A metric on the contactomorphism group of an orderable contact manifold

Lukas Nakamura October 30, 2023

UNIVERSITET

Let (M^{2n+1}, α) be a connected strict contact manifold, i.e. α is a 1-form satisfying $\alpha \wedge (d\alpha)^n \neq 0$.

 $\operatorname{Cont}_0(M,\xi) \subseteq \operatorname{Diff}(M)$ denotes the identity component of the group of compactly supported contactomorphisms ϕ on (M,ξ) , i.e. $\phi_*\xi = \xi$, where $\xi := \ker \alpha$.

Given a contact isotopy ϕ_t , we can associate to it its *Hamiltonian* $H_t = \alpha(\partial_t \phi_t) : M \to \mathbb{R}.$

Conversely, given a time-dependent function $H_t : M \to \mathbb{R}$, there exists a unique contact isotopy ϕ_t^H starting at the identity with Hamiltonian H_t .

Let (M^{2n+1}, α) be a connected strict contact manifold, i.e. α is a 1-form satisfying $\alpha \wedge (d\alpha)^n \neq 0$.

 $\operatorname{Cont}_0(M,\xi) \subseteq \operatorname{Diff}(M)$ denotes the identity component of the group of compactly supported contactomorphisms ϕ on (M,ξ) , i.e. $\phi_*\xi = \xi$, where $\xi := \ker \alpha$.

Given a contact isotopy ϕ_t , we can associate to it its *Hamiltonian* $H_t = \alpha(\partial_t \phi_t) : M \to \mathbb{R}.$

Conversely, given a time-dependent function $H_t : M \to \mathbb{R}$, there exists a unique contact isotopy ϕ_t^H starting at the identity with Hamiltonian H_t .

Let (M^{2n+1}, α) be a connected strict contact manifold, i.e. α is a 1-form satisfying $\alpha \wedge (d\alpha)^n \neq 0$.

 $\operatorname{Cont}_0(M,\xi) \subseteq \operatorname{Diff}(M)$ denotes the identity component of the group of compactly supported contactomorphisms ϕ on (M,ξ) , i.e. $\phi_*\xi = \xi$, where $\xi := \ker \alpha$.

Given a contact isotopy ϕ_t , we can associate to it its *Hamiltonian* $H_t = \alpha(\partial_t \phi_t) : M \to \mathbb{R}.$

Conversely, given a time-dependent function $H_t : M \to \mathbb{R}$, there exists a unique contact isotopy ϕ_t^H starting at the identity with Hamiltonian H_t .

Let (M^{2n+1}, α) be a connected strict contact manifold, i.e. α is a 1-form satisfying $\alpha \wedge (d\alpha)^n \neq 0$.

 $\operatorname{Cont}_0(M,\xi) \subseteq \operatorname{Diff}(M)$ denotes the identity component of the group of compactly supported contactomorphisms ϕ on (M,ξ) , i.e. $\phi_*\xi = \xi$, where $\xi := \ker \alpha$.

Given a contact isotopy ϕ_t , we can associate to it its *Hamiltonian* $H_t = \alpha(\partial_t \phi_t) : M \to \mathbb{R}.$

Conversely, given a time-dependent function $H_t : M \to \mathbb{R}$, there exists a unique contact isotopy ϕ_t^H starting at the identity with Hamiltonian H_t .

Let (M^{2n+1}, α) be a connected strict contact manifold, i.e. α is a 1-form satisfying $\alpha \wedge (d\alpha)^n \neq 0$.

 $\operatorname{Cont}_0(M,\xi) \subseteq \operatorname{Diff}(M)$ denotes the identity component of the group of compactly supported contactomorphisms ϕ on (M,ξ) , i.e. $\phi_*\xi = \xi$, where $\xi := \ker \alpha$.

Given a contact isotopy ϕ_t , we can associate to it its *Hamiltonian* $H_t = \alpha(\partial_t \phi_t) : M \to \mathbb{R}.$

Conversely, given a time-dependent function $H_t : M \to \mathbb{R}$, there exists a unique contact isotopy ϕ_t^H starting at the identity with Hamiltonian H_t .

If $H_t \ge 0$ (resp. $H_t > 0$), then ϕ_t^H is called *non-negative* (resp. *positive*).

