Subleading asymptotics of symplectic Weyl laws

Oliver Edtmair

UC Berkeley

3 November 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

Weyl laws

What can be said about the subleading asymptotics?

- Symplectic packing
 - How much volume can be covered by disjoint symplectic images of balls?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Algebraic structure of transformation groups
 - What are the normal subgroups of Ham(M)?

Classical Weyl law

 (M^n, g) compact Riemannian manifold, possibly with boundary $0 \le \lambda_1 \le \lambda_2 \le \lambda_3 \le \cdots < \infty$ eigenvalues of $-\Delta_g$ $N(\lambda) :=$ number of eigenvalues less than λ

Theorem (Weyl 1911) $N(\lambda) = (2\pi)^{-n}\omega_n \operatorname{vol}(M)\lambda^{n/2} + E(\lambda)$ with $E(\lambda) = o(\lambda^{n/2})$

Theorem (Levitan, Avakumovic, Seeley 50s) $E(\lambda) = O(\lambda^{(n-1)/2})$

Remark: this is sharp for the round sphere

Theorem (Duistermaat-Guillemin, Ivrii 70s)

If the set of closed geodesics has measure zero, then $E(\lambda) = -\frac{1}{4}(2\pi)^{1-n}\omega_{n-1}\operatorname{vol}(\partial X)\lambda^{(n-1)/2} + o(\lambda^{(n-1)/2})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remark: fails for round sphere

Embedded contact homology (ECH) Weyl law

 $X \subset \mathbb{R}^4$ star-shaped domain \rightsquigarrow ECH capacities

$$0 < c_1(X) \leq c_2(X) \leq \cdots < \infty$$

Spectrality property: For every k, we can find finitely many closed orbits $\gamma_i \subset \partial X$ such that $c_k(X) = \sum_i \mathcal{A}(\gamma_i)$

Theorem (Hutchings '10)

For all star-shaped domains $X \subset \mathbb{R}^4$ we have

$$c_k(X) = 2(\operatorname{vol}(X)k)^{1/2} + o(k^{1/2}) \qquad (k \to \infty).$$

Cristofaro-Gardiner-Hutchings-Ramos ('12): More general Weyl law for arbitrary contact 3-manifolds **Application:** C^{∞} closing lemma for 3D Reeb flows (Irie '15)

Periodic Floer homology (PFH) Weyl law

Closed surface (Σ, ω) of area A, Hamiltonian $H : \mathbb{R}/\mathbb{Z} \times \Sigma \to \mathbb{R}$ \rightsquigarrow PFH spectral invariants $c_1(H), c_2(H), \dots \in \mathbb{R}$

Theorem (CG-Prasad-Zhang, E.-Hutchings 2021) For all Hamiltonians *H* we have

$$c_d(H) = dA^{-1} \int_{\mathbb{R}/\mathbb{Z} imes \Sigma} H dt \wedge \omega + o(d) \qquad (d o \infty).$$

- Similar statement for area preserving diffeomorphisms
- Related Weyl law for link spectral invariants (CG-Humilière-Mak-Seyfaddini-Smith, Shelukhin-Polterovich+Buhovsky)

Applications: C^{∞} closing lemma, Simplicity conjecture (CG-Humilière-Seyfaddini),...

Subleading asymptotics

For $X \subset \mathbb{R}^4$ star-shaped write $c_k(X) = 2(\operatorname{vol}(X)k)^{1/2} + e_k(X)$ Theorem (Hutchings '19) We have $e_k(X) = O(k^{1/4})$ as $k \to \infty$.

 Slightly weaker bounds for general contact 3-manifolds by CG-Savale and Sun

Question: In all known examples $e_k(X) = O(1)$. Always true?

Theorem (Hutchings '19)

If X is a strictly convex or concave toric domain then

$$\lim_{k \to \infty} e_k(X) = -\frac{1}{2} R u(X). \tag{1}$$

Counterexample: Ru(B(a)) = 2a but $\liminf_{k\to\infty} e_k(B(a)) = -3a/2$ $\limsup_{k\to\infty} e_k(B(a)) = -a/2$ **Question:** Is (1) true for generic X?

