The Lagrangian cobordism group of Weinstein manifolds

Valentin Bosshard

ETH Zürich

05.01.2024

Valentin Bosshard (ETH Zürich)	The Lagrangian col	bordism group of	f Weinstein mfds
--------------------------------	--------------------	------------------	------------------

2

Lagrangian Cobordisms

Let X be a symplectic manifold.

Definition (Arnold '80)

A Lagrangian cobordism is a Lagrangian submanifold V in $\mathbb{C} \times X$ if there is a compact set $K \subset \mathbb{C}$ such that

$$\pi_{\mathbb{C}}^{-1}(\mathbb{C}\setminus K)\cap V=igcup_{j=0}^m(\gamma_j imes L_j).$$

Let $\mathcal{L}^*(X)$ be a class of Lagrangian submanifolds, i.e. * is a subset

 $* \subset \{$ oriented, exact, monotone, unobstructed, compact, embedded, ... $\}$.

Let $\mathcal{L}^*(X)$ be a class of Lagrangian submanifolds, i.e. * is a subset

 $* \subset \{$ oriented, exact, monotone, unobstructed, compact, embedded, ... $\}$.

Definition

The Lagrangian cobordism group of X is defined as

$$\Omega^*(X) = \bigoplus_{L \in \mathcal{L}^*(X)} \mathbb{Z}L / \inf_{\substack{L_0 + \dots + L_m = 0 \\ \text{if there is a Lag cob } V \in \mathcal{L}^*(\mathbb{C} \times X) \\ \text{with ends } L_0, \dots, L_m}$$

Let $\mathcal{L}^*(X)$ be a class of Lagrangian submanifolds, i.e. * is a subset

 $* \subset \{$ oriented, exact, monotone, unobstructed, compact, embedded, ... $\}$.

Definition

The Lagrangian cobordism group of X is defined as

$$\Omega^*(X) = \bigoplus_{L \in \mathcal{L}^*(X)} \mathbb{Z}L / \inf_{\substack{L_0 + \dots + L_m = 0 \\ \text{if there is a Lag cob } V \in \mathcal{L}^*(\mathbb{C} \times X) \\ \text{with ends } L_0, \dots, L_m}$$

Remark

• (Identity cobordism) Reversing orientation yields $\overline{L} = -L$ in $\Omega^*(X)$.

イロト イヨト イヨト

Let $\mathcal{L}^*(X)$ be a class of Lagrangian submanifolds, i.e. * is a subset

 $* \subset \{$ oriented, exact, monotone, unobstructed, compact, embedded, ... $\}$.

Definition

The Lagrangian cobordism group of X is defined as

$$\Omega^*(X) = \bigoplus_{L \in \mathcal{L}^*(X)} \mathbb{Z}L / \inf_{\substack{L_0 + \dots + L_m = 0 \\ \text{if there is a Lag cob } V \in \mathcal{L}^*(\mathbb{C} \times X) \\ \text{with ends } L_0, \dots, L_m}$$

Remark

- (Identity cobordism) Reversing orientation yields $\overline{L} = -L$ in $\Omega^*(X)$.
- (Lagrangian suspension) If L_0 and L_1 are Hamiltonian isotopic then $L_0 = L_1$ in $\Omega^*(X)$.

3/13

イロト イヨト イヨト

Let $\mathcal{L}^*(X)$ be a class of Lagrangian submanifolds, i.e. * is a subset

 $* \subset \{$ oriented, exact, monotone, unobstructed, compact, embedded, ... $\}$.

Definition

The Lagrangian cobordism group of X is defined as

$$\Omega^*(X) = \bigoplus_{L \in \mathcal{L}^*(X)} \mathbb{Z}L / \inf_{\substack{L_0 + \dots + L_m = 0 \\ \text{if there is a Lag cob } V \in \mathcal{L}^*(\mathbb{C} \times X) \\ \text{with ends } L_0, \dots, L_m}$$

Remark

- (Identity cobordism) Reversing orientation yields $\overline{L} = -L$ in $\Omega^*(X)$.
- (Lagrangian suspension) If L_0 and L_1 are Hamiltonian isotopic then $L_0 = L_1$ in $\Omega^*(X)$.
- (Lagrangian surgery) If $L_0 \pitchfork L_1 = \{p\}$ then $L_0 \#_p L_1 = L_0 + L_1$ in $\Omega^*(X)$.

