable contact manifold

Lukas Nakamura
October 30, 2023
Contact manifolds

Let (M^{2n+1}, α) be a connected strict contact manifold, i.e. α is a 1-form satisfying $\alpha \wedge (d\alpha)^n \neq 0$.

$\text{Cont}_0(M, \xi) \subseteq \text{Diff}(M)$ denotes the identity component of the group of compactly supported contactomorphisms ϕ on (M, ξ), i.e. $\phi_*\xi = \xi$, where $\xi := \ker \alpha$.

Given a contact isotopy ϕ_t, we can associate to it its Hamiltonian $H_t = \alpha(\partial_t \phi_t) : M \to \mathbb{R}$.

Conversely, given a time-dependent function $H_t : M \to \mathbb{R}$, there exists a unique contact isotopy ϕ^H_t starting at the identity with Hamiltonian H_t.

The contact isotopy ϕ^α_t corresponding to $H_t \equiv 1$ is called the Reeb flow.
Let \((M^{2n+1}, \alpha)\) be a connected strict contact manifold, i.e. \(\alpha\) is a 1-form satisfying
\[\alpha \wedge (d\alpha)^n \neq 0.\]

\(\text{Cont}_0(M, \xi) \subseteq \text{Diff}(M)\) denotes the identity component of the group of compactly supported contactomorphisms \(\phi\) on \((M, \xi)\), i.e. \(\phi^*\xi = \xi\), where \(\xi := \text{ker} \alpha\).

Given a contact isotopy \(\phi_t\), we can associate to it its Hamiltonian
\[H_t = \alpha(\partial_t \phi_t) : M \to \mathbb{R}.\]

Conversely, given a time-dependent function \(H_t : M \to \mathbb{R}\), there exists a unique contact isotopy \(\phi^H_t\) starting at the identity with Hamiltonian \(H_t\).

The contact isotopy \(\phi^\alpha_t\) corresponding to \(H_t \equiv 1\) is called the Reeb flow.
Contact manifolds

Let \((M^{2n+1}, \alpha)\) be a connected strict contact manifold, i.e. \(\alpha\) is a 1-form satisfying \(\alpha \wedge (d\alpha)^n \neq 0\).

\(\text{Cont}_0(M, \xi) \subseteq \text{Diff}(M)\) denotes the identity component of the group of compactly supported contactomorphisms \(\phi\) on \((M, \xi)\), i.e. \(\phi^*\xi = \xi\), where \(\xi := \ker \alpha\).

Given a contact isotopy \(\phi_t\), we can associate to it its Hamiltonian \(H_t = \alpha(\partial_t \phi_t) : M \to \mathbb{R}\).

Conversely, given a time-dependent function \(H_t : M \to \mathbb{R}\), there exists a unique contact isotopy \(\phi_t^{H_t}\) starting at the identity with Hamiltonian \(H_t\).

The contact isotopy \(\phi_t^\alpha\) corresponding to \(H_t \equiv 1\) is called the Reeb flow.
Contact manifolds

Let \((M^{2n+1}, \alpha)\) be a connected strict contact manifold, i.e. \(\alpha\) is a 1-form satisfying \(\alpha \wedge (d\alpha)^n \neq 0\).

\(\text{Cont}_0(M, \xi) \subseteq \text{Diff}(M)\) denotes the identity component of the group of compactly supported contactomorphisms \(\phi\) on \((M, \xi)\), i.e. \(\phi^\ast \xi = \xi\), where \(\xi := \ker \alpha\).

Given a contact isotopy \(\phi_t\), we can associate to it its Hamiltonian \(H_t = \alpha(\partial_t \phi_t) : M \to \mathbb{R}\).

Conversely, given a time-dependent function \(H_t : M \to \mathbb{R}\), there exists a unique contact isotopy \(\phi^H_t\) starting at the identity with Hamiltonian \(H_t\).

The contact isotopy \(\phi_t^\alpha\) corresponding to \(H_t \equiv 1\) is called the Reeb flow.
Contact manifolds

Let (M^{2n+1}, α) be a connected strict contact manifold, i.e. α is a 1-form satisfying $\alpha \wedge (d\alpha)^n \neq 0$.

$\text{Cont}_0(M, \xi) \subseteq \text{Diff}(M)$ denotes the identity component of the group of compactly supported contactomorphisms ϕ on (M, ξ), i.e. $\phi_*\xi = \xi$, where $\xi := \ker \alpha$.

