Deformation inequivalent symplectic structures and Donaldson's four-six question

Luya Wang

joint work with Amanda Hirschi

Stanford University

December 8, 2023

Table of Contents

Background

Our results

Outline of proof

Table of Contents

Background

Our results

Outline of proof

Symplectic deformation

Definition

Two closed symplectic manifolds (X_1, ω_1) and (X_2, ω_2) are deformation equivalent if there exists a diffeomorphism $\phi : X_1 \to X_2$ such that $\phi^* \omega_2$ is connected to ω_1 via a path of symplectic forms.

- No assumptions on cohomology classes.
- No assumptions on diffeomorphisms.

The "four-six" question

Question (Donaldson)

Given two closed homeomorphic symplectic 4-manifolds (X_1, ω_1) and (X_2, ω_2) , are they diffeomorphic if and only if the product manifolds

$$(X_1 \times S^2, \omega_1 \oplus \omega_{\mathsf{std}}) \simeq (X_2 \times S^2, \omega_2 \oplus \omega_{\mathsf{std}})?$$

Call this "stabilization".

Theorem (Wall, '64)

Two closed simply-connected homeomorphic 4*-manifolds are h-cobordant.*

Theorem (Smale, '62)

Let $n \ge 5$. Then two closed simply-connected n-manifolds are *h*-cobordant implies that they are diffeomorphic.

History of the question

- ▶ Ruan '94: There exist homeomorphic but not diffeomorphic Kähler surfaces such that their stabilizations are not deformation equivalent. This is given by CP²#8CP² and the Barlow surface.
- Ruan-Tian '97: Stated "Stabilizing Conjecture" when restricted to simply-connected 4-manifolds. Shown for rational elliptic surfaces.
- Ionel-Parker '99: Also shown for E(n) using different methods, but still used GW invariants.
- Smith '00: Given n ≥ 2, constructed n symplectic forms on a simply-connected 4-manifold whose c₁s have different divisibilities. ⇒ Donaldson's question cannot be replaced by T².

Table of Contents

Background

Our results

Outline of proof

Main results

Theorem (Hirschi-W, '23)

There exist infinitely many pairs of closed symplectic 4-manifolds (X_1, ω_1) and (X_2, ω_2) that are diffeomorphic, but their stabilizations $(X_1 \times S^2, \omega_1 \oplus \omega_{std}) \notin (X_2 \times S^2, \omega_2 \oplus \omega_{std})$.

- In particular, we answer the forward direction of Donaldson's four-six question in the negative.
- We give two "types" of examples, given by Smith and McMullen-Taubes.

Main results

Theorem (Hirschi-W, '23)

The examples above remain deformation inequivalent when stabilized with arbitrarily many copies of (S^2, ω_{std}) .

Table of Contents

Background

Our results

Outline of proof

Proof strategy

- Find examples of a fixed smooth 4-manifold X that admits deformation inequivalent symplectic forms ω₁ and ω₂.
- Show that $(X \times S^2, \omega_1 \oplus \omega_{std}) \notin (X \times S^2, \omega_2 \oplus \omega_{std}).$

Invariant: (The orbit under Diff of) the first Chern class associated to a symplectic form.

Goal

Show that $c_1(X \times S^2, \omega_1 \oplus \omega_{std})$ and $c_1(X \times S^2, \omega_2 \oplus \omega_{std})$ lie in different orbits of Diff $(X \times S^2)$.

More motivations for our proof

- Before us, there are already examples of a closed smooth 4-manifold X admitting symplectic strutures whose c₁s lie in different orbits of Diff(X). In fact, we are using such examples.
- How to go from 4 to 6?
 - Done for diffeomorphisms of $X \times S^2$ that "split".
 - Want to constrain how an arbitrary diffeomorphism of $X \times S^2$ can act on $H^2(X \times S^2)$.

Cohomology equivalences

Definition

Given X and Y, let $G_{X,Y}$ denote the set of cohomology equivalences ψ of $X \times Y$ such that

- ψ^* maps $H^2(X;\mathbb{Z})$ to itself; and
- $pr_1\psi(\cdot, y)$ is a cohomology equivalence for each $y \in Y$.

Definition

Let $\widetilde{G_{X,Y}} \subset G_{X,Y}$ be the *H*-group of homotopy equivalences. \odot Both types of our examples have their diffeomorphisms satisfying one of these algebraic conditions.

Proof steps

- Find a smooth 4-manifold X with symplectic forms ω₁ and ω₂ such that c₁(ω₁) and c₂(ω₂) lie in different orbits of Diff(X) cohomology (resp. homotopy) equivalences this is stronger!
- Show that if c₁(ω₁) and c₂(ω₂) lie in different orbits of cohomology (resp. homotopy) equivalences, then c₁(ω₁ ⊕ ω_{std}) and c₁(ω₂ ⊕ ω_{std}) lie in different orbits of G_{X,S²} (resp. G_{X,S²}).
- Show that any diffeomorphism of $X \times S^2$ lies in G_{X,S^2} (resp. $\widetilde{G_{X,S^2}}$).

Algebraic "sufficient" condition

Proposition

Let X be a closed, smooth manifold with two symplectic forms ω_1 and ω_2 . Suppose $c_1(\omega_1)$ and $c_1(\omega_2)$ are in different orbits of actions of cohomology (resp. homotopy) equivalences of X on $H^2(X;\mathbb{Z})$. Then $c_1(\omega_1 \oplus \omega_{std})$ and $c_1(\omega_2 \oplus \omega_{std})$ lie in different orbits of action of G_{X,S^2} (resp. $\widetilde{G_{X,S^2}}$).

