# *C*<sup>0</sup>-stability of topological entropy for Reeb flows in dimension 3

joint work with Marcelo Alves, Lucas Dahinden, and Abror Pirnapasov

#### Matthias Meiwes

Tel Aviv University

November 24, 2023

# Introduction

 $(T^2, g)$ : 2-torus with a bump



Implies the existence of various types of geodesics on  $(T^2, g)$ (Bialy-Polterovich, Polterovich, Bangert, Bolotin-Rabinowitz, ...)

Rmk.: oscillation of geodesics around bump.

Rmk.: "oscillation behaviour" is robust.

# $C^0$ distance between contact forms

 $(Y, \xi)$ : closed co-oriented contact 3-manifold.  $\mathcal{R}(Y, \xi)$ : the set of contact forms  $\alpha$  on  $(Y, \xi)$ ,  $(\alpha \land d\alpha > 0, \ker \alpha = \xi)$ . Every  $\alpha \in \mathcal{R}(Y, \xi)$  defines its **Reeb** vector field  $R_{\alpha}$  on  $(Y, \xi)$  by:

$$egin{aligned} & dlpha({\sf R}_lpha,\cdot)=0 \ & lpha({\sf R}_lpha)=1. \end{aligned}$$

For  $\alpha, \beta \in \mathcal{R}(Y, \xi)$ , write  $\alpha = f_{\alpha,\beta}\beta$  for a smooth function  $f_{\alpha,\beta} : Y \to (0, +\infty)$ .



The  $C^0$ -distance between  $\alpha$  and  $\beta$  is

$$d_{C^0}(\alpha,\beta) = \max |\log f_{\alpha,\beta}| \quad (=\max |\log f_{\beta,\alpha}|).$$

Related distances: Contact Banach-Mazur distance (Ostrover-Polterovich, Stojisavljevic-Zhang, Usher, Bosen-Zhang), Stojisavljevic-Zhang, Usher, Bosen-Zhang), Soc

# C<sup>0</sup>-distance between Riemannian metrics

*S* closed surface. Met(*S*): space of Riemannian metrics on *S*.  $C^{0}$ -distance on Met(*S*):

$$\overline{d}_{C^0}(g,g') = \inf\left\{\epsilon > 0 \mid e^{-\epsilon}|v|_{g'} \le |v|_g \le e^{\epsilon}|v|_{g'}
ight\}.$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで



Remark: Under the usual assignment  $\Phi : \operatorname{Met}(S) \to \mathcal{R}(Y, \xi_{\operatorname{gco}}), g \mapsto \alpha_g,$ we have  $\Phi^* d_{C^0} = \overline{d}_{C^0}.$ 

# **Topological entropy**

*M* closed manifold,  $\phi$  flow on *M*.

d: auxiliary distance function on M.

Given *T*, δ > 0, a subset *S* ⊂ *M* is said to be (*T*, δ)-separated if, for all points *p*, *q* ∈ *S* with *p* ≠ *q*, we have

$$\max_{t\in[0,T]} \{d(\phi^t(p),\phi^t(q))\} > \delta.$$

n<sup>δ</sup><sub>φ</sub>(T): maximal cardinality of a (T, δ)-separated set.
 δ-entropy:

$$h_{\delta}(\phi) := \limsup_{T o +\infty} rac{\log(n_{\phi}^{\circ}(T))}{T},$$

topological entropy:

$$h_{\mathrm{top}}(\phi) := \lim_{\delta \to 0} h_{\delta}(\phi).$$

ション 小田 マイビット ビックタン

#### Main results

Theorem 1 (Alves-Dahinden-M.-Pirnapasov, '23) Let  $(Y,\xi)$  be a closed contact 3-manifold. The topological entropy

$$h_{\text{top}} : \mathcal{R}(\mathbf{Y}, \xi) \to [0, +\infty),$$
  
 $\alpha \mapsto h_{\text{top}}(\phi_{\alpha}^{t})$ 

is lower semi-continuous with respect to  $d_{C^0}$  on a  $C^{\infty}$ -open and dense set.