Given a contact isotopy ϕ_t, we can associate to it its Hamiltonian $H_t = \alpha(\partial_t \phi_t) : M \rightarrow \mathbb{R}$.

Conversely, given a time-dependent function $H_t : M \rightarrow \mathbb{R}$, there exists a unique contact isotopy ϕ^H_t starting at the identity with Hamiltonian H_t.

The contact isotopy ϕ_t^α corresponding to $H_t \equiv 1$ is called the Reeb flow.
If $H_t \geq 0$ (resp. $H_t > 0$), then ϕ_t^H is called non-negative (resp. positive).

We write $\phi_0 \leq \phi_1$ (resp. $\phi_0 \ll \phi_1$) if there exists a non-negative (resp. positive) contact isotopy from ϕ_0 to ϕ_1.

(M, ξ) is strongly orderable if \leq defines a partial order on $\text{Cont}_0(M, \xi)$.

Lemma (Eliashberg-Polterovich, 2000)

If M is compact, (M, ξ) is strongly orderable if and only if there does not exist a positive loop of contactomorphisms.
Positive paths and orderability

If $H_t \geq 0$ (resp. $H_t > 0$), then ϕ_t^H is called non-negative (resp. positive).

We write $\phi_0 \leq \phi_1$ (resp. $\phi_0 \ll \phi_1$) if there exists a non-negative (resp. positive) contact isotopy from ϕ_0 to ϕ_1.

(M, ξ) is strongly orderable if \leq defines a partial order on $\text{Cont}_0(M, \xi)$.

Lemma (Eliashberg-Polterovich, 2000)

If M is compact, (M, ξ) is strongly orderable if and only if there does not exists a positive loop of contactomorphisms.
Positive paths and orderability

If $H_t \geq 0$ (resp. $H_t > 0$), then ϕ_t^H is called non-negative (resp. positive).

We write $\phi_0 \leq \phi_1$ (resp. $\phi_0 \preccurlyeq \phi_1$) if there exists a non-negative (resp. positive) contact isotopy from ϕ_0 to ϕ_1.

(M, ξ) is strongly orderable if \leq defines a partial order on $\text{Cont}_0(M, \xi)$.

Lemma (Eliashberg-Polterovich, 2000)

If M is compact, (M, ξ) is strongly orderable if and only if there does not exist a positive loop of contactomorphisms.
Positive paths and orderability

If $H_t \geq 0$ (resp. $H_t > 0$), then ϕ_t^H is called non-negative (resp. positive).

We write $\phi_0 \leq \phi_1$ (resp. $\phi_0 \ll \phi_1$) if there exists a non-negative (resp. positive) contact isotopy from ϕ_0 to ϕ_1.

(M, ξ) is strongly orderable if \leq defines a partial order on $\text{Cont}_0(M, \xi)$.

Lemma (Eliashberg-Polterovich, 2000)

If M is compact, (M, ξ) is strongly orderable if and only if there does not exists a positive loop of contactomorphisms.
If M is compact, we define

$$I_{\phi_0, \phi_1}^\ll := \{ \phi \in \text{Cont}_0(M, \xi) | \phi_0 \ll \phi \ll \phi_1 \}.$$

(1)

- These intervals generate a topology O_{\ll}, called interval topology.
- If (M, ξ) is not strongly orderable, $O_{\ll} = \{ \emptyset, \text{Cont}_0(M, \xi) \}$.

QUESTION (CHERNOV-NEMIROVSKI, 2020)

If (M, ξ) is strongly orderable, is O_{\ll} Hausdorff?
Interval topology

If M is compact, we define

$$I_{\phi_0,\phi_1}^\ll := \{ \phi \in \text{Cont}_0(M, \xi) | \phi_0 \ll \phi \ll \phi_1 \}.$$ \hspace{1cm} (1)

- These intervals generate a topology \mathcal{O}_\ll, called *interval topology*.
- If (M, ξ) is not strongly orderable, $\mathcal{O}_\ll = \{ \emptyset, \text{Cont}_0(M, \xi) \}$.