We write $\phi_0 \leq \phi_1$ (resp. $\phi_0 \ll \phi_1$) if there exists a non-negative (resp. positive) contact isotopy from ϕ_0 to ϕ_1 .

 (M,ξ) is strongly orderable if \leq defines a partial order on $Cont_0(M,\xi)$.

LEMMA (ELIASHBERG-POLTEROVICH,2000) If *M* is compact, (M, ξ) is strongly orderable if and only if there does not exists a positive loop of contactomorphisms.

Positive paths and orderability

If $H_t \ge 0$ (resp. $H_t > 0$), then ϕ_t^H is called *non-negative* (resp. *positive*).

We write $\phi_0 \leq \phi_1$ (resp. $\phi_0 \ll \phi_1$) if there exists a non-negative (resp. positive) contact isotopy from ϕ_0 to ϕ_1 .

 (M,ξ) is strongly orderable if \leq defines a partial order on $Cont_0(M,\xi)$.

LEMMA (ELIASHBERG-POLTEROVICH,2000) If *M* is compact, (M, ξ) is strongly orderable if and only if there does not exists a positive loop of contactomorphisms.

Positive paths and orderability

If $H_t \ge 0$ (resp. $H_t > 0$), then ϕ_t^H is called *non-negative* (resp. *positive*).

We write $\phi_0 \leq \phi_1$ (resp. $\phi_0 \ll \phi_1$) if there exists a non-negative (resp. positive) contact isotopy from ϕ_0 to ϕ_1 .

 (M,ξ) is *strongly orderable* if \leq defines a partial order on Cont₀ (M,ξ) .

LEMMA (ELIASHBERG-POLTEROVICH,2000) If *M* is compact, (M, ξ) is strongly orderable if and only if there does not exists a positive loop of contactomorphisms.

Positive paths and orderability

If $H_t \ge 0$ (resp. $H_t > 0$), then ϕ_t^H is called *non-negative* (resp. *positive*).

We write $\phi_0 \leq \phi_1$ (resp. $\phi_0 \ll \phi_1$) if there exists a non-negative (resp. positive) contact isotopy from ϕ_0 to ϕ_1 .

 (M,ξ) is *strongly orderable* if \leq defines a partial order on Cont₀ (M,ξ) .

LEMMA (ELIASHBERG-POLTEROVICH, 2000)

If *M* is compact, (M, ξ) is strongly orderable if and only if there does not exists a positive loop of contactomorphisms.

If M is compact, we define

$$I_{\phi_0,\phi_1}^{\ll} \coloneqq \{\phi \in \operatorname{Cont}_0(M,\xi) | \phi_0 \ll \phi \ll \phi_1\}.$$

- These intervals generate a topology \mathcal{O}_{\ll} , called *interval topology*.
- If (M, ξ) is not strongly orderable, $\mathcal{O}_{\ll} = \{\emptyset, \operatorname{Cont}_0(M, \xi)\}.$

QUESTION (CHERNOV-NEMIROVSKI, 2020) If (M, ξ) is strongly orderable, is \mathcal{O}_{\ll} Hausdorff?

If *M* is compact, we define

$$I_{\phi_0,\phi_1}^{\ll} \coloneqq \{\phi \in \operatorname{Cont}_0(M,\xi) | \phi_0 \ll \phi \ll \phi_1\}$$

- These intervals generate a topology \mathcal{O}_{\ll} , called *interval topology*.
- If (M, ξ) is not strongly orderable, $\mathcal{O}_{\ll} = \{\emptyset, \operatorname{Cont}_0(M, \xi)\}.$

QUESTION (CHERNOV-NEMIROVSKI, 2020) If (M, ξ) is strongly orderable, is \mathcal{O}_{\ll} Hausdorff?

(1)

If *M* is compact, we define

$$I_{\phi_0,\phi_1}^{\ll} \coloneqq \{\phi \in \operatorname{Cont}_0(M,\xi) | \phi_0 \ll \phi \ll \phi_1\}$$

- These intervals generate a topology \mathcal{O}_{\ll} , called *interval topology*.
- If (M, ξ) is not strongly orderable, O_≪ = {∅, Cont₀(M, ξ)}.

