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Introduction

Homology theory depends on the choice of a coefficient ring.
HF over different rings:

1 Some Lagrangians have non-zero HF only over specific fields, e.g. RP2

in CP2.
2 Arnold conjecture: obtain better bounds of the fixed points of

Hamiltonian diffeomorphisms;
over Fp (a field of characteristic p) by Abouzaid–Blumberg,
over Z by Bao–Xu.

Theme
How much does the choice of a coefficient ring to set-up Floer theory
impact the quantitative information (i.e. spectral invariants)?
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Quick review of spectral invariants

Spectral invariants are important quantitative information of Floer
theory along with boundary depths (or barcodes).
Pick a ring R ; we get HF (H;R) and QH(M;R), which are related by
the PSS-map PSSH;R : QH(M;R)

∼−→ HF (H;R).
For a pair of a Hamiltonian H and a quantum homology class
a ∈ QH(M;R)\{0}, we define

cR(H, a) := inf{τ ∈ R : PSSH;R(a) ∈ Im(iτ∗ )} (1)

where iτ∗ : HF<τ (H;R) → HF(H;R) is the map coming from
inclusion.
Spectral invariants give rise to a metric on Ham(M):

γR(ϕ) := inf
ϕH=ϕ

γR(H), γR(H) := c(H, [M]) + c(H, [M]),

dγR (ϕ, ϕ
′) := γR(ϕ

−1ϕ′).
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Main result

It is widely known that for CPn, the spectral norm over a field K is
uniformly bounded (Entov-Polterovich 04):

sup
ϕ∈Ham(CPn)

γK(ϕ) ⩽ 1.

This property was crucial in some important work on CPn, e.g.
Ginzburg-Gürel on pseudo-rotations, Shelukhin on Viterbo’s
conjecture.

Theorem A (K-Shelukhin 23)
For CPn with n > 1, we have

sup
ϕ∈Ham(CPn)

γZ(ϕ) = +∞. (2)

Remark: for CP2, we have supϕ∈Ham(CPn) γZ/14(ϕ) = +∞.
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Plan of the talk

I will discuss
Proof of Thm A.
Applications of Thm A.
What is behind the contrast between field coefficients and
Z-coefficients (i.e. boundedness vs. divergence)?
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Application: Hingston’s question

To study closed geodesics, Hingston uses “spectral invariants”: for
α ∈ H∗(ΛM;R) (homology of the loop space over ring R), you get
cR(α) ∈ R via a variational procedure and posed the following
question.

Hingston’s question
Does there exist a manifold M and a homogeneous non-torsion class
α ∈ H∗(ΛM;R) (R is a ring) such that

cR(k · α) < cR(α)

for some k ∈ N?

This question remains widely open; Chambers–Liokumovich showed
that for S2, k odd and |α| = 1, the answer is actually negative.
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Application: Hingston’s question

We consider the following symplectic counterpart:

Symplectic version of Hingston’s question
Does there exist a symplectic manifold (M, ω) and a Hamiltonian H on it
such that

inf
k∈Z

cZ(H, k · [M]) < cZ(H, [M])?

Theorem B (K-Shelukhin 23)
Consider CPn with n > 1. For every non-zero class a ∈ QH(CPn;Z), there
is a Hamiltonian H such that

inf
k∈N

cZ(H, k · a) < cZ(H, a). (3)
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Application: Pseudo-rotations

Pseudo-rotations are Hamiltonian diffeomorphisms that have the
‘minimal’ expected periodic points from the viewpoint of the Arnold
conjecture (that is, n + 1 for CPn).
Their dynamical behavior has been studied extensively, but the
geometry of the entire set of pseudo-rotations was not studied.

Question
What does the set PR(M, ω) := {ϕ ∈ Ham(M, ω) : ϕ is a pseudo-rotation}
look like in Ham(M, ω) wrt the Hofer metric?

We prove the first result in this direction, which states that the set
PR(M, ω) is “small” in Ham(M, ω).