QUESTION (CHERNOV-NEMIROVSKI, 2020)

If (M, ξ) is strongly orderable, is \mathcal{O}_\ll Hausdorff?
Interval topology

If M is compact, we define

$$I_{\phi_0,\phi_1}^\ll := \{\phi \in \text{Cont}_0(M, \xi) | \phi_0 \ll \phi \ll \phi_1\}. \quad (1)$$

- These intervals generate a topology \mathcal{O}_{\ll}, called interval topology.
- If (M, ξ) is not strongly orderable, $\mathcal{O}_{\ll} = \{\emptyset, \text{Cont}_0(M, \xi)\}.$

QUESTION (CHERNOV-NEMIROVSKI, 2020)

If (M, ξ) is strongly orderable, is \mathcal{O}_{\ll} Hausdorff?
Interval topology

If M is compact, we define

$$I_{\phi_0,\phi_1}^\ll := \{ \phi \in \text{Cont}_0(M, \xi) | \phi_0 \ll \phi \ll \phi_1 \}.$$

(1)

- These intervals generate a topology \mathcal{O}_\ll, called *interval topology*.
- If (M, ξ) is not strongly orderable, $\mathcal{O}_\ll = \{ \emptyset, \text{Cont}_0(M, \xi) \}$.

QUESTION (CHERNOV-NEMIROVSKI, 2020)

If (M, ξ) is strongly orderable, is \mathcal{O}_\ll Hausdorff?
Energies of contact isotopies

For $H_t : M \to \mathbb{R}$, define

$$\| \phi_t^H \|^\alpha_{SH} := \| H_t \| := \int_0^1 \max_M |H_t| \, dt.$$ \hfill (2)

For $\phi_0, \phi_1 \in \text{Cont}_0(M, \xi)$, define their Shelukhin-Hofer distance as

$$d_{SH}^\alpha(\phi_0, \phi_1) := \inf_{H_t} \{ \| \phi_t^H \|^\alpha | \phi_1^H \phi_0 = \phi_1 \}. \hfill (3)$$

Theorem (Shelukhin, 2017)

d_{SH}^α is a non-degenerate, right-invariant, and left-natural metric (i.e.

$$d_{SH}^\alpha(\psi \phi_0, \psi \phi_1) = d_{SH}^{\psi^* \alpha}(\phi_0, \phi_1).$$
Energies of contact isotopies

For $H_t : M \to \mathbb{R}$, define

$$
\| \phi_t^H \|_{SH}^\alpha := \| H_t \| := \int_0^1 \max_M |H_t| dt.
$$

(2)

For $\phi_0, \phi_1 \in \text{Cont}_0(M, \xi)$, define their Shelukhin-Hofer distance as

$$
d_{SH}^\alpha(\phi_0, \phi_1) := \inf_{H_t} \{ \| \phi_t^H \|_{\alpha} \mid \phi_1^H \phi_0 = \phi_1 \}.
$$

(3)

Theorem (Shelukhin,2017)

d_{SH}^α is a non-degenerate, right-invariant, and left-natural metric (i.e.

$$
d_{SH}^\alpha(\psi \phi_0, \psi \phi_1) = d_{SH}^\alpha(\phi_0, \phi_1).
$$
Energies of contact isotopies

For $H_t : M \to \mathbb{R}$, define

$$\| \phi^H_t \|_{\alpha SH} := \| H_t \| := \int_0^1 \max_M |H_t| dt. \quad (2)$$

For $\phi_0, \phi_1 \in \text{Cont}_0(M, \xi)$, define their Shelukhin-Hofer distance as

$$d^\alpha_{SH}(\phi_0, \phi_1) := \inf_{H_t} \{ \| \phi^H_t \|_{\alpha} | \phi^H_1 \phi_0 = \phi_1 \}. \quad (3)$$

Theorem (Shelukhin, 2017)

d^α_{SH} is a non-degenerate, right-invariant, and left-natural metric (i.e. $d^\alpha_{SH}(\psi \phi_0, \psi \phi_1) = d^\alpha_{SH}(\phi_0, \phi_1)$).
Energies of contact isotopies

For $H_t : M \to \mathbb{R}$, define

$$\|H_t\|_{\pm} := \int_0^1 \max_M \{\pm H_t\} dt.$$ \hspace{1cm} (4)

For $\phi_0, \phi_1 \in \text{Cont}_0(M, \xi)$, we define

$$\delta_{\pm}^\alpha(\phi_0, \phi_1) := \inf_{H_t} \{\|H_t\|_{\pm}| \phi_0^H \phi_0 = \phi_1\}.$$ \hspace{1cm} (5)

In fact,

$$\delta^-\alpha(\phi_0, \phi_1) = \inf\{\varepsilon \in \mathbb{R}| \exists H_t : M \to [-\varepsilon, \infty) : \phi_0^H \phi_0 = \phi_1\},$$

$$\delta^+\alpha(\phi_0, \phi_1) = \delta^-\alpha(\phi_1, \phi_0) = \inf\{\varepsilon \in \mathbb{R}| \exists H_t : M \to (-\infty, \varepsilon] : \phi_0^H \phi_0 = \phi_1\}.$$ \hspace{1cm} (6)
Energies of contact isotopies