QUESTION (CHERNOV-NEMIROVSKI, 2020) If (M,ξ) is strongly orderable, is \mathcal{O}_{\ll} Hausdorff?

(1)

If *M* is compact, we define

$$I_{\phi_0,\phi_1}^{\ll} \coloneqq \{\phi \in \operatorname{Cont}_0(M,\xi) | \phi_0 \ll \phi \ll \phi_1\}$$

- These intervals generate a topology \mathcal{O}_{\ll} , called *interval topology*.
- If (M, ξ) is not strongly orderable, O_≪ = {∅, Cont₀(M, ξ)}.

QUESTION (CHERNOV-NEMIROVSKI, 2020) If (M, ξ) is strongly orderable, is \mathcal{O}_{\ll} Hausdorff?

(1)

For $H_t : M \to \mathbb{R}$, define

$$\|\phi_t^H\|_{\mathcal{S}H}^{\alpha} \coloneqq \|H_t\| \coloneqq \int_0^1 \max_{M} |H_t| dt.$$

For $\phi_0, \phi_1 \in Cont_0(M, \xi)$, define their *Shelukhin-Hofer distance* as

$$d_{SH}^{\alpha}(\phi_0,\phi_1) := \inf_{H_t} \{ \|\phi_t^H\|_{\alpha} | \phi_1^H \phi_0 = \phi_1 \}.$$
(3)

THEOREM (SHELUKHIN, 2017)

 d_{SH}^{α} is a non-degenerate, right-invariant, and left-natural metric (i.e. $d_{SH}^{\alpha}(\psi\phi_0,\psi\phi_1) = d_{SH}^{\psi^*\alpha}(\phi_0,\phi_1)$).

(2)

For $H_t : M \to \mathbb{R}$, define

$$\|\phi_t^H\|_{\mathcal{S}H}^{\alpha} \coloneqq \|H_t\| \coloneqq \int_0^1 \max_M |H_t| dt.$$

For $\phi_0, \phi_1 \in \text{Cont}_0(M, \xi)$, define their *Shelukhin-Hofer distance* as

$$d_{SH}^{\alpha}(\phi_0,\phi_1) := \inf_{H_t} \{ \|\phi_t^H\|_{\alpha} | \phi_1^H \phi_0 = \phi_1 \}.$$
(3)

THEOREM (SHELUKHIN, 2017)

 d_{SH}^{α} is a non-degenerate, right-invariant, and left-natural metric (i.e. $d_{SH}^{\alpha}(\psi\phi_0,\psi\phi_1) = d_{SH}^{\psi^*\alpha}(\phi_0,\phi_1)$).

(2)

For $H_t : M \to \mathbb{R}$, define

$$\|\phi_t^H\|_{\mathcal{S}H}^{\alpha} \coloneqq \|H_t\| \coloneqq \int_0^1 \max_M |H_t| dt.$$

For $\phi_0, \phi_1 \in Cont_0(M, \xi)$, define their *Shelukhin-Hofer distance* as

$$d_{SH}^{\alpha}(\phi_0,\phi_1) \coloneqq \inf_{H_t} \{ \|\phi_t^H\|_{\alpha} | \phi_1^H \phi_0 = \phi_1 \}.$$
(3)

THEOREM (SHELUKHIN, 2017)

 d^{α}_{SH} is a non-degenerate, right-invariant, and left-natural metric (i.e. $d^{\alpha}_{SH}(\psi\phi_0,\psi\phi_1) = d^{\psi^*\alpha}_{SH}(\phi_0,\phi_1)$).

(2)

For $H_t : M \to \mathbb{R}$, define

$$\|H_t\|_{\pm} \coloneqq \int_0^1 \max_M \{\pm H_t\} dt.$$

For $\phi_0, \phi_1 \in \operatorname{Cont}_0(M, \xi)$, we define

$$\delta_{\alpha}^{\pm}(\phi_{0},\phi_{1}) := \inf_{H_{t}} \{ \|H_{t}\|_{\pm} | \phi_{1}^{H} \phi_{0} = \phi_{1} \}.$$