Proof of the algebraic "sufficient" condition Suppose $\exists \psi \in G_{X,S^2}$ (resp. $\widetilde{G_{X,S^2}}$), such that

$$\psi^* c_1(\omega_2 \oplus \omega_{\text{std}}) = c_1(\omega_1 \oplus \omega_{\text{std}}).$$
(1)

Then for $h := PD[pt] = AD[S^2] = c_1$ of the hyperplane line bundle, we have that $\psi^* h = h + \alpha$ for some $\alpha \in H^2(X)$. Also, $\psi^*(h^2) = 0$, implying

$$(h+\alpha)^2 = h^2 + 2\alpha h + \alpha^2 = 0.$$

So $2\alpha = 0$, since $H^*(X \times S^2; \mathbb{Z}) \cong H^*(X)[h]/h^2$. Now, by (1) and $c_1(\mathbb{C}P^1, \omega_{std}) = 2h$, we have that

$$c_1(\omega_1) + 2h = \psi^* c_1(\omega_2) + 2\psi^* h = \psi^* c_1(\omega_2) + 2h + 2\alpha.$$

So $c_1(\omega_1) = \psi^* c_1(\omega_2)$. Let $\widehat{\psi} := \operatorname{pr}_1(\psi(\cdot, z))$ for some $z \in S^2$. Since ψ^* preserves $H^2(X; \mathbb{Z})$,

$$\widehat{\psi}^* c_1(\omega_2) = \psi^* c_1(\omega_2) = c_1(\omega_1).$$

Since $\widehat{\psi}$ is a cohomology (resp. homotopy) equivalence, contradiction.

Counterexamples

Example (Smith, 2000)

Let $Z := (\mathbb{T}^4_{(x,y,z,t)}, dxdt + dydz) \#_{\text{fiber sum}} 5(E(1), \omega_0)$ along $T_x := \langle x, t \rangle, T_y := \langle y, t \rangle, T_z := \langle z, t \rangle$ and 2 copies of $T_w := \langle x = y = z, t \rangle.$ Can check that T_x, T_w are symplectic, while T_y, T_z are Lagrangian.

Theorem (Smith, 2000)

The simply-connected manifold Z admits two deformation inequivalent symplectic forms ω_+ and ω_- obtained by perturbing T_z "via the opposite orientation". In fact, $3|c_1(\omega_+)|$ but not $c_1(\omega_-)$.

Theorem (Hirschi-W, '23)

Let Z be the simply-connected 4-manifold constructed by Smith. Then $\omega_+ \oplus \omega_{std}$ and $\omega_- \oplus \omega_{std}$ on $Z \times S^2$ are deformation inequivalent.

Proof idea: uses the fact that $p_1(Z \times S^2) = p_1(Z) = mPD([S^2])$ for some $m \neq 0$ and that p_1 is preserved by diffeomorphisms up to sign to show that any diffeomorphism of $Z \times S^2$ must lie in G_{X,S^2} .

Example (McMullen-Taubes, 1999)

Let $L := L_1 \sqcup L_2 \sqcup L_3 \sqcup L_4$ consist of four closed geodesics representing the three S^1 -factors of \mathbb{T}^3 and a fourth component satisfying $[L_4] = [L_1] + [L_2] + [L_3]$. Consider $M := \mathbb{T}^3 \setminus \mathcal{N}(L)$. Let N be the double branched cover of \mathbb{T}^3 over L associated to the homomorphism

$$\xi: H_1(M;\mathbb{Z}) \to \{\pm 1\}$$

with $\xi(m_4) = -1$, where m_4 is the meridian of L_4 .

McMullen-Taubes example continued

Then N is fibered, induced from a fibration $\mathbb{T}^3 \to S^1$.

Definition

The Euler class of a fibration $\rho: N \to S^1$ only depends on $\alpha = [d\rho] \in H^1(N; \mathbb{Z})$ and is given by

$$e(\alpha) = [s^{-1}(0)] \in H_1(N; \mathbb{Z})/\text{torsion},$$

where $s: N \to \ker(d\rho)$ is a generic section.

McMullen-Taubes example continued

Lemma (McMullen-Taubes, 1999)

- 3D There exist $\alpha_1, \alpha_2 \in H^1(N; \mathbb{Z})$ induced by fibrations $\rho_1, \rho_2 : N \to S^1$ such that $e(\alpha_1)$ and $e(\alpha_2)$ lie in different orbits of $Aut(\pi_1(N))$ -action on $H_1(N; \mathbb{Z})$.
- 4D Furthermore, let $X := N \times S^1$. One can associate an S^1 -invariant form ω to each $\alpha \in H^1(N; \mathbb{Z})$ represented by the differential of a fibration and

$$c_1(X,\omega) = PD_X(e(\alpha) \times [S^1]).$$

Corollary

For any homotopy equivalence ϕ of X, we have that $\phi_*(e(\alpha_1) \times [S^1]) \neq e(\alpha_2) \times [S^1]$, implying $\phi^*c_1(\omega_2) \neq c_1(\omega_1)$.

Remains to show that any diffeomorphism of $X \times S^2$ lies in \overline{G}_{X,S^2} . This essentially follows from the fact that X is aspherical. Therefore, the McMullen-Taubes construction also gives counterexamples to Donaldson's 4 - 6 question. Thank you for listening!