Here: We say h<sub>top</sub> is "lower semi-continuous on" U ⊂ R(Y, ξ) if every α ∈ U is a point of lower semi-continuity (lim inf<sub>α'→α</sub> h<sub>top</sub>(φ<sub>α'</sub>) ≥ h<sub>top</sub>(φ<sub>α</sub>)).

## Main results

Given a closed surface *S*, denote be  $Met_{nd}(S) \subset Met(S)$  the set of non-degenerate Riemannian metrics on *S*.

Theorem 2 (ADMP, '23)

The topological entropy

$$h_{\text{top}} : \text{Met}(S) \to [0, +\infty),$$
  
 $g \mapsto h_{\text{top}}(\phi_{g}^{t})$ 

is lower semi-continuous with respect to  $\overline{d}_{C^0}$  on  $Met_{nd}(S)$ .

# Corollaries (of the proofs)

Let  $(Y,\xi) = (S^3, \xi_{tight})$ . A contact form on  $(Y,\xi)$  is called **right-handed** if all their trajectories link positively. In right-handed flows every periodic orbit is binding of a global surface of section. (Ghys)

#### Example: Pinched metrics on S<sup>2</sup>

(Florio-Hryniewicz): If  $g \in Met(S^2)$  is  $\delta$ -pinched with  $\delta > 0.7225$ , then the geodesic flow  $\phi_g$  lifts to a right-handed flow on  $S^3$ . (*g* is  $\delta$ -**pinched** if  $\delta \leq K_{\min}/K_{\max}$ .)

# Corollary 1 Let $(Y,\xi) = (S^3, \xi_{tight})$ . The topological entropy

$$h_{\mathrm{top}}: \mathcal{R}(Y,\xi) \to [0,+\infty)$$

is lower semi-continuous with respect to  $d_{C^0}$  on the set of right-handed  $\alpha \in \mathcal{R}(Y, \xi)$ .

# Corollaries

Our techniques together with an earlier result (Alves-Dahinden-M.-Merlin, '21) yield also

# Corollary 2 For every $g \in Met(T^2)$ with $h_{top}(\phi_g) > 0$ there is a $\overline{d}_{C^0}$ -neighbourhood U of g such that

$$h_{\mathrm{top}}(\phi_{g'}) > 0 \quad (\forall g' \in U).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Conjectures

#### Conjecture 1

Given a closed co-oriented contact 3-manifold  $(Y, \xi)$ , the entropy functional

$$h_{\text{top}}: \mathcal{R}(Y,\xi) \to [0,+\infty)$$

is lower semi-continuous with respect to  $d_{C^0}$ .

#### **Conjecture 2**

Given a closed orientable surface S, the entropy functional

$$h_{\text{top}}: \text{Met}(S) \rightarrow [0, +\infty)$$

is lower semi-continuous with respect to  $\overline{d}_{C^0}$ . Clearly, Conjecture 1 implies Conjecture 2.

## Further context

- topological entropy of Reeb flows/Contactomorphisms (studied by Alves, Dahinden, Frauenfelder, Macarini, M., Schlenk, ...).
- Alves-Pirnapasov: Forcing and Reeb flows.

#### Robustness/lower semi-continuity

- question by L. Polterovich
- robustness features of h<sub>top</sub> wrt. d<sub>C<sup>0</sup></sub>: Dahinden, Alves-Dahinden-M.-Merlin.
- Alves-M. ('21): lower semi-continuity of h<sub>top</sub> wrt. the Hofer metric on Ham(S, ω), dim(S) = 2.
- Hutchings ('23): lower semi-continuity of h<sub>top</sub> wrt. Hofer metric for area preserving diffeos.

# Context: Barcode entropy

- Barcode entropy: First introduced and studied by Çineli-Ginzburg-Gürel ('21). Further results by Mazzucchelli-Ginzburg-Gürel, Fender-Lee-Sohn, ...
- ► Mazzucchelli-Ginzburg-Gürel ('22):  $\hbar(\phi_g) = h_{top}(\phi_g)$  for  $g \in Met(S)$ , dim(S) = 2.
- (MGG + Theorem 2): The barcode entropy

$$\hbar : \operatorname{Met}(S) \mapsto [0, +\infty),$$
  
 $g \mapsto \hbar(\phi_g),$ 

is lower semi-continuous with respect to  $\overline{d}_{C^0}$  on  $Met_{nd}(S)$ .

