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Symplectic convexity

In R2n, convex domains have strong symplectic rigidity properties :
existence of periodic orbits on its boundary, Viterbo conjecture, etc

In dimension 2 :

Question : what could be symplectic convexity ?

Definition (symplectically convex domains)
C4 = {domains of R4 which are symplectomorphic to a convex domain}
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Dynamical convexity

Introduced by Hofer, Wysocki and Zehnder (1998) : dynamical convexity

D4 = {domains of R4 which are dynamically convex }

Theorem (Hofer, Wysocki and Zehnder, 1998)
C4 ⊂ D4.

Question : C4 = D4 ?

Theorem (Chaidez and Edtmair, 2020)
There exists dynamically convex domains of R4 which are not
symplectically convex.
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D4

C4

Chaidez-Edtmair's example

Figure – Relations between C4 and D4.

C4 = {symplectically convex domains of R4}
D4 = {dynamically convex domains of R4}
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Main result

Question : How far can dynamically convex domains be away from convex
domains ?

Theorem (D., Gutt, Ramos and Zhang, 2023)
Dynamically convex domains are arbitrarily far from symplectically convex
domains with respect to the coarse symplectic Banach-Mazur distance.

Remark
These are the first examples of dynamically convex domains which are not
symplectically convex without referring to Chaidez-Edtmair’s criterion.
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Coarse symplectic Banach-Mazur distance

(Ostrover-Polterovich)
For U, V ⊂ R4 star-shaped domains, let

dc(U, V ) = inf
{

log λ ≥ 0
∣∣∣∣ 1

λ
U ↪! V ↪! λU

}

Open problem
If dc(U, V ) = 0, U is symplectomorphic to V ?
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A "new" symplectic convexity criterion

Theorem (John, 1948)
Let U be a convex domain of R4, then there exists an ellipsoid E ⊂ R4

such that
E ⊂ U ⊂ o + 4 · (E − o)

where o is the center of E .

Proposition (Symplectic John’s ellipsoid theorem)
Let U be a symplectically convex domain of R4, then

dc(U, E4) := inf
E∈E4

dc(U, E ) ≤ log 2
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Toric domains
A toric domain X ⊂ C2 ≃ R4 is a domain that is invariant under the
T2-action.

Proposition
Every toric domain can be written as XΩ = µ−1(Ω) where Ω ⊂ (R≥0)2 and

µ : (z1, z2) ∈ C2 7! π(|z1|2, |z2|2) ∈ (R≥0)2

Figure – An ellipsoid E (a, b) and a polydisc P(a, b)
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Monotone toric domains

Definition
A monotone toric domain is a compact toric domain with a smooth
boundary such that for every µ ∈ ∂+Ω = ∂Ω ∩ (R>0)2 the outward normal
vector at µ has non-negative components.

Figure – A monotone toric domain
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Proposition (Gutt, Hutchings and Ramos, 2020)
Let M4 = {Monotone toric domains of R4} ⊂ T4
M4 = D4 ∩ T4

Theorem (Gutt, Hutchings and Ramos, 2020)
All normalized symplectic capacities agree on M4.

Theorem (D., Gutt and Zhang, 2021)
There exists a family of monotone toric domains of R4 which are not
symplectically convex.
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D4

C4

Chaidez-Edtmair's example

T4

M4

D.-Gutt-Zhang's example

Figure – Relations between T4, C4, M4, and D4.
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The Lp ball
For p ∈ (0, 1], let

XΩp :=
{

(z1, z2) ∈ C2 |
(
π|z1|2

)p
+
(
π|z2|2

)p
< 1

}
.

(0, 1)

(1, 0)

xp + yp = 1

Ωp

Figure – XΩp for p ∈ (0, 1].
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Main result
Let dc(XΩp , E4) = infE∈E4 dc(XΩp , E )

Theorem (D., Gutt, Ramos and Zhang, 2023)
For toric domain XΩp and p < 1

5 , we have :

dc(XΩp , E4) ≥ 1
8 log

( g(p)
1 + log 4 + log g(p)

)
(1)

where g(p) = 2
2
p −2VolR4(XΩp ).

Corollary
In particular, when p satisfies the condition that

g(p)
1 + log 4 + log g(p) > 28, (2)

then XΩp is dynamically convex but not symplectically convex.
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D4

C4

Chaidez-Edtmair's example

T4 M4

D.-Gutt-Zhang's example

Lp ball
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Tools for the proof
Corollary’s proof
Triangular inequality+symplectic John :

dc(XΩp , E4) ≤ dc(XΩp , C4) + sup
U∈C4

dc(U, E4)

Theorem’s proof : ECH capacities
Weight decomposition :

cECH
k (XΩp ) = cECH

k

( k⊔
i=1

B(wi)
)

Lemma by Hutchings :

cECH
k

( k⊔
i=1

B(wi)
)

≤ 2

√√√√k · vol
( k⊔

i=1
B(wi)

)
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Thank you !
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Overview

D4

C4

Chaidez-Edtmair's example

T4 M4

D.-Gutt-Zhang's example

Lp ball
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