The coarse distance from dynamically convex to convex

Julien Dardennes (joint work with J.Gutt, V.Ramos and J.Zhang)
Symplectic convexity

In \mathbb{R}^{2n}, convex domains have strong symplectic rigidity properties: existence of periodic orbits on its boundary, Viterbo conjecture, etc.
Symplectic convexity

In \mathbb{R}^{2n}, convex domains have strong symplectic rigidity properties: existence of periodic orbits on its boundary, Viterbo conjecture, etc.

In dimension 2:

Definition (symplectically convex domains)

$C_4 = \{ \text{domains of } \mathbb{R}^4 \text{ which are symplectomorphic to a convex domain} \}$
Symplectic convexity

In \mathbb{R}^{2n}, convex domains have strong symplectic rigidity properties: existence of periodic orbits on its boundary, Viterbo conjecture, etc.

In dimension 2:

Question: what could be *symplectic convexity*?
Symplectic convexity

In \mathbb{R}^{2n}, convex domains have strong symplectic rigidity properties: existence of periodic orbits on its boundary, Viterbo conjecture, etc.

In dimension 2:

Question: what could be **symplectic convexity**?

Definition (symplectically convex domains)

$\mathcal{C}_4 = \{ \text{domains of } \mathbb{R}^4 \text{ which are symplectomorphic to a convex domain} \}$
Dynamical convexity

Introduced by Hofer, Wysocki and Zehnder (1998): dynamical convexity

\[D_4 = \{ \text{domains of } \mathbb{R}^4 \text{ which are dynamically convex} \} \]
Dynamical convexity

Introduced by Hofer, Wysocki and Zehnder (1998): dynamical convexity

\[D_4 = \{ \text{domains of } \mathbb{R}^4 \text{ which are dynamically convex} \} \]

Theorem (Hofer, Wysocki and Zehnder, 1998)

\[C_4 \subset D_4. \]
Dynamical convexity

Introduced by Hofer, Wysocki and Zehnder (1998) : dynamical convexity

$$\mathcal{D}_4 = \{\text{domains of } \mathbb{R}^4 \text{ which are dynamically convex } \}$$

Theorem (Hofer, Wysocki and Zehnder, 1998)

$$\mathcal{C}_4 \subset \mathcal{D}_4.$$

Question : $$\mathcal{C}_4 = \mathcal{D}_4$$?
Dynamical convexity

Introduced by Hofer, Wysocki and Zehnder (1998): dynamical convexity

\[D_4 = \{ \text{domains of } \mathbb{R}^4 \text{ which are dynamically convex} \} \]

Theorem (Hofer, Wysocki and Zehnder, 1998)

\[C_4 \subset D_4. \]

Question: \[C_4 = D_4? \]

Theorem (Chaidez and Edtmair, 2020)

There exists dynamically convex domains of \(\mathbb{R}^4 \) which are not symplectically convex.
Figure – Relations between \mathcal{C}_4 and \mathcal{D}_4.

$\mathcal{C}_4 = \{\text{symplectically convex domains of } \mathbb{R}^4\}$

$\mathcal{D}_4 = \{\text{dynamically convex domains of } \mathbb{R}^4\}$
Main result

Question: How far can dynamically convex domains be away from convex domains?
Main result

Question: How far can dynamically convex domains be away from convex domains?

Theorem (D., Gutt, Ramos and Zhang, 2023)

Dynamically convex domains are arbitrarily far from symplectically convex domains with respect to the coarse symplectic Banach-Mazur distance.
Main result

Question: How far can dynamically convex domains be away from convex domains?

Theorem (D., Gutt, Ramos and Zhang, 2023)

Dynamically convex domains are arbitrarily far from symplectically convex domains with respect to the coarse symplectic Banach-Mazur distance.

Remark

These are the first examples of dynamically convex domains which are not symplectically convex without referring to Chaidez-Edtmair’s criterion.
Coarse symplectic Banach-Mazur distance

(Ostrover-Polterovich)
For $U, V \subset \mathbb{R}^4$ star-shaped domains, let

$$d_c(U, V) = \inf \left\{ \log \lambda \geq 0 \mid \frac{1}{\lambda} U \leftrightarrow V \leftrightarrow \lambda U \right\}$$

Open problem
If $d_c(U, V) = 0$, is U symplectomorphic to V?
Coarse symplectic Banach-Mazur distance

(Ostrover-Polterovich)
For $U, V \subset \mathbb{R}^4$ star-shaped domains, let

$$d_c(U, V) = \inf \left\{ \log \lambda \geq 0 \left| \frac{1}{\lambda} U \leftrightarrow V \leftrightarrow \lambda U \right. \right\}$$

Open problem
If $d_c(U, V) = 0$, U is symplectomorphic to V?
A "new" symplectic convexity criterion

Theorem (John, 1948)

Let U be a convex domain of \mathbb{R}^4, then there exists an ellipsoid $E \subset \mathbb{R}^4$ such that

$$E \subset U \subset o + 4 \cdot (E - o)$$

where o is the center of E.