Relationship with symplectic packing

ECH Weyl law $c_k(X) = 2(\operatorname{vol}(X)k)^{1/2} + o(k^{1/2})$ Sketch of proof: **Step 1:** true for ball ("direct" computation) **Step 2:** true for disjoint unions of balls

$$c_k(\coprod_i X_i) = \max_{\sum_i k_i = k} \sum_i c_{k_i}(X_i)$$

Step 3: Let X be star-shaped, $\varepsilon > 0$ arbitrary. There exists disjoint union $B = \coprod_i B_i$ of finitely many balls such that

$$\blacktriangleright B \stackrel{s}{\hookrightarrow} X$$

►
$$\operatorname{vol}(B) \ge \operatorname{vol}(X) - \varepsilon$$

 $\Rightarrow \quad c_k(X) \geq c_k(B) \geq 2((\operatorname{vol}(X) - \varepsilon)k)^{1/2} + o(k^{1/2})$

Step 4: For the reverse inequality consider a big ball $C \supset X$ and fill $C \setminus X$ by small balls

Relationship with symplectic packing

For (disjoint unions of) balls we have $e_k = O(1)$. **Question:** Why does this proof not show $e_k(X) = O(1)$ for all star-shaped X?

Let B_n denote the disjoint union of n equal balls with total volume $vol(B_n) = 1$. We have

$$\limsup_{k\to\infty} e_k(B_n) \longrightarrow -\infty \quad (n\to\infty)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If we can pack the full volume of X and $C \setminus X$ by finitely many balls, we get $e_k(X) = O(1)$.

Symplectic packing stability

Let (M, ω) be a symplectic manifold of finite volume. Define the kth ball packing number by

$$p_k(M) \coloneqq \sup_{a>0} \frac{k \cdot \operatorname{vol}(B(a))}{\operatorname{vol}(M)}$$

where the supremum is taken over all a such that $\coprod_{i=1}^{k} B(a) \stackrel{s}{\hookrightarrow} M$.

Theorem (McDuff-Polterovich '94) We have $\lim_{k\to\infty} p_k(M) = 1$.

Theorem (Biran '99)

Suppose that (M, ω) is a closed, rational symplectic 4-manifold. Then there exists k_0 such that for all $k \ge k_0$ we have $p_k(M) = 1$.

Definition: We say (M, ω) has *packing stability* if the assertion of the above theorem holds.

Symplectic packing stability

Question (Cieliebak, Hofer, Latschev, Schlenk '07) Which finite volume (M, ω) have packing stability?

- Buse-Hind '13: closed rational symplectic manifolds and ellipsoids in any dimension
- Buse-Hind-Opshtein '16: closed symplectic 4-manifolds, 4-dimensional polydisks
- CG-Holm-Mandini-Pires '21: 4-dimensional rational convex toric domains

Theorem (CG-Hind '23)

There exists a bounded open subset $U \subset \mathbb{R}^4$ diffeomorphic to the open ball for which packing stability fails.

Remark: U is not symplectomorphic to the interior of a compact symplectic manifold with piecewise smooth boundary.

Symplectic packing stability

Question

Does packing stability hold for compact symplectic manifolds with (piecewise) smooth boundary?

Almost nothing known:

- Packing stability holds for ellipsoids, polydisks or more generally rational convex toric domains, but these domains can be approximated by divisor complements in closed symplectic manifolds.
- The space of symplectic structures on a closed manifold is finite dimensional (Moser stability).
- The space of symplectic structures on a manifold with boundary is at least as complex as the set of conjugacy classes in Symp (the characteristic foliation could admit a Poincaré section).

Simplicity

Theorem (Banyaga '78)

Let (M, ω) be a closed symplectic manifold. Then Ham(M) is a simple group.