# Hypertight in the complement of a link

Let  $\alpha$  be a contact form,  $\mathcal{L}$  a link of closed Reeb orbits of  $\alpha$ .

#### Definition

We say that  $\alpha$  is **hypertight in the complement of**  $\mathcal{L}$  if any disk map into M whose boundary parametrizes a closed Reeb orbit has an interior intersection with  $\mathcal{L}$ .

Example: If  $\mathcal{L}$  bounds a global surface of section that is not a disk, then  $\alpha_0$  is hypertight in the complement of  $\mathcal{L}$ .

#### Definition

A homotopy class  $\rho$  of loops in  $M \setminus \mathcal{L}$  is a **proper link class** if

- no loop in p is contained in a small tubular neighbourhood of a component of L.
- Momin: if α hypertight in the complement of L, ρ proper link class, all orbits in ρ non-degenerate → cylindrical contact homology in class ρ (CH<sup>ρ</sup><sub>Γ</sub>(α)) is well defined.

# Homotopical growth

Let  $\alpha_0 \in \mathcal{R}(Y, \xi)$ ,  $\mathcal{L}$  link of Reeb orbits,  $\alpha_0$  hypertight in the complement of  $\mathcal{L}$ .

homotopical growth Γ<sub>L</sub>(α<sub>0</sub>): exponential growth rate of proper link classes ρ with CH<sup>ρ</sup><sub>L</sub>(α<sub>0</sub>) ≠ 0 (Alves-Pirnapasov)

► 
$$\Gamma_{\mathcal{L}}(\alpha_0) \leq h_{top}(\phi_{\alpha_0})$$
 (Alves-Pirnapasov)

It will be useful to restrict to classes  $\rho$  with one periodic orbit:

- Ω<sub>α0</sub>(L): set of proper link classes ρ that carry exactly one orbit
- $\Omega_{\alpha_0}^{\mathcal{T}}(\mathcal{L})$ : set of  $\rho \in \Omega_{\alpha_0}(\mathcal{L})$  with orbit of period  $\leq \mathcal{T}$
- Clearly: lim sup<sub>T→+∞</sub> <sup>log(#Ω<sup>T</sup><sub>α0</sub>(L<sup>α0</sup>))</sup>/<sub>T</sub> ≤ Γ<sub>L</sub>(α<sub>0</sub>) (if orbits are non-degenerate)

# Approximation of $h_{top}$ by $\Gamma_{\mathcal{L}}$

#### Theorem (M. '23)

Let  $\alpha_0 \in \mathcal{R}(Y, \xi)$ . Assume that  $h_{top}(\phi_{\alpha_0}) > 0$ . For any  $0 < \epsilon < h_{top}(\phi_{\alpha_0})$ , there exists a link  $\mathcal{L}_{\epsilon}^{\alpha_0}$  defined by hyperbolic periodic orbits of  $\phi_{\alpha_0}$  such that

$$\limsup_{T\to+\infty}\frac{\log\left(\#\Omega^{T}_{\alpha_{0}}(\mathcal{L}^{\alpha_{0}}_{\epsilon})\right)}{T}>h_{\mathrm{top}}(\phi_{\alpha_{0}})-\epsilon.$$

As a consequence:

$$h_{ ext{top}}(\phi_{lpha_0}) = \sup_{\mathcal{L}} \mathsf{\Gamma}_{\mathcal{L}},$$

whenever  $h_{top}(\phi_{\alpha_0}) > 0$ , and  $\Gamma_{\mathcal{L}_0}$  can be defined for some  $\mathcal{L}_0$ .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆○♥

# Remarks on the approximation theorem

- Katok: for surface diffeos φ: Approximation of h<sub>top</sub>(φ) by h<sub>top</sub> of horseshoes.
- Versions for 3D flows: Lima-Sarig (countable Markov shifts "coding" the dynamics of the return map to a Poincaré section), Lian-Young.

