Hamiltonian fragmentation in dimension four with applications to spectral estimators

Habib Alizadeh

 UdeM

Symplectic Zoominar, 27 October 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Contents

- History
- Extension
- Fragmentation
- Hofer approximations by small supported Hamiltonians

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Application to PS-spectral estimators

History

```
Fragmentation \phi = \phi_1 \circ \cdots \circ \phi_N
```

Control on $\text{Supp}(\phi_i)$: [Banyaga 97]

Control on $\text{Supp}(\phi_i)$ and N: [Banyaga 97] for C^1 -small Hamiltonians

Control on ϕ_i : [Fathi 80] for \mathbb{D}^2

Control on *N* and ϕ_i : [Le Roux 09] for \mathbb{D}^2 for C^0 -small Hamiltonians

Control on *N* and ϕ_i : [EPP 09] for all surfaces and for *C*⁰-small Hamiltonians (Suggested to use theory of pseudo-holomorphic curves)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Control on *N* and ϕ_i :[A. 23] for $\mathbb{D}^2 \times \mathbb{D}^2$ for C^0 -small Hamiltonians

Pseudo-holomorphic curves

Theorem:([MS12]) Let (X, ω) be compact connected 4-dimensional satisfying:

1. No symp-emb 2-sphere with self-intersection -1.

2. $A, B \in H_2(X, \mathbb{Z})$ satisfying A.B = 1, A.A = 0, B.B = 0.

3. *A*, *B* are represented by symp-emb 2-spheres.

Then: if $U, V \subset S^2$ open disks, $\iota : U \times S^2 \cup S^2 \times V \rightarrow X$ a given embedding satisfying:

$$\iota^*\omega = a\pi_1^*\sigma + b\pi_2^*\sigma, \quad a = \int_A \omega, \ b = \int_B \omega$$

$$\iota_*([S^2 \times \{w\}]) = A, \ \iota_*([\{z\} \times S^2]) = B$$

then, for any closed subsets $D \subset U$ and $C \subset V$ there is a symp-diff $\psi: S^2 \times S^2 \to X$ extending ι on $D \times S^2 \cup S^2 \times C$.

Extension

Lemma: $X = S^2(a) \times S^2(b)$ and $M = \mathbb{D}^2(\frac{a}{2}) \times \mathbb{D}^2(\frac{b}{2})$. Let $g \in \operatorname{Ham}_M(X)$ that is C^0 -small enough. Then, there exist a $\psi \in \operatorname{Ham}(X)$ compactly supported in $\mathbb{D}^2(\frac{a}{2}) \times D_3$ that restricts to g on $\mathbb{D}^2(\frac{a}{2}) \times D_1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fragmentation

Lemma: Let $M = \mathbb{D}^2(\frac{a}{2}) \times \mathbb{D}^2(\frac{b}{2})$. Then, $\forall \epsilon > 0$, $\exists \delta > 0$ and N > 0 s.t. for every $g \in \operatorname{Ham}_c(M)$ with $d_{C^0}(g, id) < \delta$ there are $g_i \in \operatorname{Ham}(M)$, $i = 1, \ldots, N$ each supported in a (union of disks) disk with area $< \epsilon$ and $g = g_1 \circ \cdots \circ g_N$.

Hofer approximation by small supports

Theorem (A.): Let $X := S^2(a) \times S^2(b)$ and $M := \mathbb{D}^2(\frac{a}{2}) \times \mathbb{D}^2(\frac{b}{2})$, B a proper disk in $S^2(b)$. Then, $\forall \epsilon > 0, \exists \delta > 0$ s.t.: for every $g \in \operatorname{Ham}_M(X)$ with $d_{C^0}(g, id) < \delta$ there exist $\psi \in \operatorname{Ham}_{\mathbb{D}^2(\frac{a}{2}) \times B}(X)$ satisfying

$$d_H(g,\psi) < \epsilon.$$

Proof:

$$egin{aligned} g &= g_1 \circ \cdots \circ g_N, \ g &= (g_{i_1} \ldots g_{i_k}) \circ \cdots \circ (g_{i_{(N-1)/k+1}} \ldots g_{i_{N-1}}) \circ g_N \ g &= f_1 \circ \cdots \circ f_{(N-1)/k} \circ f_N \end{aligned}$$

$$\psi = (h_1 f_1 h_1^{-1}) \circ \cdots \circ (h_{(N-1)/k} f_{(N-1)/k} h_{(N-1)/k}^{-1}) \circ (h_N f_N h_N^{-1})$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Application: PS-spectral estimators

Theorem (PS21): Let $M_a = S^2(1) \times S^2(a)$. There exists a map $c_{k,B} : C^{\infty}(M_a \times [0,1] \to \mathbb{R})$ satisfying:

- Hofer-Lipschitz
- Monotonicity
- Normalization
- Lagrangian control
- Independence of Hamiltonian
- Sub-additivity
- Calabi away from Lagrangians
- Controlled additivity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. Hofer-Lipschitz: $|c_{k,B}(H) - c_{k,B}(G)| \leq \int_0^1 \max |H_t - G_t| dt$. 2. Lagrangian-control: If $H_t(.)_{|_{L_{k,B}^j}} \equiv c_j(t)$ then,

$$c_{k,B}(H) = \frac{1}{k} \sum_{0 \leq j < k} \int_0^1 c_j(t) dt.$$

- 3. Independence of Hamiltonian: $c_{k,B}(H)$ only depends on $[{\{\widetilde{\phi}_{H}^{t}\}}]$ if H is normalized.
- 4. Calabi property: If $supp(H) \subset U \times [0,1]$ where $U \cap L_{k,B} = \emptyset$, then,

$$c_{k,B}(H) = -rac{1}{\mathrm{vol}(M)}\mathrm{Cal}(H).$$

5. Controlled additivity: If $supp(H) \subset U \times [0, 1]$ where $U \cap L_{k,B} = \emptyset$, then, for all G:

$$c_{k,B}(\widetilde{\phi_H}\widetilde{\phi_G}) = c_{k,B}(\widetilde{\phi_H}) + c_{k,B}(\widetilde{\phi_G}).$$

C^0 -continuity of $\tau_{k,k',B,B'}$

Theorem 1 (A.23): The invariant $\tau_{k,k',B,B'}$: Ham $(\mathbb{D}^2(c) \times \mathbb{D}^2(a)) \to \mathbb{R}$ defined by $c_{k,B} - c_{k',B'}$ is uniformly C^0 -continuous for 0 < c < 1 and small enough a > 0.

Theorem 2 (A.23): The complement of a Hofer ball in $\operatorname{Ham}_{c}(\mathbb{D}^{2}(c) \times \mathbb{D}^{2}(a))$ contains a C^{0} -open subset for all 0 < c < 1 and rational 0 < a < 1.

Theorem 3 (A.23): The group $\operatorname{Ham}_{c}(\mathbb{D}^{2}(c) \times \mathbb{D}^{2}(a))$ equipped with the Hofer distance admits an isometric embedding of $(C_{c}^{\infty}(0, b), d_{C^{0}})$ for parameters 0 < a, c < 1 satisfying

$$b < \frac{1}{6}(1-a), \ \frac{1}{2} + b < c < 1.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $\tau_{k,k',B,B'} \mathrm{hank}$ you