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Symplectic deformation

Definition
Two closed symplectic manifolds (X1, ω1) and (X2, ω2) are
deformation equivalent if there exists a diffeomorphism ϕ ∶ X1 → X2

such that ϕ∗ω2 is connected to ω1 via a path of symplectic forms.

▸ No assumptions on cohomology classes.

▸ No assumptions on diffeomorphisms.



The “four-six” question

Question (Donaldson)

Given two closed homeomorphic symplectic 4-manifolds (X1, ω1)
and (X2, ω2), are they diffeomorphic if and only if the product
manifolds

(X1 × S2, ω1 ⊕ ωstd) ≃ (X2 × S2, ω2 ⊕ ωstd)?

Call this “stabilization”.

Theorem (Wall, ’64)

Two closed simply-connected homeomorphic 4-manifolds are
h-cobordant.

Theorem (Smale, ’62)

Let n ≥ 5. Then two closed simply-connected n-manifolds are
h-cobordant implies that they are diffeomorphic.



History of the question

▸ Ruan ’94: There exist homeomorphic but not diffeomorphic
Kähler surfaces such that their stabilizations are not
deformation equivalent. This is given by CP2#8CP2 and the
Barlow surface.

▸ Ruan-Tian ’97: Stated “Stabilizing Conjecture” when
restricted to simply-connected 4-manifolds. Shown for rational
elliptic surfaces.

▸ Ionel-Parker ’99: Also shown for E(n) using different
methods, but still used GW invariants.

▸ Smith ’00: Given n ≥ 2, constructed n symplectic forms on a
simply-connected 4-manifold whose c1s have different
divisibilities. Ô⇒ Donaldson’s question cannot be replaced by
T2.
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Main results

Theorem (Hirschi-W, ’23)

There exist infinitely many pairs of closed symplectic 4-manifolds
(X1, ω1) and (X2, ω2) that are diffeomorphic, but their
stabilizations (X1 × S2, ω1 ⊕ ωstd) /≃ (X2 × S2, ω2 ⊕ ωstd).
▸ In particular, we answer the forward direction of Donaldson’s

four-six question in the negative.

▸ We give two “types” of examples, given by Smith and
McMullen-Taubes.



Main results

Theorem (Hirschi-W, ’23)

The examples above remain deformation inequivalent when
stabilized with arbitrarily many copies of (S2, ωstd).
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Proof strategy

▸ Find examples of a fixed smooth 4-manifold X that admits
deformation inequivalent symplectic forms ω1 and ω2.

▸ Show that (X × S2, ω1 ⊕ ωstd) /≃ (X × S2, ω2 ⊕ ωstd).
Invariant: (The orbit under Diff of) the first Chern class associated
to a symplectic form.

Goal
Show that c1(X × S2, ω1 ⊕ ωstd) and c1(X × S2, ω2 ⊕ ωstd) lie in
different orbits of Diff(X × S2).



More motivations for our proof

▸ Before us, there are already examples of a closed smooth
4-manifold X admitting symplectic strutures whose c1s lie in
different orbits of Diff(X ). In fact, we are using such
examples.

▸ How to go from 4 to 6?
▸ Done for diffeomorphisms of X × S2 that “split”.
▸ Want to constrain how an arbitrary diffeomorphism of X × S2

can act on H2(X × S2).



Cohomology equivalences

Definition
Given X and Y , let GX ,Y denote the set of cohomology
equivalences ψ of X ×Y such that

▸ ψ∗ maps H2(X ;Z) to itself; and

▸ pr1ψ(⋅, y) is a cohomology equivalence for each y ∈ Y .

Definition
Let G̃X ,Y ⊂ GX ,Y be the H-group of homotopy equivalences.

, Both types of our examples have their diffeomorphisms
satisfying one of these algebraic conditions.



Proof steps

▸ Find a smooth 4-manifold X with symplectic forms ω1 and ω2

such that c1(ω1) and c2(ω2) lie in different orbits of ����Diff(X)
cohomology (resp. homotopy) equivalences - this is stronger!

▸ Show that if c1(ω1) and c2(ω2) lie in different orbits of
cohomology (resp. homotopy) equivalences, then
c1(ω1 ⊕ ωstd) and c1(ω2 ⊕ ωstd) lie in different orbits of GX ,S2

(resp. G̃X ,S2).

▸ Show that any diffeomorphism of X × S2 lies in GX ,S2 (resp.

G̃X ,S2).