Theorem C (K-Shelukhin 23)
Consider CPn with n > 1. Then

sup
ϕ∈Ham(CPn)

dHof(ϕ,PR(CPn)) = +∞. (4)
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Proof of Thm A

We look at the case of CP2.
Key point: we have two distinguished Lagrangians, namely the
Chekanov torus T 2

Chek and RP2 that satisfy the following remarkable
properties:

1 They are disjoint, T 2
Chek ∩ RP2 = ∅.

2 They are both superheavy; the Chekanov torus wrt 1C and RP2 wrt
1Z/2.

Definition: Superheaviness for CPn

On CPn, we define the asymp. spectral invariant of 1R ∈ QH∗(CPn;R);

ζR : C∞(CPn) → R, ζR(H) := lim
k→+∞

cR(k · H, 1R)
k

.

A subset S ⊂ CPn is superheavy wrt. the unit 1R = [CPn] ∈ QH(CPn;R)
iff for any H, we have infx∈S H(x) ⩽ ζR(H) ⩽ supx∈S H(x).
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Obvious corollary: if S is 1R -superheavy, then for a Hamiltonian H s.t.
H|S = τ , we have ζR(H) = τ.

We now study
µ(H) := ζC(H) + ζZ/2(H)

for a Hamiltonian H (H is the inverse Hamiltonian of H).
Pick any a ∈ R. Take a Hamiltonian Ga such that G |T 2

Chek
= a and

G |RP2 = 0 (remember that T 2
Chek ∩ RP2 = ∅). The superheaviness

implies
ζC(Ga) = a, ζZ/2(Ga) = 0.

Thus,
µ(Ga) = a+ 0 = a.

It is easy to see that

ζC(H) ⩽ cC(H, [CP2]), ζZ/2(H) ⩽ cZ/2(H, [CP2]),

so we have

µ(H) ⩽ cC(H, [CP2]) + cZ/2(H, [CP2]).
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Key Lemma
Let R and R ′ be rings and suppose you have a homomorphism j : R −→ R ′.
Let j : QH(M;R) → QH(M;R ′) be the map induced by it.
Then, we have

cR′(H, j(a)) ⩽ cR(H, a)

for every Hamiltonian H and a ∈ QH(M;R).

Proof:

HF τ (H;R) HF∗(H;R)

HF τ (H;R ′) HF (H;R ′) QH(M;R ′).

QH(M;R)
iτ∗

j j

iτ∗ PSSH;R′

j

PSSH;R

By considering Z → Z/2 and Z → C, we get, for any H,

cC(H, [CP2]) ⩽ cZ(H, [CP2]),

cZ/2(H, [CP2]) ⩽ cZ(H, [CP2]).
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Finishing the proof

Recall that we had

µ(H) ⩽ cC(H, [CP2]) + cZ/2(H, [CP2]).

Key lemma implies

µ(H) ⩽ cZ(H, [CP2]) + cZ(H, [CP2]) = γZ(H).

Take H = Ga; we get a = µ(Ga) ⩽ γZ(Ga) for every a ∈ R.
Thus,

sup
H

γZ(H) = +∞.

This implies
sup
ϕ

γZ(ϕ) = +∞.

For CPn with n > 2, we need to find a pair of Lagrangians that have
nice properties (disjointness and superheaviness). We use RPn and a
Chekanov-type torus by Chanda–Hirschi–Wang (‘lifted Vianna tori’).
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Proof of Thm B

Recall that we want to prove the following:

Theorem B (K-Shelukhin 23)
For every non-zero class a ∈ QH(CPn;Z) with n > 1, there is a
Hamiltonian H such that

inf
k∈N

cZ(H, k · a) < cZ(H, a). (5)

We focus on the case a = [CPn];

βspec(H) := cZ(H, [CPn])− inf
k∈N

cZ(H, k · [CPn]) > 0. (6)

Theorem B (or (6)) follows from the following:

