Symplectic squeezing of domains in $T^*\mathbb{T}^n$

Qi Feng (based on joint work with Jun Zhang)

University of Science and Technology of China

March, 2024

(日) (四) (문) (문) (문)

Background

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Background

Denote the standard simplex in $\mathbb{R}_{\geq 0}^n$ by $\Delta^n(r) \coloneqq \{x_1 + \cdots + x_n \leq r\}$. Introduce two domains in $T^*\mathbb{T}^n$:

$$P^{2n}(r) \coloneqq \mathbb{T}^n \times \Delta^n(r)$$

and

$$Y^{2n}(r,v) \coloneqq \mathbb{T}^n \times \left((-r,r)v \times v^{\perp} \right).$$

Here, v is a unit vector in \mathbb{R}^n and v^{\perp} denotes the **hyperplane** in fiber \mathbb{R}^n that is perpendicular to v. For instance, when n = 2, v^{\perp} is simply a line perpendicular to v.

† There are (n-1)-many unbounded directions in the fiber of $Y^{2n}(r, v)$.

- 2

Rigidity

• We have some rigidity on vertical cylinder $Y^{2n}(r, v)$.

• We say ϕ a $\widetilde{\pi}_1(\mathbb{T}^n)$ -trivial symplectic embedding if ϕ is a symplectic embedding with $\phi_*(\alpha) = \alpha$ for any $\alpha \in \widetilde{\pi}_1(\mathbb{T}^n) := [S^1, \mathbb{T}^n]$.

Theorem (Sikarov, 1989)

There is a $\tilde{\pi}_1(\mathbb{T}^n)$ -trivial symplectic embedding from $P^{2n}(s)$ to $Y^{2n}(\frac{r}{2}, (\mathbf{1}, \mathbf{0}, \dots, \mathbf{0}))$ if and only if $s \leq r$.

Theorem (Maley-Mastrangeli-Traynor, 2000)

There is a symplectic embedding $\psi \colon P^{2n}(s) \to Y^{2n}(\frac{r}{2}, (1, 0, \dots, 0))$ with

$$\psi_* \colon H_1(P^{2n}(s)) \xrightarrow{\simeq} H_1\left(Y^{2n}\left(\frac{i}{2}, (1, 0, \cdots, 0)\right)\right)$$

if and only if $s \leq r$.

BPS capacity

In general, Biran, Polterovich and Salamon define the capacity for a pair (W, A) and a nontrivial free homotopy class $\alpha \in \tilde{\pi}_1(\mathbb{T}^n)$:

$$c_{ ext{BPS}}(W, A; lpha) := \inf \left\{ c > 0 \; \middle| \; ext{If } \sup_{S^1 imes A} H \leq -c, ext{then } \mathscr{P}_{lpha}(H)
eq \emptyset
ight\}$$

where $\mathscr{P}_{\alpha}(H)$ denotes the set of Hamiltonian orbits in the homotopy class α . Note that BPS capacity is invariant under $\tilde{\pi}_1(\mathbb{T}^n)$ -trivial symplectomorphisms.

Theorem (Gong-Xue, 2020)

Let v be a unit vector in \mathbb{R}^n . If v is **rational**, i.e. v is a scalar multiple of an integer vector $\alpha \in \mathbb{Z}^n \setminus \{0\}$. Then

$$c_{\rm BPS}(Y^{2n}(r,v),\mathbb{T}^n;\pm\alpha)=r\|\alpha\|.$$

Therefore, there exists a obstruction to a $\tilde{\pi}_1(\mathbb{T}^n)$ -trivial symplectic embedding from $P^{2n}(s)$ to $Y^{2n}(r, v)$ for rational v.

Theorem (Gong-Xue, 2020)

If v is **irrational**, i.e. v is not a scalar multiple of any integer vector. Then for all $\alpha \in H_1(\mathbb{T}^n, \mathbb{Z}) \setminus \{0\}$ and all r > 0, we have

$$c_{\mathrm{BPS}}(Y^{2n}(r,v),\mathbb{T}^n;\alpha)=\infty.$$

• There is **no** obvious obstruction to $\tilde{\pi}_1(\mathbb{T}^n)$ -trivial symplectic embedding from $P^{2n}(s)$ to $Y^{2n}(r, v)$ for irrational v.