For $H_t : M \to \mathbb{R}$, define

$$\|H_t\|_{\pm} := \int_0^1 \max_{\mathcal{M}} \{\pm H_t\} dt.$$ \hfill (4)

For $\phi_0, \phi_1 \in \text{Cont}_0(M, \xi)$, we define

$$\delta_{\pm}^\pm(\phi_0, \phi_1) := \inf_{H_t} \{\|H_t\|_{\pm} \mid \phi_1^H \phi_0 = \phi_1\}.$$ \hfill (5)

In fact,

$$\delta_{\pm}^{-}(\phi_0, \phi_1) = \inf\{\varepsilon \in \mathbb{R} \mid \exists H_t : M \to [-\varepsilon, \infty) : \phi_1^H \phi_0 = \phi_1\},$$

$$\delta_{\pm}^{+}(\phi_0, \phi_1) = \delta_{\pm}^{-}(\phi_1, \phi_0) = \inf\{\varepsilon \in \mathbb{R} \mid \exists H_t : M \to (-\infty, \varepsilon] : \phi_1^H \phi_0 = \phi_1\}.$$ \hfill (6)
Energies of contact isotopies

For $H_t : M \to \mathbb{R}$, define

$$\|H_t\|_\pm := \int_0^1 \max_M \{\pm H_t\} \, dt.$$ \hspace{1cm} (4)

For $\phi_0, \phi_1 \in \text{Cont}_0(M, \xi)$, we define

$$\delta_\pm^\alpha(\phi_0, \phi_1) := \inf_{H_t} \{\|H_t\|_\pm | \phi^H_1 \phi_0 = \phi_1\}.$$ \hspace{1cm} (5)

In fact,

$$\delta^-_\alpha(\phi_0, \phi_1) = \inf \{\varepsilon \in \mathbb{R} | \exists H_t : M \to [-\varepsilon, \infty) : \phi^H_1 \phi_0 = \phi_1\},$$

$$\delta^+_\alpha(\phi_0, \phi_1) = \delta^-_\alpha(\phi_1, \phi_0) = \inf \{\varepsilon \in \mathbb{R} | \exists H_t : M \to (-\infty, \varepsilon] : \phi^H_1 \phi_0 = \phi_1\}.$$ \hspace{1cm} (6)
Energies of contact isotopies

We define

\[d_\alpha(\phi_0, \phi_1) := \max\{\delta_\alpha^+(\phi_0, \phi_1), \delta_\alpha^-(\phi_0, \phi_1), 0\}. \]

(7)

Remark 0.1

- In the case that \(M \) is compact, \(\delta_\alpha^\pm \) and \(d_\alpha \) appeared first in the PhD thesis of Arlove.
- The so-called *Lorentzian distance function* \(\tau_\alpha = \max\{-\delta_\alpha^-, 0\} \) was introduced and studied by (Hedicke, 2021).
We define
\[d_\alpha(\phi_0, \phi_1) := \max\{\delta_\alpha^+(\phi_0, \phi_1), \delta_\alpha^-(\phi_0, \phi_1), 0\}. \] (7)

Remark 0.1

- In the case that \(M \) is compact, \(\delta_\alpha^\pm \) and \(d_\alpha \) appeared first in the PhD thesis of Arlove.
- The so-called *Lorentzian distance function* \(\tau_\alpha = \max\{-\delta_\alpha^-, 0\} \) was introduced and studied by (Hedicke, 2021).
We define

\[d_\alpha(\phi_0, \phi_1) := \max\{\delta_+^\alpha(\phi_0, \phi_1), \delta^-_\alpha(\phi_0, \phi_1), 0\}. \]

(7)

Remark 0.1

- In the case that \(M \) is compact, \(\delta_\alpha^\pm \) and \(d_\alpha \) appeared first in the PhD thesis of Arlove.
- The so-called *Lorentzian distance function* \(\tau_\alpha = \max\{-\delta^-_\alpha, 0\} \) was introduced and studied by (Hedicke, 2021).
Main result

Theorem (N., 2023)

d_α is a right-invariant and left-natural pseudo-metric, which is either non-degenerate or vanishes identically, such that

- if M is compact, (M, ξ) is strongly orderable if and only if d_α is non-degenerate,
- $\mathcal{O}_\ll = \mathcal{O}_{d_\alpha}$ for compact M,
- $d_\alpha \leq d_{SH}$.
Legendrian submanifolds

$L^n \subseteq M^{2n+1}$ is Legendrian if $TL \subseteq \xi$.