3/13

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

The Lagrangian cobordism group of Weinstein manifolds

Theorem (B. '23)

Let X^{2n} be a Weinstein manifold and $* = \{$ oriented, exact conical at $\infty \}$. Then

$$\Omega^*(X) \cong H^n(X) \cong H_n(X_0, \partial X_0)$$

induced by sending a Lagrangian L to its relative homology class. $(X_0 \text{ is a Liouville domain of } X)$

The Lagrangian cobordism group of Weinstein manifolds

Theorem (B. '23)

Let X^{2n} be a Weinstein manifold and $* = \{$ oriented, exact conical at $\infty \}$. Then

$$\Omega^*(X) \cong H^n(X) \cong H_n(X_0, \partial X_0)$$

induced by sending a Lagrangian L to its relative homology class. $(X_0 \text{ is a Liouville domain of } X)$

Example

 $X = T^*M$, M compact. Then

$$\Omega^{*}(T^{*}M) \cong H^{n}(T^{*}M) \cong H^{*}(M) \cong \begin{cases} \mathbb{Z}, & M \text{ orientable,} \\ \mathbb{Z}/2\mathbb{Z}, & M \text{ not orientable,} \end{cases}$$

generated by a fiber.

э

イロン イ団 とく ヨン イヨン

	X	*	$\Omega^*(X)$
Arnold '80	T^*S^1	oriented, immersed circles	$H_1(S^1)\oplus \mathbb{R}\oplus \mathbb{Z}$

2

	X	*	$\Omega^*(X)$
Arnold '80	T^*S^1	oriented, immersed circles	$H_1(S^1)\oplus \mathbb{R}\oplus \mathbb{Z}$
Haug '14	\mathbb{T}^2	oriented, non-contr. simple circles	$H_1(\mathbb{T}^2)\oplus \mathbb{R}/\mathbb{Z}$

イロト イロト イヨト イヨト 二日

	X	*	$\Omega^*(X)$
Arnold '80	T^*S^1	oriented, immersed circles	$H_1(S^1)\oplus \mathbb{R}\oplus \mathbb{Z}$
Haug '14	\mathbb{T}^2	oriented, non-contr. simple circles	$H_1(\mathbb{T}^2)\oplus \mathbb{R}/\mathbb{Z}$
Perrier '19 Rathel-Fournier '23	Σ _g	oriented, non-contr. simple circles	$H_1(\Sigma_g)\oplus \mathbb{Z}/_{\chi(\Sigma)\mathbb{Z}}\oplus \mathbb{R}/\mathbb{Z}$

2

	X	*	$\Omega^*(X)$
Arnold '80	T^*S^1	oriented, immersed circles	$H_1(S^1)\oplus \mathbb{R}\oplus \mathbb{Z}$
Haug '14	\mathbb{T}^2	oriented, non-contr. simple circles	$H_1(\mathbb{T}^2)\oplus\mathbb{R}/\mathbb{Z}$
Perrier '19 Rathel-Fournier '23	Σ_g	oriented, non-contr. simple circles	$H_1(\Sigma_g)\oplus \mathbb{Z}/_{\chi(\Sigma)\mathbb{Z}}\oplus \mathbb{R}/\mathbb{Z}$
B. '22	Σ with ∂	oriented arcs and oriented exact circles	$H^1(\Sigma) \cong H_1(\Sigma, \partial \Sigma)$

イロト イロト イヨト イヨト

2

Theorem (B.'23)

Let X be a Liouville manifold. Then there is a commutative diagram:

where W(X) is the triangulated closure of the wrapped Fukaya category of X.

<ロ> <四> <四> <四> <三</p>

Theorem (B.'23)

Let X be a Liouville manifold. Then there is a commutative diagram:

where W(X) is the triangulated closure of the wrapped Fukaya category of X. Moreover, *i* is an isomorphism if X is Weinstein.