A "new" symplectic convexity criterion

Theorem (John, 1948)
Let U be a convex domain of \mathbb{R}^4, then there exists an ellipsoid $E \subset \mathbb{R}^4$ such that

$$E \subset U \subset o + 4 \cdot (E - o)$$

where o is the center of E.

Proposition (Symplectic John’s ellipsoid theorem)
Let U be a symplectically convex domain of \mathbb{R}^4, then

$$d_c(U, \mathcal{E}_4) := \inf_{E \in \mathcal{E}_4} d_c(U, E) \leq \log 2$$
Toric domains

A toric domain $X \subset \mathbb{C}^2 \cong \mathbb{R}^4$ is a domain that is invariant under the \mathbb{T}^2-action.

Figure – An ellipsoid $E(a, b)$ and a polydisc $P(a, b)$.
Toric domains

A toric domain \(X \subset \mathbb{C}^2 \cong \mathbb{R}^4 \) is a domain that is invariant under the \(T^2 \)-action.

Proposition

Every toric domain can be written as \(X_\Omega = \mu^{-1}(\Omega) \) *where* \(\Omega \subset (\mathbb{R}_{\geq 0})^2 \) *and*

\[
\mu : (z_1, z_2) \in \mathbb{C}^2 \mapsto \pi(|z_1|^2, |z_2|^2) \in (\mathbb{R}_{\geq 0})^2
\]
Toric domains

A toric domain $X \subset \mathbb{C}^2 \simeq \mathbb{R}^4$ is a domain that is invariant under the \mathbb{T}^2-action.

Proposition

Every toric domain can be written as $X_\Omega = \mu^{-1}(\Omega)$ where $\Omega \subset (\mathbb{R}_{\geq 0})^2$ and

$$\mu : (z_1, z_2) \in \mathbb{C}^2 \mapsto \pi(|z_1|^2, |z_2|^2) \in (\mathbb{R}_{\geq 0})^2$$

Figure – An ellipsoid $E(a, b)$ and a polydisc $P(a, b)$
Monotone toric domains

Definition

A **monotone toric** domain is a compact toric domain with a smooth boundary such that for every $\mu \in \partial_+ \Omega = \partial \Omega \cap (\mathbb{R}_{>0})^2$ the outward normal vector at μ has non-negative components.

Figure – A monotone toric domain
Proposition (Gutt, Hutchings and Ramos, 2020)

Let $\mathcal{M}_4 = \{Monotone \ toric \ domains \ of \ \mathbb{R}^4\} \subset \mathcal{T}_4$

$\mathcal{M}_4 = \mathcal{D}_4 \cap \mathcal{T}_4$
Proposition (Gutt, Hutchings and Ramos, 2020)

Let \(\mathcal{M}_4 = \{\text{Monotone toric domains of } \mathbb{R}^4\} \subset \mathcal{T}_4 \)

\(\mathcal{M}_4 = \mathcal{D}_4 \cap \mathcal{T}_4 \)

Theorem (Gutt, Hutchings and Ramos, 2020)

All normalized symplectic capacities agree on \(\mathcal{M}_4 \).
Proposition (Gutt, Hutchings and Ramos, 2020)

Let $\mathcal{M}_4 = \{\text{Monotone toric domains of } \mathbb{R}^4\} \subset \mathcal{T}_4$

$\mathcal{M}_4 = \mathcal{D}_4 \cap \mathcal{T}_4$

Theorem (Gutt, Hutchings and Ramos, 2020)

All normalized symplectic capacities agree on \mathcal{M}_4.