- Isotopies of Legendrian submanifolds are induced by ambient contact isotopies.
 \(\Rightarrow \delta_{\alpha}^\pm \) induce distances \(\delta_{\alpha}^{\pm, L} \) on the Legendrian isotopy class of \(L \).

- We define \(d_{\alpha}^L := \max\{\delta_{\alpha}^{+ L}, \delta_{\alpha}^{- L}, 0\} \).

- For compact \(L \), \(L \) is strongly orderable if there does not exists a positive loop of Legendrians starting at \(L \).
Legendrian submanifolds

$L^n \subseteq M^{2n+1}$ is Legendrian if $TL \subseteq \xi$.

- Isotopies of Legendrian submanifolds are induced by ambient contact isotopies.
 \[\Rightarrow \delta^\pm_\alpha \text{ induce distances } \delta^{\pm,L}_\alpha \text{ on the Legendrian isotopy class of } L. \]

- We define $d^L_\alpha := \max\{\delta^+_{\alpha,L}, \delta^-_{\alpha,L}, 0\}$.

- For compact L, L is strongly orderable if there does not exists a positive loop of Legendrians starting at L.
$L^n \subseteq M^{2n+1}$ is **Legendrian** if $TL \subseteq \xi$.

- Isotopies of Legendrian submanifolds are induced by ambient contact isotopies.
 \[\Rightarrow \delta^\pm_{\alpha} \text{ induce distances } \delta^\pm_{\alpha} L \text{ on the Legendrian isotopy class of } L. \]
- We define $d^L_\alpha := \max\{\delta^+_\alpha L, \delta^-_\alpha L, 0\}$.
- For compact L, L is **strongly orderable** if there does not exist a positive loop of Legendrians starting at L.
Legendrian submanifolds

$L^n \subseteq M^{2n+1}$ is \textit{Legendrian} if $TL \subseteq \xi$.

- Isotopies of Legendrian submanifolds are induced by ambient contact isotopies.
 $\Rightarrow \delta_{\alpha}^\pm$ induce distances δ_{α}^\pm,L on the Legendrian isotopy class of L.
- We define $d_{\alpha}^L := \max\{\delta_{\alpha}^+,L, \delta_{\alpha}^-,L, 0\}$.
- For compact L, L is \textit{strongly orderable} if there does not exist a positive loop of Legendrians starting at L.

Legendrian submanifolds

$L^n \subseteq M^{2n+1}$ is **Legendrian** if $TL \subseteq \xi$.

- Isotopies of Legendrian submanifolds are induced by ambient contact isotopies.
 - $\Rightarrow \delta^\pm$ induce distances $\delta^+;^L, \delta^-;^L$ on the Legendrian isotopy class of L.
- We define $d^L_L := \max\{\delta^+_L, \delta^-_L, 0\}$.
- For compact L, L is **strongly orderable** if there does not exist a positive loop of Legendrians starting at L.
Main result for Legendrians

THEOREM (N., 2023)

\(d^L_\alpha\) is a right-invariant and left-natural pseudo-metric, such that

- if \(L\) is connected, \(d^L_\alpha\) is either non-degenerate or vanishes identically,
- if \(L\) is compact and connected, \(L\) is strongly orderable if and only if \(d^L_\alpha\) is non-degenerate,
- \(O^L_\ll = O_{d^L_\alpha}\) for compact \(L\),
- \(d^L_\alpha \leq d_{SCH}\).
Universal covers

Remark

There are analogous results on the universal covers of $\text{Cont}_0(M, \xi)$ and Legendrian isotopy classes, if we replace positive loop by contractible positive loop and non-degenerate by the distance of two elements is positive if the underlying contactomorphisms/Legendrians are different.
Relation to the Reeb flow

PROPOSITION

If \((M, \xi)\) is strongly orderable,

\[
\delta_{\alpha}^{\pm}(\phi_0, \phi_t^\alpha \phi_1) = \delta_{\alpha}^{\pm}(\phi_0, \phi_1) \pm t.
\] (8)

If \(L\) is strongly orderable,

\[
\delta_{\alpha}^{\pm, L}(L_0, \phi_t^\alpha (L_1)) = \delta_{\alpha}^{\pm, L}(L_0, L_1) \pm t.
\] (9)