イロト イ団ト イヨト イヨト

Theorem (B.'23)

Let X be a Liouville manifold. Then there is a commutative diagram:

where $\overline{W(X)}$ is the triangulated closure of the wrapped Fukaya category of X. Moreover, *i* is an isomorphism if X is Weinstein.

The map Θ is always surjective.

イロト イヨト イヨト イヨト

Theorem (B.'23)

Let X be a Liouville manifold. Then there is a commutative diagram:

where $\overline{W(X)}$ is the triangulated closure of the wrapped Fukaya category of X. Moreover, *i* is an isomorphism if X is Weinstein.

The map Θ is always surjective.

Corollary

 Θ is not always an isomorphism.

3

Theorem (B.'23)

Let X be a Liouville manifold. Then there is a commutative diagram:

where $\overline{W(X)}$ is the triangulated closure of the wrapped Fukaya category of X. Moreover, *i* is an isomorphism if X is Weinstein.

The map Θ is always surjective.

Corollary

 Θ is not always an isomorphism.

Let X be flexible Weinstein and not subcritical

$$\mathcal{K}_0(\mathcal{W}(X)) = 0, \qquad \Omega^*(X) \cong H^n(X) \neq 0.$$

3

Viterbo restriction

Corollary

Let X be a Liouville manifold, $Y \subset X$ Weinstein subdomain. Then

$$\Omega^*(X) \xrightarrow{i} H^n(X) \longrightarrow H^n(Y) \xrightarrow{i^{-1}} \Omega^*(Y)$$

is well-defined.

イロト イヨト イヨト イヨト

2

Let X be a Liouville manifold. Want to show that

$$\Omega^*(X) \stackrel{i}{\longrightarrow} H^n(X) \cong H_n(X_0, \partial X_0)$$

is well-defined and i is an isomorphism if X is Weinstein.

< □ > < □ > < □ > < □ > < □ >

э

Let X be a Liouville manifold. Want to show that

$$\Omega^*(X) \stackrel{i}{\longrightarrow} H^n(X) \cong H_n(X_0, \partial X_0)$$

is well-defined and i is an isomorphism if X is Weinstein.

<u>Well-definedness</u>: Look at a cobordism $V \subset \mathbb{C} \times X$ as a relative (n + 1)-cycle in X that defines singular homology. It has boundary $L_0 + \cdots + L_m$.

(日) (四) (日) (日) (日)

Weinstein manifolds

Definition

 X^{2n} Liouville is *Weinstein* if the Liouville flow is gradient-like for a Morse function f on X.

Weinstein manifolds

Definition

 X^{2n} Liouville is *Weinstein* if the Liouville flow is gradient-like for a Morse function f on X.

• Its core/skeleton is the subset of X that does not escape to infinity under the Liouville flow (i.e. the union of all stable manifolds).

Weinstein manifolds

Definition

 X^{2n} Liouville is *Weinstein* if the Liouville flow is gradient-like for a Morse function f on X.

- Its core/skeleton is the subset of X that does not escape to infinity under the Liouville flow (i.e. the union of all stable manifolds).
- Its cocores are the unstable manifolds of the critical points of f of index n.

Let X be Weinstein. Then

$$\Omega^*(X) \stackrel{i}{\longrightarrow} H^n(X) \cong H_n(X_0, \partial X_0)$$

is surjective:

2

Let X be Weinstein. Then

$$\Omega^*(X) \stackrel{i}{\longrightarrow} H^n(X) \cong H_n(X_0, \partial X_0)$$

is surjective: Let $x \in \operatorname{Crit}_n(f)$. Then

 $[i(\operatorname{cocore}(x))] = [x].$

So *i* is surjective.

Let X be Weinstein.

Theorem (Hanlon-Hicks '22)

If $L \oplus \operatorname{core}_X$ then there is a Lagrangian cobordism with ends cocores at $L \oplus \operatorname{core}_X$ and L.

イロト イヨト イヨト

Let X be Weinstein.