In fact,

$$\delta_{\alpha}^{-}(\phi_{0},\phi_{1}) = \inf\{\varepsilon \in \mathbb{R} | \exists H_{t} : M \to [-\varepsilon,\infty) : \phi_{1}^{H}\phi_{0} = \phi_{1}\},\$$

$$+_{\alpha}^{+}(\phi_{0},\phi_{1}) = \delta_{\alpha}^{-}(\phi_{1},\phi_{0}) = \inf\{\varepsilon \in \mathbb{R} | \exists H_{t} : M \to (-\infty,\varepsilon] : \phi_{1}^{H}\phi_{0} = \phi_{1}\}.$$

(4)

For $H_t : M \to \mathbb{R}$, define

$$\|H_t\|_{\pm} \coloneqq \int_0^1 \max_M \{\pm H_t\} dt.$$

For $\phi_0, \phi_1 \in \operatorname{Cont}_0(M, \xi)$, we define

$$\delta_{\alpha}^{\pm}(\phi_{0},\phi_{1}) \coloneqq \inf_{H_{t}} \{ \|H_{t}\|_{\pm} | \phi_{1}^{H}\phi_{0} = \phi_{1} \}.$$
(5)

In fact,

$$\delta_{\alpha}^{-}(\phi_{0},\phi_{1}) = \inf\{\varepsilon \in \mathbb{R} | \exists H_{t} : M \to [-\varepsilon,\infty) : \phi_{1}^{H}\phi_{0} = \phi_{1}\},\$$

$$\delta_{\alpha}^{+}(\phi_{0},\phi_{1}) = \delta_{\alpha}^{-}(\phi_{1},\phi_{0}) = \inf\{\varepsilon \in \mathbb{R} | \exists H_{t} : M \to (-\infty,\varepsilon] : \phi_{1}^{H}\phi_{0} = \phi_{1}\}.$$

(4)

For $H_t : M \to \mathbb{R}$, define

$$\|H_t\|_{\pm} \coloneqq \int_0^1 \max_M \{\pm H_t\} dt.$$

For $\phi_0, \phi_1 \in \operatorname{Cont}_0(M, \xi)$, we define

$$\delta_{\alpha}^{\pm}(\phi_{0},\phi_{1}) \coloneqq \inf_{H_{t}} \{ \|H_{t}\|_{\pm} | \phi_{1}^{H}\phi_{0} = \phi_{1} \}.$$
(5)

In fact,

$$\delta_{\alpha}^{-}(\phi_{0},\phi_{1}) = \inf\{\varepsilon \in \mathbb{R} | \exists H_{t} : M \to [-\varepsilon,\infty) : \phi_{1}^{H}\phi_{0} = \phi_{1}\}, \qquad (6$$

$$\delta_{\alpha}^{+}(\phi_{0},\phi_{1}) = \delta_{\alpha}^{-}(\phi_{1},\phi_{0}) = \inf\{\varepsilon \in \mathbb{R} | \exists H_{t} : M \to (-\infty,\varepsilon] : \phi_{1}^{H}\phi_{0} = \phi_{1}\}.$$

(4)

We define

 $\boldsymbol{d}_{\alpha}(\phi_{0},\phi_{1})\coloneqq\max\{\delta_{\alpha}^{+}(\phi_{0},\phi_{1}),\delta_{\alpha}^{-}(\phi_{0},\phi_{1}),\boldsymbol{0}\}.$

Remark 0.1

- In the case that *M* is compact, δ_{α}^{\pm} and d_{α} appeared first in the PhD thesis of Arlove.
- The so-called *Lorentzian distance function* $\tau_{\alpha} = \max\{-\delta_{\alpha}^{-}, 0\}$ was introduced and studied by (Hedicke, 2021).

(7)

We define

$$d_{\alpha}(\phi_{\mathsf{0}},\phi_{\mathsf{1}}) \coloneqq \max\{\delta^+_{\alpha}(\phi_{\mathsf{0}},\phi_{\mathsf{1}}),\delta^-_{\alpha}(\phi_{\mathsf{0}},\phi_{\mathsf{1}}),\mathsf{0}\}$$

REMARK 0.1

- In the case that *M* is compact, δ_{α}^{\pm} and d_{α} appeared first in the PhD thesis of Arlove.
- The so-called *Lorentzian distance function* $\tau_{\alpha} = \max\{-\delta_{\alpha}^{-}, 0\}$ was introduced and studied by (Hedicke, 2021).