# The link $\mathcal{L}_{\epsilon}^{\alpha_0}$ in the approximation theorem

• link  $\mathcal{L} = \mathcal{L}_{\epsilon}^{\alpha_0}$  in our result can be written as

$$\mathcal{L} = \mathcal{L}^0 \cup \bigcup_{k=1}^n \mathcal{L}^k,$$

where each  $\mathcal{L}^k$ ,  $k \in \{0, ..., n\}$ , bounds a pair-of-pants  $F_k$  (Fried surface) transversal to the flow.



- F<sub>1</sub>,...,  $F_n$  are pairwise disjoint, and all intersect  $F_0$ .
- There is an injective map

$$\phi: (\mathcal{S}/\sim) \to \Omega_{\alpha_0}(\mathcal{L}),$$

where  $S = \bigcup_{m \in \mathbb{N}} \{1, ..., n\}^m$ , and  $\underline{i} \sim \underline{j}$  if  $\sigma(\underline{i}) = \underline{j}$  for a cyclic permutation  $\sigma$ .

The unique periodic orbit *γ* in the class φ([(*i*<sub>1</sub>,..., *i<sub>m</sub>*)]) intersects the surfaces *F*<sub>1</sub>,..., *F<sub>n</sub>* in the order ..., *F<sub>i<sub>1</sub></sub>*,..., *F<sub>im</sub>*,....
 Each time *γ* intersects some *F<sub>k</sub>*, *k* ∈ {1,..., *n*}, it intersects also *F*<sub>0</sub>.



# Stability

#### Theorem (ADMP)

Let  $\alpha_0$  be **non-degenerate**,  $\mathcal{L}_0$  a link of Reeb orbits of  $\alpha_0$  such that  $\alpha_0$  is **hypertight in the complement** of  $\mathcal{L}_0$ . Assume that

$$a := \limsup_{T \to +\infty} rac{\log \left( \# \Omega^{\mathsf{T}}_{lpha_0}(\mathcal{L}_0) 
ight)}{T} > 0.$$

Let  $\epsilon > 0$ . Then,  $\exists \delta > 0$  such that for every non-degenerate contact form  $\alpha$  with  $d_{C^0}(\alpha, \alpha_0) < \delta$ , there is a link  $\mathcal{L}(\alpha)$  of Reeb orbits of  $\alpha$  satisfying:

$$\limsup_{T\to+\infty}\frac{\log\left(\#\Lambda_{\alpha}^{T}(\mathcal{L}(\alpha))\right)}{T}>a-\epsilon.$$

 $\Lambda^{\mathcal{T}}_{\alpha}(\mathcal{L}(\alpha))$ : set of homotopy classes of loops in  $M \setminus \mathcal{L}(\alpha)$  with a periodic orbit of period  $\leq \mathcal{T}$ .

# Remarks on stability

- We can choose δ (size of the allowed d<sub>C<sup>0</sup></sub>-neighbourhood) independent of the choice of contact form α<sub>0</sub> outside a neighbourhood of L<sub>0</sub> (as long as assumptions hold).
- The growth rate  $\Gamma_{\mathcal{L}(\alpha)}(\alpha)$  might not be well-defined.
- We do not know if the new link L(α) in the statement can be chosen to be isotopic to L<sub>0</sub>. Moreover, it might have more, or less components.

# Proof of Theorem 1

#### Theorem 1

The topological entropy  $h_{top} : \mathcal{R}(Y,\xi) \to [0, +\infty)$  is lower semi-continuous with respect to  $d_{C^0}$  on a  $C^{\infty}$ -open and dense set. on  $C^{\infty}$ -dense set:

- ► Assume α<sub>0</sub> is non-degenerate and there is a global surface of section (gss) for the flow; such forms are C<sup>∞</sup> dense (Colin-Dehornoy-Hryniewicz-Rechtman, Contreras-Mazzucchelli).
- L<sub>0</sub>: union of the binding of the gss and the link from approximation result:

