The coarse distance from dynamically convex to convex
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Symplectic convexity

In R2", convex domains have strong symplectic rigidity properties :
existence of periodic orbits on its boundary, Viterbo conjecture, etc
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Symplectic convexity

In R2", convex domains have strong symplectic rigidity properties :
existence of periodic orbits on its boundary, Viterbo conjecture, etc

In dimension 2 :

O~

Question : what could be symplectic convexity ?

Definition (symplectically convex domains)

C4 = {domains of R* which are symplectomorphic to a convex domain}
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Dynamical convexity

Introduced by Hofer, Wysocki and Zehnder (1998) : dynamical convexity

Dy = {domains of R* which are dynamically convex }
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Dynamical convexity

Introduced by Hofer, Wysocki and Zehnder (1998) : dynamical convexity

Dy = {domains of R* which are dynamically convex }

Theorem (Hofer, Wysocki and Zehnder, 1998)
Cs C Dy.

Question : C4 = Dy ?

Theorem (Chaidez and Edtmair, 2020)

There exists dynamically convex domains of R* which are not
symplectically convex.
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Chaidez-Edtmair's example

Figure — Relations between C4 and D;.

C4 = {symplectically convex domains of R*}
D4 = {dynamically convex domains of R*}
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Main result
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Main result

Question : How far can dynamically convex domains be away from convex
domains ?

Theorem (D., Gutt, Ramos and Zhang, 2023)

Dynamically convex domains are arbitrarily far from symplectically convex
domains with respect to the coarse symplectic Banach-Mazur distance.
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Main result

Question : How far can dynamically convex domains be away from convex
domains ?

Theorem (D., Gutt, Ramos and Zhang, 2023)

Dynamically convex domains are arbitrarily far from symplectically convex
domains with respect to the coarse symplectic Banach-Mazur distance.

These are the first examples of dynamically convex domains which are not
symplectically convex without referring to Chaidez-Edtmair’s criterion.
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Coarse symplectic Banach-Mazur distance

(Ostrover-Polterovich)
For U, V C R* star-shaped domains, let

de(U, V) = inf{log)\ > o‘;u% V%)\U}
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Coarse symplectic Banach-Mazur distance

(Ostrover-Polterovich)
For U, V C R* star-shaped domains, let

de(U, V) = inf{log)\ > O‘iUf—> V%)\U}

Open problem
If d.(U,V) =0, U is symplectomorphic to V ?
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A "new" symplectic convexity criterion

Theorem (John, 1948)

Let U be a convex domain of R*, then there exists an ellipsoid E C R*
such that

EcUco+4-(E-o)

where o is the center of E.
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A "new" symplectic convexity criterion

Theorem (John, 1948)

Let U be a convex domain of R*, then there exists an ellipsoid E C R*
such that

EcUco+4-(E-o)

where o is the center of E.

Proposition (Symplectic John's ellipsoid theorem)

Let U be a symplectically convex domain of R*, then

de(U, &) = Elgg4 dc(U,E) <log2
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Toric domains

T2-action.

A toric domain X C C2 ~ R* is a domain that is invariant under the

o = = £ DA
Julien Dardennes



Toric domains

A toric domain X C C2 ~ R* is a domain that is invariant under the
T2-action.

Proposition

Every toric domain can be written as X = p~(Q) where Q C (R>0)? and

i (z1,2) € C2 e n(|z1)?, |22/?) € (Rxo)?
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Toric domains

A toric domain X C C2 ~ R* is a domain that is invariant under the
T2-action.

Proposition

Every toric domain can be written as X = p~(Q) where Q C (R>0)? and

i (z1,2) € C2 e n(|z1)?, |22/?) € (Rxo)?

7| 22)?
r s

Q Q
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Figure — An ellipsoid E(a, b) and a polydisc P(a, b)
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Monotone toric domains

Definition

A monotone toric domain is a compact toric domain with a smooth
boundary such that for every i € 9, Q = 92N (Rxq)? the outward normal
vector at | has non-negative components.

Q

>
>

Figure — A monotone toric domain
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Proposition (Gutt, Hutchings and Ramos, 2020)

Let My = {Monotone toric domains of R*} C T
My=DsN7Ty
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Proposition (Gutt, Hutchings and Ramos, 2020)

Let My = {Monotone toric domains of R*} C T
My=DsN7Ta

Theorem (Gutt, Hutchings and Ramos, 2020)

All normalized symplectic capacities agree on Ma,.

Theorem (D., Gutt and Zhang, 2021)

There exists a family of monotone toric domains of R* which are not
symplectically convex.
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Chaidez-Edtmair's example

T D.-Gutt-Zhang's example
4

Figure — Relations between Ty, C4, My, and D,.
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The LP ball

For p € (0,1], let

Xa, = {(21,2) € C?| (7T|21|2)p n (7T|22|2)p <1}.
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The LP ball
For p € (0,1], let

Xq, = {(21,22) eC?| (7T|21|2)p + <7T|22|2)p < 1}.

»
»

| (1,0)

Figure — Xq, for p € (0,1].
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Main result

Let dc(XQP7(‘:4) = infE€g4 dC(XQP, E)
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Main result
Let dc(XQp7€4) = infE€g4 C/C(XQP, E)

Theorem (D., Gutt, Ramos and Zhang, 2023)

For toric domain Xq, and p < % we have :

1 g(p)
de(Xa,. £4) 2 glog (1 + log4 + Iogg(P)) @)

where g(p) = 2%_2V01R4 (Xa,)-
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Main result
Let dC(XQp, 54) = infE€g4 dC(XQp, E)

Theorem (D., Gutt, Ramos and Zhang, 2023)

For toric domain Xq, and p < % we have :

1 g(p)
de(Xa,. £4) 2 glog (1 + log4 + Iogg(P)) @)

where g(p) = 2%_2V01R4 (Xa,)-

In particular, when p satisfies the condition that

g(p)
1+ log4 + logg(p) > 2% (2)

then Xq, is dynamically convex but not symplectically convex.
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Chaidez-Edtmair's example
D.-Gutt-Zhang's example
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Tools for the proof

Corollary’s proof
Triangular inequality+symplectic John :

dC(XQp) 84) S dC(XQp7 C4) + 5:54 dC(U7 84)
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Tools for the proof

Corollary’s proof
Triangular inequality+symplectic John :

de(Xq,, €4) < de(Xa,,Ca) + sup do(U, &)

Theorem’s proof : ECH capacities
Weight decomposition :

CECH(X = cfH (|_| B(w;) )

Lemma by Hutchings :
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Thank you'!
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Overview
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D.-Gutt-Zhang's example
LP ball
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