We define

$$d_{\alpha}(\phi_{\mathsf{0}},\phi_{\mathsf{1}})\coloneqq \max\{\delta^+_{\alpha}(\phi_{\mathsf{0}},\phi_{\mathsf{1}}),\delta^-_{\alpha}(\phi_{\mathsf{0}},\phi_{\mathsf{1}}),\mathsf{0}\}$$

REMARK 0.1

- In the case that *M* is compact, δ_{α}^{\pm} and d_{α} appeared first in the PhD thesis of Arlove.
- The so-called *Lorentzian distance function* τ_α = max{-δ_α⁻, 0} was introduced and studied by (Hedicke, 2021).

Main result

THEOREM (N., 2023)

 d_{α} is a right-invariant and left-natural pseudo-metric, which is either non-degenerate or vanishes identically, such that

- if *M* is compact, (M, ξ) is strongly orderable if and only if d_{α} is non-degenerate,
- $\mathcal{O}_{\ll} = \mathcal{O}_{d_{\alpha}}$ for compact *M*,
- $d_{\alpha} \leq d_{SH}$.

- Isotopies of Legendrian submanifolds are induced by ambient contact isotopies $\Rightarrow \delta_{\alpha}^{\pm}$ induce distances $\delta_{\alpha}^{\pm,L}$ on the Legendrian isotopy class of *L*.
- We define $d_{\alpha}^{L} := \max\{\delta_{\alpha}^{+,L}, \delta_{\alpha}^{-,L}, 0\}.$
- For compact *L*, *L* is *strongly orderable* if there does not exists a positive loop of Legendrians starting at *L*.

- Isotopies of Legendrian submanifolds are induced by ambient contact isotopies. $\Rightarrow \delta_{\alpha}^{\pm}$ induce distances $\delta_{\alpha}^{\pm,L}$ on the Legendrian isotopy class of *L*.
- We define $d_{\alpha}^{L} := \max\{\delta_{\alpha}^{+,L}, \delta_{\alpha}^{-,L}, 0\}.$
- For compact *L*, *L* is *strongly orderable* if there does not exists a positive loop of Legendrians starting at *L*.

- Isotopies of Legendrian submanifolds are induced by ambient contact isotopies. $\Rightarrow \delta_{\alpha}^{\pm}$ induce distances $\delta_{\alpha}^{\pm,L}$ on the Legendrian isotopy class of *L*.
- We define $d_{\alpha}^{L} := \max\{\delta_{\alpha}^{+,L}, \delta_{\alpha}^{-,L}, 0\}.$
- For compact *L*, *L* is *strongly orderable* if there does not exists a positive loop of Legendrians starting at *L*.

- Isotopies of Legendrian submanifolds are induced by ambient contact isotopies. $\Rightarrow \delta_{\alpha}^{\pm}$ induce distances $\delta_{\alpha}^{\pm,L}$ on the Legendrian isotopy class of *L*.
- We define $d_{\alpha}^{L} := \max\{\delta_{\alpha}^{+,L}, \delta_{\alpha}^{-,L}, \mathbf{0}\}.$
- For compact *L*, *L* is *strongly orderable* if there does not exists a positive loop of Legendrians starting at *L*.

- Isotopies of Legendrian submanifolds are induced by ambient contact isotopies. $\Rightarrow \delta_{\alpha}^{\pm}$ induce distances $\delta_{\alpha}^{\pm,L}$ on the Legendrian isotopy class of *L*.
- We define $d_{\alpha}^{L} := \max\{\delta_{\alpha}^{+,L}, \delta_{\alpha}^{-,L}, \mathbf{0}\}.$
- For compact *L*, *L* is *strongly orderable* if there does not exists a positive loop of Legendrians starting at *L*.

Main result for Legendrians

THEOREM (N., 2023)

 d_{α}^{L} is a right-invariant and left-natural pseudo-metric, such that

- if L is connected, d_{α}^{L} is either non-degenerate or vanishes identically,
- if L is compact and connected, L is strongly orderable if and only if d^L_α is non-degenerate,
- $\mathcal{O}_{\ll}^{L} = \mathcal{O}_{d_{\alpha}^{L}}$ for compact *L*,
- $d_{\alpha}^{L} \leq d_{SCH}$.