Corollary

Let $\alpha \in \text{Ham}(M)$ be not the identity. Then for every $\varphi \in \text{Ham}(M)$, there exist N and $\psi_1, \ldots, \psi_N \in \text{Ham}(M)$ such that

$$\varphi = \prod_{i=1}^{N} \psi_i \alpha^{\pm 1} \psi_i^{-1}.$$

Main idea:

Packing manifold with dynamically complicated boundary by simple pieces (balls) Decomposing dynamically complicated diffeomorphism into conjugates of a simpler one

Results in progress

Theorem (in progress)

Packing stability holds for every compact, connected, symplectic 4-manifold with smooth boundary.

Corollary

▶ (ECH) For all star-shaped domains $X \subset \mathbb{R}^4$ we have

$$c_k(X) = 2(\operatorname{vol}(X))^{1/2} + O(1).$$

► (PFH) For all Hamiltonians $H : \mathbb{R}/\mathbb{Z} \times \Sigma \to \mathbb{R}$ we have

$$c_d(H) = dA^{-1} \int_{\mathbb{R}/\mathbb{Z} imes \Sigma} H dt \wedge \omega + O(1).$$

Remark: For a general (Y^3, ξ) : If $e_k = O(1)$ for one single contact form, then $e_k = O(1)$ for all contact forms.

A toy case - setup

Equip $M := \mathbb{R}_s \times (\mathbb{R}/\mathbb{Z})_t \times S^2$ with $\Omega := ds \wedge dt + \omega$. Given a Hamiltonian $H : \mathbb{R}/\mathbb{Z} \times S^2 \to \mathbb{R}$, define the **truncated subgraph**

$$\operatorname{gr}_{-}(H) \coloneqq \{(s,t,p) \in M \mid 0 \leq s \leq H(t,p)\}.$$

A toy case - theorem

Theorem (E. '23)

For every Hamiltonian $H : \mathbb{R}/\mathbb{Z} \times S^2 \to \mathbb{R}$ and every sufficiently large constant $C \ge 0$, the truncated subgraph $gr_{-}(H + C)$ can be fully packed by finitely many balls.

Corollary

Let $H: \mathbb{R}/\mathbb{Z} \times S^2 \to \mathbb{R}$ be a Hamiltonian on (Σ, ω) . Then

$$c_d(H) = dA^{-1} \int_{\mathbb{R}/\mathbb{Z} imes \Sigma} H dt \wedge \omega + O(1).$$

A toy case - sketch of proof

Given: $H : \mathbb{R}/\mathbb{Z} \times S^2 \to \mathbb{R}$ **Goal:** full ball packing of $gr_{-}(H + C)$

• Let $R: S^2 \to \mathbb{R}$ be scaled height function such that

 $\varphi_R^1 = \text{half rotation of } S^2.$

▶ Banyaga: there exist $\psi_1, \ldots, \psi_N \in Ham(S^2)$ such that

$$\varphi_H^1 = \prod_i \psi_i \circ \varphi_R^1 \circ \psi_i^{-1}.$$

Define G : ℝ/ℤ × S² → ℝ by G(t,z) := N · R(ψ_i⁻¹(z)) for (i − 1)/N ≤ t ≤ i/N.
Have φ¹_H = φ¹_G. Can arrange equality in Ham(S²). A toy case - sketch of proof (continued)

- Have $\varphi_H^1 = \varphi_G^1$. Can arrange equality in $\operatorname{Ham}(S^2)$.
- After shift $H \rightsquigarrow H + C$ and $R \rightsquigarrow R + D$ for suitable C, D > 0:

$$\operatorname{gr}_{-}(H) \stackrel{s}{\cong} \operatorname{gr}_{-}(G).$$

- $gr_{-}(G)$ admits packing by N copies of $gr_{-}(R)$.
- Suffices to pack $gr_{-}(R)$ by balls.

A toy case - sketch of proof (continued)

• Suffices to pack $gr_{-}(R)$ by balls.

• Set
$$I := [0,1]$$
 $Q := I^2$ $Z := I \times \mathbb{R}/\mathbb{Z}$.

