Hamiltonian fragmentation in dimension four with applications to spectral estimators

Habib Alizadeh

UdeM

Symplectic Zoominar, 27 October 2023

Contents

- History
- Extension
- Fragmentation
- Hofer approximations by small supported Hamiltonians
- Application to PS-spectral estimators

History

$$
\text { Fragmentation } \phi=\phi_{1} \circ \cdots \circ \phi_{N}
$$

Control on $\operatorname{Supp}\left(\phi_{i}\right)$: [Banyaga 97]
Control on $\operatorname{Supp}\left(\phi_{i}\right)$ and N : [Banyaga 97] for C^{1}-small Hamiltonians
Control on ϕ_{i} : [Fathi 80] for \mathbb{D}^{2}
Control on N and ϕ_{i} : [Le Roux 09] for \mathbb{D}^{2} for C^{0}-small Hamiltonians

Control on N and ϕ_{i} : [EPP 09] for all surfaces and for C^{0}-small Hamiltonians (Suggested to use theory of pseudo-holomorphic curves)
Control on N and $\phi_{i}:[\mathrm{A} .23]$ for $\mathbb{D}^{2} \times \mathbb{D}^{2}$ for C^{0}-small Hamiltonians

Pseudo-holomorphic curves

Theorem:([MS12]) Let (X, ω) be compact connected 4-dimensional satisfying:

1. No symp-emb 2-sphere with self-intersection -1 .
2. $A, B \in H_{2}(X, \mathbb{Z})$ satisfying $A \cdot B=1, A \cdot A=0, B \cdot B=0$.
3. A, B are represented by symp-emb 2 -spheres.

Then: if $U, V \subset S^{2}$ open disks, $\iota: U \times S^{2} \cup S^{2} \times V \rightarrow X$ a given embedding satisfying:

$$
\begin{aligned}
& \iota^{*} \omega=a \pi_{1}^{*} \sigma+b \pi_{2}^{*} \sigma, \quad a=\int_{A} \omega, b=\int_{B} \omega \\
& \iota_{*}\left(\left[S^{2} \times\{w\}\right]\right)=A, \quad \iota_{*}\left(\left[\{z\} \times S^{2}\right]\right)=B
\end{aligned}
$$

then, for any closed subsets $D \subset U$ and $C \subset V$ there is a symp-diff $\psi: S^{2} \times S^{2} \rightarrow X$ extending ι on $D \times S^{2} \cup S^{2} \times C$.

Extension

Lemma: $X=S^{2}(a) \times S^{2}(b)$ and $M=\mathbb{D}^{2}\left(\frac{a}{2}\right) \times \mathbb{D}^{2}\left(\frac{b}{2}\right)$. Let $g \in \operatorname{Ham}_{M}(X)$ that is C^{0}-small enough. Then, there exist a $\psi \in \operatorname{Ham}(X)$ compactly supported in $\mathbb{D}^{2}\left(\frac{a}{2}\right) \times D_{3}$ that restricts to g on $\mathbb{D}^{2}\left(\frac{3}{2}\right) \times D_{1}$.

Fragmentation

Lemma: Let $M=\mathbb{D}^{2}\left(\frac{a}{2}\right) \times \mathbb{D}^{2}\left(\frac{b}{2}\right)$. Then, $\forall \epsilon>0, \exists \delta>0$ and $N>0$ s.t. for every $g \in \operatorname{Ham}_{c}(M)$ with $d_{C^{0}}(g, i d)<\delta$ there are $g_{i} \in \operatorname{Ham}(M), i=1, \ldots, N$ each supported in a (union of disks) disk with area $<\epsilon$ and $g=g_{1} \circ \cdots \circ g_{N}$.

