Symplectic Embeddings and and
small symplectic caps

John Ethyne (GaTech)
joint with
Hyomki Min (UCLA)
Lisa Piccinillo (U. Texas)
Agniva Roy (Ga Tech)

Our main task is to build symplectic manifolds and symplectic embeddings
but lets start with smooth embeddings
this is a fundamental problem
in topology:

- is otopy classes of embeddings of 5^{\prime} into S^{3} is classical knot theory!
- long history of studying when M^{m} embeds in \mathbb{R}^{n} or N^{n}
example: Whit nay embedding Th ${ }^{m}$ any M^{m} embeds in $\mathbb{R}^{2 n}$ in general this cannot be improved but some times if can be!
example: Hirsch '6), wall '65
any 3 -manifold embeds in \mathbb{R}^{5} Corollary: any oriented 3-manifold is the boundary of a 4 -manifold!
not all 3 -manifolds embed in \mathbb{R}^{4} (or any fixed compact 4 -manifold Shiomi' 91)
Note: if M embeds in \mathbb{R}^{4} and M a rational homology sphere, then show M is the boundary of a rational homology ball
let's focus on lens spaces
Recall $L(p, q)$ is

not all leas spaces bound homology balls so cant embed in \mathbb{R}^{4}
but some do!
example:

but no $L(p, q),|p|>1$, embeds is \mathbb{R}^{4}
Fact: if M^{3} embeds is \mathbb{R}^{4} then $\operatorname{tor}\left(H_{1}(M)\right) \cong G \oplus G$ for some finite abelial group (Hantzsche'38)
So what is the simplest 4 -manifold in which we can embed $L(\varphi, 1)$?

\downarrow cancel 1,2 -handle
(0) $)^{1} \cup 4$-handle
${ }_{\bullet}^{\prime \prime} \rho^{2}$

Question: How can one build symplectic manifolds?
\qquad

1) Complex submarifodls of $\mathbb{C} P^{n}$
2) Symplectic reduction
3) Lefschetz pencils
4) Glue together a symplectic cap and filling of the same contact structure Recall: a (strong) symplectic filling

ω closed non-degen v vector field to ∂x $\mathscr{L}_{v} \omega=\omega$ $\iota_{v} \omega$ a contact form for 3 on ∂X
a symplectic cap is the same thing but v points into X (boundary concave)
there are lots of symplectic fillugs (though not for all contact structures)
E-Honda 'oz: any contact 3 -mfd has a symplectic cap.
unfortunately these caps usually have large topology (eg by large)
so this strategy is no good if one wants to construct small symplectic 4 mfd s
example: Is there an symplectic X homeomorpic to, but not diffeomorpic to $\subset \rho^{2}$? $S^{2} \times s^{2}$?

We would like to

1) build small caps
2) understand symplectic handle att achment
Recall: Elcashberg'90, Weristein '91 we know how to attach symplectic 0,1,2-handles

but cannot attach 3, 4-handles
3) understand the following embedding result from a handlebody perspective
recall a Markov tripple are 3 natural numbers (p_{1}, p_{2}, p_{3}) satisfying

$$
p_{1}^{2}+\rho_{2}^{2}+p_{3}^{2}=3 p_{1} \rho_{2} \rho_{3}
$$

$$
{ }_{(1,1,1) \rightarrow(1,1,2) \rightarrow(1,2,5) \xrightarrow{e_{g}(2,5,29)} \xrightarrow{\sim}(1,5,13)}
$$

$\left(P_{1}, P_{1}, P_{3}\right)$ tripple then so is ($\left.p_{1}, p_{2}, 3 p_{1}, p_{3}-p_{2}\right)$
given (p, q) let $B_{p, q}$ be the symplectic \mathbb{Q}-homology ball

$$
\partial B_{p q}=L\left(p^{2}, p q-1\right) \quad \text { (lens space) }
$$

Viana'17: given a Markhor ripple $\left(p_{1}, p_{2}, p_{3}\right)$ I qi such that $B_{p_{1}, q_{1}}, B_{p_{2} q_{2}}, B p_{31} q_{3}$ embed disjöntly in $\mathbb{C} P^{2}$
(Evens-Smith '18: showed these are only contact embeddings of lens spaces in $\subset p^{2}$)

Vian a used almost torii gemetry and "nodal slides" and "transfer the cut" to construct the embeddings
Remark:

1) Lisca' 88 showed that the only universally tight contact structures on $L(p, q)$ bounding Q-homology balls are the ones above
E-Roy '21, Christian -Li showed that no virtually oventwisted contact structure bounds a Q homology ball
2) lots of lens spaces dort embed as contact type hypersurfaces in $\mathbb{C P} P^{2}$, eg. $L(9,5)=2 B_{3,2}$
3) Smoothly more lens spaces embed
Owens 19:
$B_{F(2 n+1), F(2 n-1)}$ embeds in $6 P^{2}$ but not symplectically for $n>1$
example $L(25,14)$ embeds but not as a hypersurface of contract type

Lisca-Parma 23:
gave lots more examples exactly which lens spaces embed in $\mathbb{C} \boldsymbol{P}^{2}$?