Algebraic “sufficient” condition

Proposition

Let X be a closed, smooth manifold with two symplectic forms ω1

and ω2. Suppose c1(ω1) and c1(ω2) are in different orbits of
actions of cohomology (resp. homotopy) equivalences of X on
H2(X ;Z). Then c1(ω1 ⊕ ωstd) and c1(ω2 ⊕ ωstd) lie in different
orbits of action of GX ,S2 (resp. G̃X ,S2).



Proof of the algebraic “sufficient” condition
Suppose ∃ψ ∈ GX ,S2 (resp. G̃X ,S2), such that

ψ∗c1(ω2 ⊕ ωstd) = c1(ω1 ⊕ ωstd). (1)

Then for h ∶= PD[pt] = AD[S2] = c1 of the hyperplane line bundle,
we have that ψ∗h = h + α for some α ∈ H2(X ). Also, ψ∗(h2) = 0,
implying

(h + α)2 = h2 + 2αh + α2 = 0.

So 2α = 0, since H∗(X × S2;Z) ≅ H∗(X )[h]/h2. Now, by (1) and
c1(CP1, ωstd) = 2h, we have that

c1(ω1) + 2h = ψ∗c1(ω2) + 2ψ∗h = ψ∗c1(ω2) + 2h + 2α.

So c1(ω1) = ψ∗c1(ω2). Let ψ̂ ∶= pr1(ψ(⋅, z)) for some z ∈ S2.
Since ψ∗ preserves H2(X ;Z),

ψ̂∗c1(ω2) = ψ∗c1(ω2) = c1(ω1).

Since ψ̂ is a cohomology (resp. homotopy) equivalence,
contradiction.



Counterexamples

Example (Smith, 2000)

Let Z ∶= (T4
(x ,y ,z,t),dxdt + dydz)#fiber sum5(E(1), ω0) along

Tx ∶= ⟨x , t⟩,Ty ∶= ⟨y , t⟩,Tz ∶= ⟨z , t⟩ and 2 copies of
Tw ∶= ⟨x = y = z , t⟩.
Can check that Tx ,Tw are symplectic, while Ty ,Tz are Lagrangian.

Theorem (Smith, 2000)

The simply-connected manifold Z admits two deformation
inequivalent symplectic forms ω+ and ω− obtained by perturbing Tz

“via the opposite orientation”. In fact, 3∣c1(ω+) but not c1(ω−).



Counterexamples

Theorem (Hirschi-W, ’23)

Let Z be the simply-connected 4-manifold constructed by Smith.
Then ω+ ⊕ ωstd and ω− ⊕ ωstd on Z × S2 are deformation
inequivalent.

Proof idea: uses the fact that p1(Z × S2) = p1(Z) = mPD([S2])
for some m ≠ 0 and that p1 is preserved by diffeomorphisms up to
sign to show that any diffeomorphism of Z × S2 must lie in GX ,S2 .



Counterexamples

Example (McMullen-Taubes, 1999)

Let L ∶= L1 ⊔ L2 ⊔ L3 ⊔ L4 consist of four closed geodesics
representing the three S1-factors of T3 and a fourth component
satisfying [L4] = [L1] + [L2] + [L3].
Consider M ∶= T3/N(L). Let N be the double branched cover of
T3 over L associated to the homomorphism

ξ ∶ H1(M;Z) → {±1}

with ξ(m4) = −1, where m4 is the meridian of L4.



McMullen-Taubes example continued

Then N is fibered, induced from a fibration T3 → S1.

Definition
The Euler class of a fibration ρ ∶ N → S1 only depends on
α = [dρ] ∈ H1(N;Z) and is given by

e(α) = [s−1(0)] ∈ H1(N;Z)/torsion,

where s ∶ N → ker(dρ) is a generic section.



McMullen-Taubes example continued

Lemma (McMullen-Taubes, 1999)

3D There exist α1, α2 ∈ H1(N;Z) induced by fibrations
ρ1, ρ2 ∶ N → S1 such that e(α1) and e(α2) lie in different
orbits of Aut(π1(N))-action on H1(N;Z).

4D Furthermore, let X ∶= N × S1. One can associate an
S1-invariant form ω to each α ∈ H1(N;Z) represented by the
differential of a fibration and

c1(X , ω) = PDX (e(α) × [S1]).

Corollary

For any homotopy equivalence ϕ of X , we have that
ϕ∗(e(α1) × [S1]) ≠ e(α2) × [S1], implying ϕ∗c1(ω2) ≠ c1(ω1).



McMullen-Taubes example continued

Remains to show that any diffeomorphism of X × S2 lies in G̃X ,S2 .
This essentially follows from the fact that X is aspherical.
Therefore, the McMullen-Taubes construction also gives
counterexamples to Donaldson’s 4 − 6 question.



Thank you for listening!
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