Theorem (Hanlon-Hicks '22)

If $L \oplus \operatorname{core}_X$ then there is a Lagrangian cobordism with ends cocores at $L \oplus \operatorname{core}_X$ and L.

Let X be Weinstein.

Theorem (Hanlon-Hicks '22)

If $L \oplus \operatorname{core}_X$ then there is a Lagrangian cobordism with ends cocores at $L \oplus \operatorname{core}_X$ and L.

Let X be Weinstein.

Theorem (Hanlon-Hicks '22)

If $L \oplus \operatorname{core}_X$ then there is a Lagrangian cobordism with ends cocores at $L \oplus \operatorname{core}_X$ and L.

Let X be Weinstein.

Theorem (Hanlon-Hicks '22)

If $L \oplus \operatorname{core}_X$ then there is a Lagrangian cobordism with ends cocores at $L \oplus \operatorname{core}_X$ and L.

Corollary

 $\Omega^*(X)$ is generated by cocores.

2

Corollary

 $\Omega^*(X)$ is generated by cocores.

So

$$\Omega^{*}(X) = \bigoplus_{L \text{ a cocore}} \mathbb{Z}L / \inf_{\substack{t_{0}+\dots+L_{m}=0\\\text{if there is } V \in \mathcal{L}^{*}(\mathbb{C} \times X)\\\text{with ends } L_{0},\dots L_{m}}} H^{n}(X) = \bigoplus_{x \in \operatorname{Crit}_{n}(f)} \mathbb{Z}x / \inf_{\substack{x_{0}+\dots+x_{m}=0\\\text{if } y \sim x_{j} \text{ are all Morse}\\\text{tracectories for } y \in \operatorname{Crit}_{n-1}(f)}}$$

イロト イヨト イヨト イヨト

2

Corollary

 $\Omega^*(X)$ is generated by cocores.

So

$$\Omega^{*}(X) = \bigoplus_{L \text{ a cocore}} \mathbb{Z}L / \stackrel{L_{0}+\dots+L_{m}=0}{\inf \text{ there is } V \in \mathcal{L}^{*}(\mathbb{C} \times X) \\ \text{with ends } L_{0},\dots L_{m}}$$
$$H^{n}(X) = \bigoplus_{x \in \operatorname{Crit}_{n}(f)} \mathbb{Z}x / \stackrel{x_{0}+\dots+x_{m}=0}{\inf y \to x_{j} \text{ are all Morse} \\ \operatorname{tracectories for } y \in \operatorname{Crit}_{n-1}(f)}$$

The map

$$\Omega^*(X) \stackrel{i}{\longrightarrow} H^n(X)$$

is injective if the relation:

$$\operatorname{cocore}(x_0) + \cdots + \operatorname{cocore}(x_m) = 0$$

whenever

$$y \rightsquigarrow x_j$$
 are all Morse tracectories for $y \in \operatorname{Crit}_{n-1}(f)$

is induced by a Lagrangian cobordism.

Following Lazarev '22: An (n-1)-handle is modelled on $T^*B^{n-1} \times B^2$.

Following Lazarev '22: An (n-1)-handle is modelled on $T^*B^{n-1} \times B^2$.

Following Lazarev '22: An (n-1)-handle is modelled on $T^*B^{n-1} \times B^2$.

Following Lazarev '22: An (n-1)-handle is modelled on $T^*B^{n-1} \times B^2$.

Following Lazarev '22: An (n-1)-handle is modelled on $T^*B^{n-1} \times B^2$.

Note that $B^{n-1} \times \gamma_j^T \cong \operatorname{cocore}(x_j)$.

Following Lazarev '22: An (n-1)-handle is modelled on $T^*B^{n-1} \times B^2$.

Note that $B^{n-1} \times \gamma_j^T \cong \operatorname{cocore}(x_j)$. By Lagrangian surgery we get that $(B^{n-1} \times \gamma_0) \# \cdots \# (B^{n-1} \times \gamma_m)$

is nullhomotopic, hence in $\Omega^*(X)$:

$$\operatorname{cocore}(x_0) + \cdots + \operatorname{cocore}(x_m) = 0.$$