We can glue in the $B p_{1}, q_{i}$ above to get a close symplectio manifold $X_{p_{1}, p_{2}, p_{3}}$

note: one can check $\pi_{1}\left(X_{p_{1} p_{2} p_{3}}\right)=1$ and $H_{2}\left(X_{p_{1} p_{2} p_{3}}\right) \cong \mathbb{Z}$ so Freedman says $X_{p_{1} p_{2} p_{3}}$ is homeomophci to $\mathbb{C} P^{2}$.
Is it exotic!
$T h^{M}(E-M-P-R):$
$x_{p_{1} p_{2} p_{3}}$ is diffeomorphic to $\mathbb{C P}{ }^{2}$

Lisca-Parma'23 proved the $B_{p,} q_{i}$. above smoothly embed in © P^{2} using an explicit handle body construction (Horizontal decompositions)
along the way we will also be able to give an explicit handlebody picture for the almost torii pictures and constructions of Viaina

Main Ingreedients:

1) a construction of Gay (+ slight generalization)
2) an understanding of non-loose torus knots (E-Min-Mokherjee)
3) lots of handle calculus!
let's get started!

Open book decompositions and Gay's handle
a rational open book for a 3 -manifold M is a pair (B, π) where B is a link in M and $\pi:(M-B) \rightarrow S^{\prime}$ is a fibration such that each component of $\partial \overline{\pi^{-1}(\theta)}$ wraps around a component of B (if $\pi^{-1}(\theta)$ is an embedded surface with boundary B then can drop rational)
near component of B see:

example: let $H=$ Hops link in S^{3} C $S^{3}-H=\tau^{2} \times(0,1)$, fiber τ^{2} by any slope curve C bot 0 or ∞ then $C x(0,1)$ fibers $S^{3}-H$

a contact structure ? on M is supported by (B, π)
if 1) B is positively transverse to $\}$
2) \exists a contact form α for 3 st. $d \alpha>0$ on $\pi^{-1}(\theta)$

Thurston-Wicukelnkemper 75, Baker-E-Van Horu-Moris ' 12 (rational case)
show every openbook supports a (onig̀ve) contact structure
note: since $(M-B)$ fibers over S^{\prime} it is a mapping torus of a diffeomorphism $\phi: \Sigma \rightarrow \Sigma$ where $\Sigma=\overline{\pi^{-1}(\theta)}$

$$
\cong M-B
$$

So ϕ determines a 3 -manifold and a contact structure, ϕ is called the monodromy
T^{m} (Gay 'Oz, $E \cdot M-P-R$ for Q case $)$
let (B, π) be an open book for $(\mu, 3)$

$$
B=\left\{B_{1} \ldots B_{k}\right\}
$$

$\left\{n_{1}, \ldots, n_{k}\right\}$ integers larges then page slope on B_{i}
$W=([0,1] \times \mu)$ with 2 -handles attached to $\{1\} \times M$ a long B_{1} with fromerig n_{i}
Then W has a symplectic structure with both boundary components concave
W is a cobordism from $(M, 3)$ to the result of $-n_{;}$surgay on \bar{B}_{1} in $\left(-\mu, \beta_{\bar{B}}\right)$
so if (M, β) is fillable then we con use W to build a symplectic cap!
eg. $\left(s^{3}, 3_{s t-d}\right)=\partial\left(B^{4}, \omega_{s+d}\right)$ so th ${ }^{m}$ gives b_{2} small caps
note the monodromy of $\left(-M, T_{\bar{B}}\right)$ is ϕ^{-1}
so if 3 is tight $?_{\bar{B}}$ will not be tight
eg. positive torus knots in s^{3} Support the unique tight structure but their mirrors support overtuisted contact stirs.
surgeries on overtwisted contact str are usually overtwisfed, so how to use th is!
recall: If $B_{p, q}$ is

then $\partial B_{p, q}=L\left(p_{1}^{2}, p q-1\right)$
with its universally tight contact structure