• We cut $gr_(R)$ as follows:

$$\widetilde{R}: I imes Q o I imes Z o I imes S^2 \stackrel{R}{ o} \mathbb{R} \quad \widetilde{R}(t,x,y) = a + x/2$$

 $gr_{(R)} \stackrel{s}{\leftarrow} gr_{(\tilde{R})} \stackrel{s}{\simeq} \boxed{\mathbb{Q}} \times_{L_{a}} \stackrel{s}{\leftarrow} \stackrel{s}{\leftarrow} P(1,a) \perp E(\frac{1}{2},1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polydisks and ellipsoids can be packed by balls.

The simplicity conjecture

Definition (Hamiltonian homeomorphisms $\overline{\text{Ham}}(M, \omega)$)

 $\varphi \in \text{Homeo}(M)$ is a *Hamiltonian homeomorphism* if it is a uniform limit of Hamiltonian diffeomorphisms.

Definition (Hameomorphisms Hameo (M, ω))

 $\varphi \in \text{Homeo}(M)$ is called a *Hameomorphism* if there exist $H \in C^0([0,1] \times M)$ and $(H_k)_k \subset C^\infty([0,1] \times M)$ such that

$$||H-H_k||_{(1,\infty)}\to 0$$

$$\blacktriangleright d_{C^0}(\varphi,\varphi^1_{H_k})\to 0.$$

Theorem (CG-Humilière-Seyfaddini + Mak-Smith)

Let Σ be a closed surface. Then Hameo (Σ, ω) is a proper normal subgroup of $\overline{\text{Ham}}(\Sigma, \omega)$.

Theorem (CG-Humilière-Mak-Seyfaddini-Smith + Mak-Trifa) Hameo(Σ, ω) is not simple either. C^0 non-simplicity and failure of packing stability

Theorem (CG-Hind '23)

There exists a bounded open subset $U \subset \mathbb{R}^4$ diffeomorphic to the open ball for which packing stability fails.

Smooth Hamiltonian $H : \mathbb{R}/\mathbb{Z} \times S^2 \to \mathbb{R}$:

$$\begin{array}{c} \underset{\text{of Ham}(S^2)}{\text{of Ham}(S^2)} \implies \underset{\text{of gr}_{-}(H)}{\text{full ball packing}} \implies \underset{\text{subleading asymptotics}}{c_d(H) \text{ have } O(1)} \\ \\ \text{Continuous Hamiltonian } H : \mathbb{R}/\mathbb{Z} \times S^2 \rightarrow \mathbb{R} \text{ generating} \\ \varphi \in \text{Hameo}(S^2): \end{array}$$

 $\begin{array}{cccc} \text{non-simplicity} & \stackrel{?}{\longleftarrow} & \text{no full ball packing} & & \begin{array}{cccc} \text{failure of } \mathcal{O}(1) \\ \text{subleading asymptotics} \\ \text{for } c_d(H) \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you!

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

A conjecture

For finite volume (M^{2n}, ω) and x > 0 define

$$v(M,\omega;x) \coloneqq \sup_{a>0} \frac{\operatorname{vol}(a \cdot E(1,x,\ldots,x))}{\operatorname{vol}(M)}$$

where the supremum is taken over all a > 0 such that $a \cdot E(1, x, \dots, x) \stackrel{s}{\hookrightarrow} M.$

Conjecture

For every compact, connected, symplectic manifold (M^{2n}, ω) with smooth boundary, there exists $x_0 > 0$ such that, for all $x \ge x_0$, we have $v(M, \omega; x) = 1$.

Remark: This is known for closed rational symplectic manifolds and ellipsoids (Buse-Hind).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What made the toy case easy?

- 1. ability to shift H up
- 2. existence of a closed global surface of section
- 3. existence of a rotation on S^2

Dealing with the absence of 1:

Theorem (Quantitative perfectness)

The commutator length is bounded on some C^{∞} open neighbourhood of the identity in Ham(M).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00