Remark

There are analogous results on the universal covers of $\text{Cont}_0(M, \xi)$ and Legendrian isotopy classes, if we replace *positive loop* by *contractible positive loop* and *non-degenerate* by the distance of two elements is positive if the underlying *contactomorphisms/Legendrians are different*.

PROPOSITION If (M, ξ) is strongly orderable,

$$\delta^{\pm}_{\alpha}(\phi_0,\phi^{\alpha}_t\phi_1)=\delta^{\pm}_{\alpha}(\phi_0,\phi_1)\pm t.$$

If *L* is strongly orderable,

$$\delta_{\alpha}^{\pm,L}(L_0,\phi_t^{\alpha}(L_1)) = \delta_{\alpha}^{\pm,L}(L_0,L_1) \pm t.$$
(9)

Remark

For τ_{α} , this was first shown by (Hedicke, 2021).

(8)

PROPOSITION If (M, ξ) is strongly orderable,

$$\delta^{\pm}_{\alpha}(\phi_0,\phi^{\alpha}_t\phi_1)=\delta^{\pm}_{\alpha}(\phi_0,\phi_1)\pm t.$$

If *L* is strongly orderable,

$$\delta_{\alpha}^{\pm,L}(L_0,\phi_t^{\alpha}(L_1)) = \delta_{\alpha}^{\pm,L}(L_0,L_1) \pm t.$$
(9)

Remark

For τ_{α} , this was first shown by (Hedicke, 2021).

(8)

PROPOSITION If (M, ξ) is strongly orderable,

$$\delta^{\pm}_{\alpha}(\phi_0,\phi^{\alpha}_t\phi_1)=\delta^{\pm}_{\alpha}(\phi_0,\phi_1)\pm t.$$

If *L* is strongly orderable,

$$\delta_{\alpha}^{\pm,L}(L_0,\phi_t^{\alpha}(L_1)) = \delta_{\alpha}^{\pm,L}(L_0,L_1) \pm t.$$
(9)

Remark

For τ_{α} , this was first shown by (Hedicke, 2021).

(8)

Remark

- (M, ξ) is strongly orderable if and only if $d_{SH}(Id_M, \phi_t^{\alpha}) = |t|$.
- *L* is strongly orderable if and only if $d_{SCH}(L, \phi_t^{\alpha}(L)) = |t|$.

THEOREM (N.,2021) If *L* admits a loose chart of size c > 0 and the Reeb flow is complete, then $d_{SCH}(L, \phi_t^{\alpha}(L)) \leq c.$

COROLLARY

Remark

- (M, ξ) is strongly orderable if and only if $d_{SH}(Id_M, \phi_t^{\alpha}) = |t|$.
- *L* is strongly orderable if and only if $d_{SCH}(L, \phi_t^{\alpha}(L)) = |t|$.

THEOREM (N.,2021) If *L* admits a loose chart of size c > 0 and the Reeb flow is complete, then $d_{SCH}(L, \phi_t^{\alpha}(L)) \leq c$.

COROLLARY

Remark

- (M, ξ) is strongly orderable if and only if $d_{SH}(Id_M, \phi_t^{\alpha}) = |t|$.
- *L* is strongly orderable if and only if $d_{SCH}(L, \phi_t^{\alpha}(L)) = |t|$.

THEOREM (N.,2021) If *L* admits a loose chart of size c > 0 and the Reeb flow is complete, then $d_{SCH}(L, \phi_t^{\alpha}(L)) \leq c.$

COROLLARY

Remark

- (M, ξ) is strongly orderable if and only if $d_{SH}(Id_M, \phi_t^{\alpha}) = |t|$.
- *L* is strongly orderable if and only if $d_{SCH}(L, \phi_t^{\alpha}(L)) = |t|$.

THEOREM (N.,2021) If *L* admits a loose chart of size c > 0 and the Reeb flow is complete, then $d_{SCH}(L, \phi_t^{\alpha}(L)) \leq c.$

COROLLARY

Spectrality

Remark

In the case that M is closed, or that L is closed and the Reeb flow is complete, the two main results were independently proven by (Allais-Arlove,2023).

They also showed that $\pm \delta_{\alpha}^{\pm,L}(L_0, L_1)$ takes values in the spectrum of actions of Reeb chords from L_0 to L_1 .

Thank you!