 $\limsup_{T \to +\infty} \frac{\log(\#\Omega_{\alpha_0}^{T}(\mathcal{L}_0))}{T} \geq h_{top}(\phi_{\alpha_0}) - \epsilon/2.$ 

- Stability result: for some  $\delta > 0$ , and all non-degenerate  $\alpha$  with  $d_{C^0}(\alpha, \alpha_0) < \delta$  there is  $\mathcal{L}(\alpha)$  with:  $\limsup_{T \to +\infty} \frac{\log(\# \Lambda^T_{\alpha}(\mathcal{L}(\alpha)))}{T} \ge h_{top}(\phi_{\alpha_0}) - \epsilon.$
- ►  $\Rightarrow h_{top}(\phi_{\alpha}) \ge h_{top}(\alpha_0) \epsilon$ , extends to degenerate  $\alpha$  (Newhouse)

# Proof of Theorem 2

If g is non-degenerate, we can choose a surface of section with binding L<sub>b</sub> such that all periodic orbits in M \ L<sub>b</sub> are non-contractible in M \ L<sub>b</sub> (Contreras-Knieper-Mazzucchelli-Schulz).

 for contractible binding components the two lifts of the underlying geodesic are linked (Pirnapasov).

# Stability: Setting

 $\alpha_0$  non-degenerate,  $\mathcal{L}_0$  link of Reeb orbits of  $\alpha_0$  such that  $\alpha_0$  is hypertight in the complement of  $\mathcal{L}_0$ ,

$$a := \limsup_{T \to +\infty} rac{\log\left(\#\Omega^{\mathsf{T}}_{\alpha_0}(\mathcal{L}_0)
ight)}{T} > 0.$$

 $\alpha$  sufficiently  $C^0$  close to  $\alpha_0$ .

For any R > 0 we consider exact symplectic cobordism  $W^R$  equipped with compatible almost complex structure  $J^R$  such that

- in [−R, R] × Y, W<sup>R</sup> coincides with the symplectisation (ℝ × Y, d(e<sup>r</sup>α)) of α, J<sup>R</sup> is cylindrical.
- ► outside [-R 1, R + 1] × Y, W<sup>R</sup> coincides with symplectisation of C<sup>+</sup>α<sub>0</sub>, C<sup>-</sup>α<sub>0</sub> respectively, C<sup>-</sup> < 1 < C<sup>+</sup>, J<sup>R</sup> cylindrical.

# Step 1

There exists

- a collection of pairwise disjoint finite energy holomorphic cylinders V<sup>R</sup> in W<sup>R</sup>, positively and negatively asymptotic to L<sub>0</sub>,
- ▶ an ambient isotopy from  $\mathbb{R} \times \mathcal{L}_0$  to  $V^R$  (asymptotic to identity).



Important:  $C^{\pm}$  sufficiently close to 1 (compactness of relevant moduli spaces), positivity of intersections.

for any  $\rho \in \Omega_{\mathcal{L}_0}(\alpha_0)$ , there exists a finite energy holomorphic cylinder  $u_{\rho}$  in  $W^R \setminus V^R$  positively/negatively asymptotic to the unique orbit  $\gamma_{\rho}$  in  $\rho$ .

Important: Ambient isotopy from Step 1, assumptions on  $\mathcal{L}_0$  and  $\rho$ , and positivity of intersections.

# Step 3

Let  $R \to +\infty$ : top and bottom level of the buildings coming from  $V^R$  and  $u_\rho$  in the SFT-limit are the cobordism levels.

 $V^{R,-}$ ,  $u_0^-$ : bottom levels.



 $\mathcal{L}(\alpha)$ : positive asymptotic orbits of the components of  $V^{R,-}$ .

ション 小田 マイビット ビックタン

# Step 4

Let  $\gamma$  be periodic orbit of  $\alpha$ .

Growth of the number of  $\rho \in \Omega_{\alpha_0}^T$  such that  $u_{\rho}^-$  is positively asymptotic to  $\gamma$  is at most quadratic in T.

(symptotic behaviour of holomorphic curves asymptotic to  $\gamma \in \mathcal{L}(\alpha)$  (Siefring),  $\rho$  proper link class).



# Thanks for listening!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@