Hofer approximation by small supports

Theorem (A.): Let $X:=S^{2}(a) \times S^{2}(b)$ and $M:=\mathbb{D}^{2}\left(\frac{a}{2}\right) \times \mathbb{D}^{2}\left(\frac{b}{2}\right)$, B a proper disk in $S^{2}(b)$. Then, $\forall \epsilon>0, \exists \delta>0$ s.t.: for every $g \in \operatorname{Ham}_{M}(X)$ with $d_{C^{0}}(g, i d)<\delta$ there exist $\psi \in \operatorname{Ham}_{\mathbb{D}^{2}\left(\frac{a}{2}\right) \times B}(X)$ satisfying

$$
d_{H}(g, \psi)<\epsilon .
$$

Proof:

$$
\begin{aligned}
& g=g_{1} \circ \cdots \circ g_{N}, \\
& g=\left(g_{i_{1}} \ldots g_{i_{k}}\right) \circ \cdots \circ\left(g_{i_{(N-1) / k+1}} \ldots g_{i_{N-1}}\right) \circ g_{N} \\
& g=f_{1} \circ \cdots \circ f_{(N-1) / k} \circ f_{N}
\end{aligned}
$$

$$
\psi=\left(h_{1} f_{1} h_{1}^{-1}\right) \circ \cdots \circ\left(h_{(N-1) / k} f_{(N-1) / k} h_{(N-1) / k}^{-1}\right) \circ\left(h_{N} f_{N} h_{N}^{-1}\right)
$$

Application: PS-spectral estimators

Theorem (PS21): Let $M_{a}=S^{2}(1) \times S^{2}(a)$. There exists a map $c_{k, B}: C^{\infty}\left(M_{a} \times[0,1] \rightarrow \mathbb{R}\right)$ satisfying:

- Hofer-Lipschitz
- Monotonicity
- Normalization
- Lagrangian control
- Independence of Hamiltonian
- Sub-additivity
- Calabi away from Lagrangians
- Controlled additivity

1. Hofer-Lipschitz: $\left|c_{k, B}(H)-c_{k, B}(G)\right| \leq \int_{0}^{1} \max \left|H_{t}-G_{t}\right| d t$.
2. Lagrangian-control: If $\left.H_{t}()\right|_{.L_{k, B}^{j}} \equiv c_{j}(t)$ then,

$$
c_{k, B}(H)=\frac{1}{k} \sum_{0 \leq j<k} \int_{0}^{1} c_{j}(t) d t
$$

3. Independence of Hamiltonian: $c_{k, B}(H)$ only depends on [$\left.\left\{\widetilde{\phi}_{H}^{t}\right\}\right]$ if H is normalized.
4. Calabi property: If $\operatorname{supp}(H) \subset U \times[0,1]$ where $U \cap L_{k, B}=\emptyset$, then,

$$
c_{k, B}(H)=-\frac{1}{\operatorname{vol}(M)} \operatorname{Cal}(H)
$$

5. Controlled additivity: If $\operatorname{supp}(H) \subset U \times[0,1]$ where $U \cap L_{k, B}=\emptyset$, then, for all G :

$$
c_{k, B}\left(\widetilde{\phi_{H}} \widetilde{\phi_{G}}\right)=c_{k, B}\left(\widetilde{\phi_{H}}\right)+c_{k, B}\left(\widetilde{\phi_{G}}\right)
$$

C^{0}-continuity of $\tau_{k, k^{\prime}, B, B^{\prime}}$

Theorem 1 (A.23): The invariant
$\tau_{k, k^{\prime}, B, B^{\prime}}: \operatorname{Ham}\left(\mathbb{D}^{2}(c) \times \mathbb{D}^{2}(a)\right) \rightarrow \mathbb{R}$ defined by $c_{k, B}-c_{k^{\prime}, B^{\prime}}$ is uniformly C^{0}-continuous for $0<c<1$ and small enough $a>0$.

Theorem 2 (A.23): The complement of a Hofer ball in $\operatorname{Ham}_{c}\left(\mathbb{D}^{2}(c) \times \mathbb{D}^{2}(a)\right)$ contains a C^{0}-open subset for all $0<c<1$ and rational $0<a<1$.

Theorem 3 (A.23): The group $\operatorname{Ham}_{c}\left(\mathbb{D}^{2}(c) \times \mathbb{D}^{2}(a)\right)$ equipped with the Hofer distance admits an isometric embedding of $\left(C_{c}^{\infty}(0, b), d_{C^{0}}\right)$ for parameters $0<a, c<1$ satisfying

$$
b<\frac{1}{6}(1-a), \frac{1}{2}+b<c<1
$$

$\tau_{k, k^{\prime}, B, B^{\prime}}$ hank you