What is $L\left(p_{1}^{2}, p q-1\right)$:

let γ be a $r / s>0$ curve on

$$
T^{2} x\left\{y_{2}\right\}
$$

add a 2 -handle to $[a, 1] \times L$ (pi pq-1) along γ in $\left\{13 \times L\left(p^{2}, p q-1\right)\right.$ with framing $\mathcal{F}=$ framing from $\left.\left\{^{1}\right\}\right\} \times T^{2}$ to get W

$$
\partial w=L\left(p^{2}, p q-1\right) \cup M
$$

$M=\mp$ framed Dehn surgery on γ
in M we see union

this is a sphere S^{2} !
so $M=M^{\prime} \# M^{\prime \prime}$
not hard to see one of these
is - $L(n, s)$
and other is $L(m, n)$ for
some min
can order the p_{i} 's so $(p . q)=\left(p_{3}^{2}, p_{3} q_{3}-1\right)$

$$
(r, s)=\left(p_{1}^{2}, p_{1},-1\right) \text { and }(m, n)=\left(p_{2}^{2}, p_{1} q_{2}-1\right)
$$

smoothly we can add a 1-handle to $B p_{1}, q_{1} \cup B_{p_{2}, q_{2}}$ and then glue W to it

now remove $B_{p_{1} q_{1}} \cup B_{p_{2}, q_{2}}$ to get $C_{p_{1} p_{2} p_{3}}$
can we do this symplectically?
Yes for green part:
$B_{p_{i}} q_{i}$ symplectic
1-handles can be attached symplertically
for W :

- $[0,1] \times L\left(p_{3}^{2}, p_{3} q_{3}-1\right)$ is part of the symplectization of standard tight str ?ut
- the knot γ is a $\left(p_{1}^{2}, p_{1}, q_{1}-1\right)$-torus knot is $L\left(p_{3}{ }^{2}, p_{3} q_{3}-1\right)$ easy to check γ supports \}ut
so Gay $+\varepsilon$ theorem says we can attach hand le symplectically!
$\therefore W$ is symplectic!
does the "upper" boundary of W have the right contact structure?
contact structure is obtained from surgery on $\}_{\bar{\gamma}}$
unfortunately $\xi_{\bar{\gamma}}$ is oven twisted...
so we need to understand non loose knots in lens spaces

Non loose torus knots in lens spaces
E-Min-Mukherjeè'zz classified all Legendrian and transverse knots in orentwisted contact structures on S^{3} the part we need on lens spaces genenalizes this let's consider the S^{3} case for now
complement tight
understand non-loose (p, q) torus knots $w / t b=\rho 9$
curves on torus $S^{\prime} \times s^{\prime}$

keep track of curves with Farcy Graph

think of solid torus as

Th ${ }^{m}$ (Giroux' 00 , Honda'oo) tight contact structures on Sr with dividing slope 1 are given by taking a minimal path in the Farcy graph from r clockwise to $\&$ and de crating the edges with \pm (can do same with $\tau^{2} \times\{1\}$ collapsed)
s^{3} is

can take a $T^{2} \subset S^{3}$ splits s^{3} into 2 soled tori V_{1}, V_{2}

put dividing curves on T^{2} of slope $9 / p$

the paths P_{1}, P_{2} give contact story on V_{1} and $V_{2} \therefore$ a contact str on S^{3}
Th ${ }^{m}$:
"any"non-loose (p,q)-torus knot (with no torsion) sits on a T^{2} for some choice of P_{1}, P_{2}
Paths determined by continued fractions...
non-loose $(1,9)$-torus knots were studied by Geiges-Onaran 'io Matkovič'zo for some (pa) and some values of ThurstonBennequis invariant
E-M-M gave a complete classification
if we plot possible rotation numbers and th invariants then can see
for $p q>0$: Legendrians

E:M-M showed a negative (pi) - torus knot supports the contact structure

and iq surgery on (Qq)-knot gives \# of universally tight contact structures! so we can glue our symplectic pieces together to get $C_{11} p_{2} P_{3}$ as claimed in the main theorem!

But is $x_{p_{1}, p_{2}, p_{1}}$

really $\mathbb{C P} P^{2}$?
There are 2 ways to show this
(1) Quote then from Lisca-Parma you can write $X_{p p i} P_{3}$ as a "horizontal decomposition"
(2) Find a handlebody description of almost toric pictures an inductively prove.
here is a picture of $X_{p_{1} p_{2} p_{3}}$:
 torii picture of $G P^{2}$

almost toxic picture of $\mathbb{C} P^{2}$
$B_{P_{2} q_{2}} \downarrow$ "transfer the cot"

$$
p_{1}^{\prime}=3 p_{1} p_{3}-p_{2}
$$

We show how to do this using handle calculus
Base case $X_{1,1,1}$ is

What's next?
(1) easy to construct embeddings of other lens spaces into $\mathbb{C} P^{2} \#_{n} \overline{\mathbb{C}} \bar{P}^{2}$ using same approach.
What would an optimal result be?
What about embeddnigs into $S^{2} \times s^{2} ?$
(2) Build other small caps In particular, can one find small exotic symplectic 4 -manifolds?

Thanks
for your Attention