• If we drop the requirement that $\tilde{\pi}_1\text{-trivial}$, we can indeed construct symplectic embedding. See our main theorem.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Question

What is the precise value of $c_{BPS}(P^{2n}, \mathbb{T}^n; \alpha)$?

Main Theorem

Theorem (F.-Zhang, 2024)

Let v be an **irrational** unit vector in $\mathbb{R}^{n\geq 2}$, then there exist a symplectic embedding from $P^{2n}(r)$ to $Y^{2n}(1, v)$ for any r > 0.

Corollary

If v is an irrational unit vector, then any bounded domain of $T^*\mathbb{T}^n$ can symplectically embed into $Y^{2n}(1, v)$.

- † The symplectic embedding in our Theorem is not $\widetilde{\pi}_1(\mathbb{T}^n)$ -trivial.
- The special case n = 2 resolves an open problem:

Problem (Gong-Xue, 2020)

Let v be an irrational vector but not an eigenvector of any $A \in SL_2(\mathbb{Z})$. Is it true that for all r > 0, there exists a symplectic map from $P^4(r)$ to $Y^4(1, v)$?

 $Y^{2n}(r,v)$ vs. $X^{2n}(r,w)$

When the dimension $2n \ge 6$ (so $n \ge 3$), instead of the "fat cylinder"

$$Y^{2n}(r,v) := \mathbb{T}^n \times (-r,r)v \times v^{\perp}$$

one can consider the following "thin cylinder",

$$X^{2n}(r,w) := \mathbb{T}^n \times D^{n-1}_{\mathrm{perp}}(r) \times \mathbb{R}w$$

where $D_{\text{perp}}^{n-1}(r)$ is a disk of radius r in \mathbb{R}^n , (n-1)-dimensional, and perpendicular to the line $\mathbb{R}w$ pointing in the direction of w.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● のへの

• If there is an rational vector α perpendicular to w, then

$$X^{2n}(r,w) \subset Y^{2n}(r,\alpha) \Rightarrow c_{\text{BPS}}(X^{2n}(r,w),\mathbb{T}^n;\alpha) \leq r \|\alpha\|.$$

In an opposite direction, motivated by our main Theorem, here is another intriguing question.

Question (Xue, 2024)

Suppose $D_{perp}^{n-1}(r)$ contains no rational vectors at all, is it possible that there exists a symplectic embedding from $P^{2n}(r)$ to $X^{2n}(1, w)$ for any r > 0?

Remark

The condition that $D_{\text{perp}}^{n-1}(r)$ contains no rational vectors at all is equivalent to that $w = (w_1, \dots, w_n)$ is \mathbb{Q} -independent.

Classical non-squeezing in \mathbb{R}^{2n}

• Gromov proves that if there exists a symplectic embedding from $B^{2n}(r)$ to $B^2(1) \times \mathbb{R}^{2n-2}$, then $r \leq 1$. Here $B^2(1)$ is in the coordinate of x_1 and y_1 . The bounded direction is important.

Question (Hofer, 1990)

Is there r > 0, such that the cylinder $B^2(r) \times \mathbb{R}^{2n-2}$ symplectically embeds into $B^{2n-2}(1) \times \mathbb{R}^2$?

Theorem (Pelayo-Ngoc, 2015)

If
$$n \ge 2$$
, the cylinder $B^2(r) \times \mathbb{R}^{2n-2}$ can be symplectically
embedded into $B^{2n-2}(1) \times \mathbb{R}^2$ for all $r \le \frac{1}{\sqrt{2^{n-1}+2^{n-2}-2}}$.

• The domains we discuss before are bounded on the fiber, the **Lagrangian** subspace of $T^*\mathbb{T}^n$. It is distinct to $B^2(r) \times \mathbb{R}^{2n-2}$, which is bounded on the **symplectic** subspace of \mathbb{R}^n .

Proof

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Arnold's cat map
- Dirichlet's approximation theorem
- Bézout's identity

Arnold's cat map

• We now consider a symplectomorphism in the form of $\Phi_A = (A^{-1}, A)$ on $T^*\mathbb{T}^2$, where A is the famous **Arnold's cat map**,

• There will be two eigenvectors v_1 and v_2 such that $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$. We have the equation for eigenvalues λ_1 and λ_2 :

$$\lambda_1 + \lambda_2 = 3, \lambda_1 \lambda_2 = 1 \Rightarrow 0 < \lambda_2 < 1 < \lambda_1.$$

• The iterations of A, stretchs any domain in \mathbb{R}^2 along one direction v_1 while shrinks the other direction v_2 .

