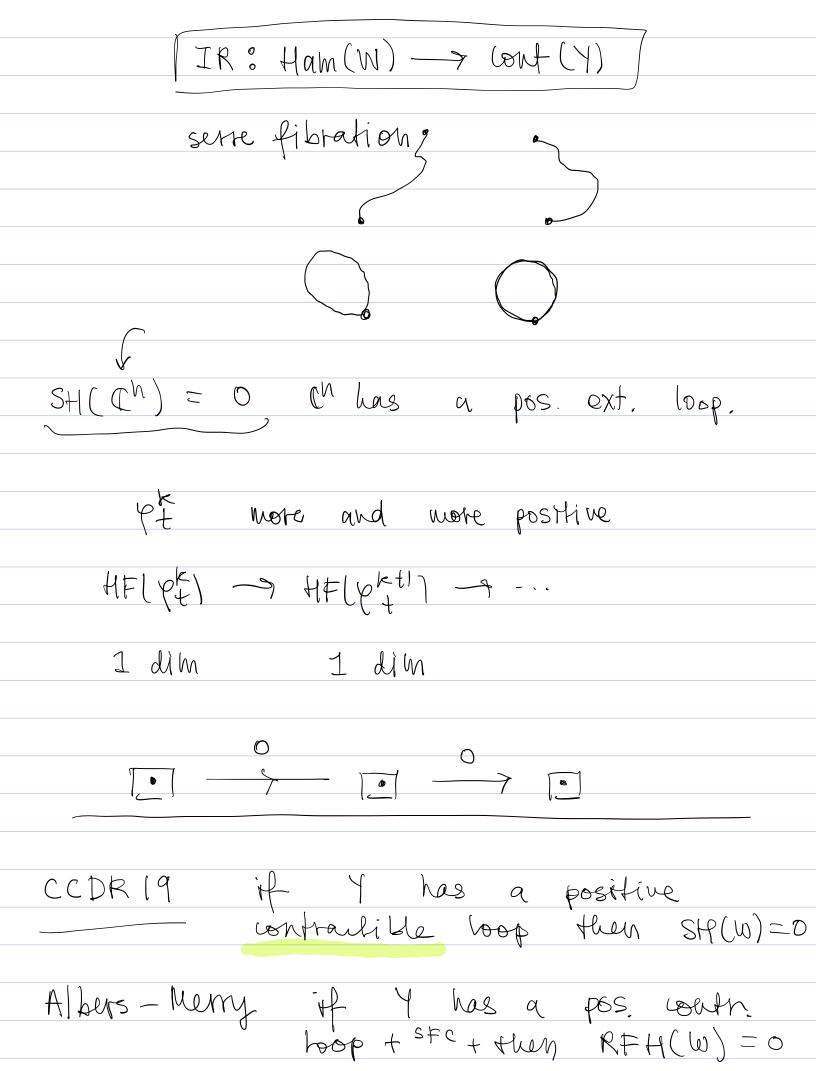
ZOOMINAR! arXiv: 2311.18267 EXTENSIBLE POSITIVE LOOPS and vanishing of SH (symplectic cohomology). Joint up Jakob Hedicke, Etic kilgove. Merry - Uljarević. 2019 f (wa) sy arbitrary contact read sy in end Jr. SY -> SY (Pt) o Po = Po o Pt pt induces a contact isotopy on Y application: if I gt cont_ iso. po=id=9, which is positive [EP2000] which is extensible po = p1 of Hamiltonians in W Then $\dim SH(W) \leq \dim H^{*}(W)$



Ritter 2014-2016 assumes contact isotopies
are strict for some
untait form x.
2
we also develop a relative version
W Z Jangent to TL
L L L M = A legendrian
TR
$\frac{IR}{Lag(W)} \xrightarrow{IR} Leg(Y)$
L A
[Theotem] if A admits a pos. extensible
$ \begin{array}{c c} \hline Theotem & if \Lambda admits a pos. extensible \\ \hline & boop then HW(L) = 0. \end{array} $
$\rho \gamma \gamma$

 $SH(W) = 0 \implies HW(L) = 0.$ note whollary revover famous result $SH(W \times C) = 0.$ = 1[EP2000] is fillable and Keep chorel 4 d. HW(L) = 0 => A has peeb chord. (AFM) suppose y admits a POS, loop. in cont(Y). Then Y admits Reeb ORBIT for every d. Extensibility to also related to SMC and exotic lagtangian fillings.

they idea is the so-called twisting trick [MU19], [Ritter 14], [Ritter 16], [ulj 17],... compares naturality transfo. persus continuation gluen pt Ham Isot, associate HF(47) HF(VFL) = Z/2 < fixed points of Vi). If should have no discrim. points @ D. given a nonnegative path of tootopies point HF(Voit) -> HF(Viit) IR(Vsit) th HAR E (Wht(Y)) 35 $W: \mathbb{C} \longrightarrow M \qquad \exists w \neq \exists (w) \neq w = 0$ twisted periodic V-s,1(W(s,t+1)) = W(s,t). [DS 93] output of < O input

 $\frac{\partial Hs}{\partial c} \leq 0$ output () cont. I naturality I if pt is a loop in Ham (W) based at 1d, THEN $HF(\gamma + \psi +) \leftarrow HF(\psi +)$ naturality commutes of continuation. (if I pos. Ext. Loop Lemma take for Ham isot. (HF(for) >>> SH(W)) as for gets hove pos. POS. tatee Pt $= \psi_{j}^{\dagger}$ VKH = Pt Vk