Theorem (D., Gutt and Zhang, 2021)

There exists a family of monotone toric domains of \mathbb{R}^4 which are not symplectically convex.
Figure – Relations between T_4, C_4, M_4, and D_4.
The L^p ball

For $p \in (0, 1]$, let

$$X_{\Omega_p} := \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \left(\pi |z_1|^2 \right)^p + \left(\pi |z_2|^2 \right)^p < 1 \right\}.$$
The L^p ball

For $p \in (0, 1]$, let

$$X_{\Omega_p} := \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \left(\pi |z_1|^2 \right)^p + \left(\pi |z_2|^2 \right)^p < 1 \right\}.$$
Main result

Let $d_c(X_{\Omega_p}, \mathcal{E}_4) = \inf_{E \in \mathcal{E}_4} d_c(X_{\Omega_p}, E)$
Main result
Let $d_c(X_{\Omega_p}, \mathcal{E}_4) = \inf_{E \in \mathcal{E}_4} d_c(X_{\Omega_p}, E)$

Theorem (D., Gutt, Ramos and Zhang, 2023)

For toric domain X_{Ω_p} and $p < \frac{1}{5}$, we have:

$$d_c(X_{\Omega_p}, \mathcal{E}_4) \geq \frac{1}{8} \log \left(\frac{g(p)}{1 + \log 4 + \log g(p)} \right)$$

(1)

where $g(p) = 2^{\frac{2}{p} - 2} \text{Vol}_{\mathbb{R}^4}(X_{\Omega_p})$.

Corollary

In particular, when p satisfies the condition that $g(p) > 2^2 8^{-\frac{2}{p} + 2}$, (2) then X_{Ω_p} is dynamically convex but not symplectically convex.
Main result

Let \(d_c(X_{\Omega_p}, \mathcal{E}_4) = \inf_{E \in \mathcal{E}_4} d_c(X_{\Omega_p}, E) \)

Theorem (D., Gutt, Ramos and Zhang, 2023)

For toric domain \(X_{\Omega_p} \) and \(p < \frac{1}{5} \), we have:

\[
d_c(X_{\Omega_p}, \mathcal{E}_4) \geq \frac{1}{8} \log \left(\frac{g(p)}{1 + \log 4 + \log g(p)} \right)
\]

(1)

where \(g(p) = 2^\frac{2}{p-2} \text{Vol}_{\mathbb{R}^4}(X_{\Omega_p}) \).

Corollary

In particular, when \(p \) satisfies the condition that

\[
\frac{g(p)}{1 + \log 4 + \log g(p)} > 2^8,
\]

(2)

then \(X_{\Omega_p} \) is dynamically convex but not symplectically convex.
Tools for the proof

Corollary’s proof

Triangular inequality + symplectic John:

\[d_c(X_{\Omega_p}, \mathcal{E}_4) \leq d_c(X_{\Omega_p}, \mathcal{C}_4) + \sup_{U \in \mathcal{C}_4} d_c(U, \mathcal{E}_4) \]
Tools for the proof

Corollary’s proof
Triangular inequality + symplectic John:
\[d_c(X_{\Omega_p}, \mathcal{E}_4) \leq d_c(X_{\Omega_p}, \mathcal{C}_4) + \sup_{U \in \mathcal{C}_4} d_c(U, \mathcal{E}_4) \]

Theorem’s proof: ECH capacities
Tools for the proof

Corollary’s proof
Triangular inequality + symplectic John:

\[d_c(X_{\Omega p}, \mathcal{E}_4) \leq d_c(X_{\Omega p}, \mathcal{C}_4) + \sup_{U \in \mathcal{C}_4} d_c(U, \mathcal{E}_4) \]

Theorem’s proof: ECH capacities
Weight decomposition:

\[c^E_{ECH}(X_{\Omega p}) = c^E_{ECH} \left(\bigsqcup_{i=1}^{k} B(w_i) \right) \]
Tools for the proof

Corollary’s proof
Triangular inequality + symplectic John:

\[d_c(X_{\Omega_p}, \mathcal{E}_4) \leq d_c(X_{\Omega_p}, \mathcal{C}_4) + \sup_{U \in \mathcal{C}_4} d_c(U, \mathcal{E}_4) \]

Theorem’s proof: ECH capacities
Weight decomposition:

\[c_k^{ECH}(X_{\Omega_p}) = c_k^{ECH} \left(\bigsqcup_{i=1}^{k} B(w_i) \right) \]

Lemma by Hutchings:

\[c_k^{ECH} \left(\bigsqcup_{i=1}^{k} B(w_i) \right) \leq 2 \sqrt{k \cdot \text{vol} \left(\bigsqcup_{i=1}^{k} B(w_i) \right)} \]
Thank you!
Overview

D4
C4
Chaidez-Edtmair's example
T4 M4
D.-Gutt-Zhang's example
Lp ball

Julien Dardennes