REMARK

For \(\tau_\alpha\), this was first shown by (Hedicke, 2021).
Relation to the Reeb flow

Proposition

If \((M, \xi)\) is strongly orderable,

\[
\delta_{\alpha}^{\pm}(\phi_0, \phi_t^\alpha \phi_1) = \delta_{\alpha}^{\pm}(\phi_0, \phi_1) \pm t. \tag{8}
\]

If \(L\) is strongly orderable,

\[
\delta_{\alpha}^{\pm,L}(L_0, \phi_t^\alpha (L_1)) = \delta_{\alpha}^{\pm,L}(L_0, L_1) \pm t. \tag{9}
\]

Remark

For \(\tau_\alpha\), this was first shown by (Hedicke, 2021).
Relation to the Reeb flow

Proposition

If (M, ξ) is strongly orderable,

$$
\delta^{\pm}_{\alpha}(\phi_0, \phi_t^{\alpha} \phi_1) = \delta^{\pm}_{\alpha}(\phi_0, \phi_1) \pm t.
$$ \hfill (8)

If L is strongly orderable,

$$
\delta^{\pm,L}_{\alpha}(L_0, \phi_t^{\alpha}(L_1)) = \delta^{\pm,L}_{\alpha}(L_0, L_1) \pm t.
$$ \hfill (9)

Remark

For τ_{α}, this was first shown by (Hedicke, 2021).
Relation to the Reeb flow

Remark

- \((M, \xi)\) is strongly orderable if and only if \(d_{SH}(Id_M, \phi_t^\alpha) = |t|\).
- \(L\) is strongly orderable if and only if \(d_{SCH}(L, \phi_t^\alpha(L)) = |t|\).

Theorem (N., 2021)

If \(L\) admits a loose chart of size \(c > 0\) and the Reeb flow is complete, then \(d_{SCH}(L, \phi_t^\alpha(L)) \leq c\).

Corollary

If \(L\) admits a loose chart of size \(c > 0\) and the Reeb flow is complete, \(L\) admits a positive loop of energy less than \(2c + \varepsilon\) (\(\varepsilon > 0\)).
Relation to the Reeb flow

Remark

- (M, ξ) is strongly orderable if and only if $d_{SH}(Id_M, \phi_t^\alpha) = |t|$.
- L is strongly orderable if and only if $d_{SCH}(L, \phi_t^\alpha(L)) = |t|$.

Theorem (N., 2021)

If L admits a loose chart of size $c > 0$ and the Reeb flow is complete, then $d_{SCH}(L, \phi_t^\alpha(L)) \leq c$.

Corollary

If L admits a loose chart of size $c > 0$ and the Reeb flow is complete, L admits a positive loop of energy less than $2c + \varepsilon$ ($\varepsilon > 0$).
Relation to the Reeb flow

Remark

- (M, ξ) is strongly orderable if and only if $d_{SH}(Id_M, \phi_t^\alpha) = |t|$.
- L is strongly orderable if and only if $d_{SCH}(L, \phi_t^\alpha(L)) = |t|$.

Theorem (N., 2021)

If L admits a loose chart of size $c > 0$ and the Reeb flow is complete, then $d_{SCH}(L, \phi_t^\alpha(L)) \leq c$.

Corollary

If L admits a loose chart of size $c > 0$ and the Reeb flow is complete, L admits a positive loop of energy less than $2c + \varepsilon$ ($\varepsilon > 0$).
Relation to the Reeb flow

Remark

- \((M, \xi)\) is strongly orderable if and only if \(d_{SH}(Id_M, \phi_t^\alpha) = |t|\).
- \(L\) is strongly orderable if and only if \(d_{SCH}(L, \phi_t^\alpha(L)) = |t|\).

Theorem (N., 2021)

If \(L\) admits a loose chart of size \(c > 0\) and the Reeb flow is complete, then \(d_{SCH}(L, \phi_t^\alpha(L)) \leq c\).

Corollary

If \(L\) admits a loose chart of size \(c > 0\) and the Reeb flow is complete, \(L\) admits a positive loop of energy less than \(2c + \varepsilon\) (\(\varepsilon > 0\)).
Spectrality

Remark

In the case that M is closed, or that L is closed and the Reeb flow is complete, the two main results were independently proven by (Allais-Arlove, 2023).

They also showed that $\pm \delta^\pm_{\alpha} (L_0, L_1)$ takes values in the spectrum of actions of Reeb chords from L_0 to L_1.
Thank you!