Thm (K-Shelukhin 23)
For CPn with n > 1, we have

γZ(H) ⩽ 1 + βspec(H) + βspec(H).
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Notice that, as we know from Thm A that there is H s.t. γZ(H) > 1,
for such H, Thm implies βspec(H) > 0 or βspec(H) > 0 and we obtain
Hingston’s question.
To prove Thm, we need the following lemma:

Z vs Q Lemma (K-Shelukhin 23)
On (M, ω), for every Hamiltonian H, we have

inf
k∈N

cZ(H, k · [M]) = cQ(H, [M]) (7)

By ZvsQ Lemma, we have

γZ(H) = c(H, 1Z) + c(H, 1Z)

= (c(H, 1Z)− c(H, 1Q)) +
(
c(H, 1Z)− c(H, 1Q)

)
+c(H, 1Q) + c(H, 1Q)

= βspec(H) + βspec(H) + γQ(H)

⩽ βspec(H) + βspec(H) + 1.
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Proof of Thm C

Recall that what we want to prove is

sup
ϕ∈Ham(CPn)

dHof(ϕ,PR(CPn)) = +∞. (8)

The main difficulty to study the (Hofer) geometry of the set PR(M, ω)
−→ there was no measurement that distinguishes pseudo-rotations and
other Hamiltonian diffeomorphisms
(Boundary depth? For the cases where we know that the boundary
depth can diverge, e.g. the 2-torus, there are no pseudo-rotations).
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Our proposal is to use γZ as a measurement that distinguishes
pseudo-rotations and other Hamiltonian diffeomorphisms;
in fact, for a pseudo-rotation ϕ ∈ Ham(CPn), we have

γZ(ϕ) ⩽ 1.

We have
1 On CPn, γZ can diverge, but for PR’s it stays small.
2 γZ ⩽ dHof .

Thus,
sup

ϕ∈Ham(CPn)
dHof(ϕ,PR(CPn)) = +∞.
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Behind K vs. Z: Poincaré duality

Boundedness γK ⩽ 1 comes from Poincaré duality formula for spectral
invariants:

− cK(H, a) = inf{cK(H, b) : Π(a, b) ̸= 0} (9)

where Π : QH(M;K)⊗ QH(M;K) → K is some pairing.
From (9), for CPn we obtain

cK(H, [CPn]) = −cK(H, [pt]),

and thus, by using the quantum relation [pt] ∗ [CPn−1] = [CPn]t−1

and the triangle inequality, we get γK ⩽ 1.
However, over Z, we do NOT have γZ ⩽ 1 (Thm A).
This means that Poincaré duality formula fails over Z.
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Why?
Over K, as there are no torsion classes, i.e. ∀τ ,

Ext(HF<τ
∗ (H;K),K) = 0,

so we have the identification between HF ∗
<τ (H;K) and

Hom(HF<τ
∗ (H;K),K) (universal coefficient Theorem).

Over Z, it can be Ext(HF<τ
∗ (H;Z),Z) ̸= 0 for some τ , i.e. there are

torsion classes (which cannot be seen over K-coefficients).
So how can be describe cZ(H, a) in terms of HF<τ (H;Z)?

Poincaré duality formula over Z (KS23)
We have

inf
Π(a,b)̸=0

cZ(H, b)− βtor(H) ⩽ −cZ(H, a) ⩽ inf
Π(a,b) ̸=0

cZ(H, b) (10)

where βtor(H) measures the “persistence” of the torsion classes in
Ext(HF<τ

∗ (H;Z),Z).

Yusuke Kawamoto (ETH Zürich) Quantitative Floer theory and coefficients
Symplectic Zoominar March 15 (Fri), 2024
18 / 19



Summary

For CPn, γK ⩽ 1 (K: field), but γZ −→ +∞.
The “persistence” of the torsion classes (in Ext(HF⩽τ

∗ (H;Z),Z)) is
responsible for this contrast.
This solves symplectic ver of Hingston’s question.
This has application to geometry of pseudo-rotations.
Thank you for your attention!
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