• By Arnold's cat map, we can symplectically embed any bounded domain into $Y^4(1, v_2)$:

$$\Phi_{A^n}\colon P^4(r_n)\to Y^4(1,v_2),\quad r_n\sim\frac{1}{\lambda_2^n}$$

• Note that embeddings produced in this way can only be induced by a matrix $A \in SL_2(\mathbb{Z})$ with tr(A) > 2. Its eigenvalues have to be algebraic numbers solving $x^2 - tr(A)x + 1 = 0$.

• To prove more general case that v is irrational but not eigenvector of any $A \in SL_2(\mathbb{Z})$, we need take an appropriate sequence $\{A_i \in SL_2(\mathbb{Z})\}_{i \in \mathbb{N}}$ such that

 $\Phi_{A_i}: P^4(r_i) \hookrightarrow Y^4(1, v_i)$ with rational v_i approximates v

but $\operatorname{Im}(\Phi_{A_i}) \subset Y^4(1 + \delta_i, v)$ such that δ_i is bounded.

Approximation

• Suppose v is a scalar multiple of $(\kappa, 1)$ for some irrational number κ . Due to **Dirichlet's approximation theorem**, there exists a sequence of coprime pairs $\{(p_i, q_i)\}_{i \in \mathbb{N}}$ satisfying

$$\left| rac{p_i}{q_i} - \kappa
ight| < rac{1}{q_i^2} \quad ext{and} \quad \lim_{i o +\infty} q_i = +\infty.$$

Then the wanted unit vector v_i is a rescale of vector (p_i, q_i) .

• Consider $\{A_i\}_{i\in\mathbb{N}}$ such that

$$(p_i, q_i) \cdot A_i = (1, 0)$$
 and $r_i = \sqrt{p_i^2 + q_i^2}$ (*)

then we verify with the length of projection along v_i direction

$$\max_{x,y\in\Delta^2(r_i)}v_i\cdot A_i(x-y)=\max_{x,y\in\Delta^2(r_i)}\frac{(p_i,q_i)\cdot A_i(x-y)}{\sqrt{p_i^2+q_i^2}}\leq 1.$$

Approximation (cont.)

This means Φ_{A_i} can embed $P^4(r_i)$ into $Y^4(1, v_i)$. To obtain A_i satisfying (*), we will use **Bézout's identity**.

• For coprime p_i, q_i , there exist $a_i, c_i \in \mathbb{Z}$ such that $a_i p_i + c_i q_i = 1$ and $|a_i| \le |q_i|, |c_i| \le |p_i|$. Take

$$A_i = \begin{pmatrix} a_i & -q_i \\ c_i & p_i \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

• In fact, $\Phi_{A_i}(P^4(r_i))$ is in $Y^4(1+\delta_i, v)$, where δ_i is determined by the rectangle spanned by v_i and w_i (perpendicular to v_i).

$$\Phi_{A_i}(P^4(r_i)) \subset \mathbb{T}^2 \times ((-1,1)v_i \times (-\ell_i,\ell_i)w_i)$$

$$\subset Y^4(1,v_i) \cap Y^4(1+\delta_i,v)$$

If $\{\delta_i\}_{i\in\mathbb{N}}$ is bounded, then we finish the proof.

Proof of n = 2

Denote θ_i by the angle between v_i and v. We have $2(1 + \delta_i) = 2\ell_i \sin \theta_i + 2\cos \theta_i$. Then $\delta_i := \ell_i \sin \theta_i + \cos \theta_i - 1 \le \ell_i \theta_i$. Here,

$$\ell_{i} := \max_{x \in \Delta^{2}(\sqrt{p_{i}^{2} + q_{i}^{2}})} |A_{i}x|$$

$$= \sqrt{p_{i}^{2} + q_{i}^{2}} \cdot \max\left\{\sqrt{a_{i}^{2} + c_{i}^{2}}, \sqrt{p_{i}^{2} + q_{i}^{2}}\right\} \le p_{i}^{2} + q_{i}^{2}.$$

$$P^{4}(r_{i})$$

$$P^{4}(r_{i})$$

$$Q(1 + \delta_{i})$$

Figure: Symplectic embedding ψ_{A_i} from $P^4(r_i)$ to $Y^4(1+\delta_i, v)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof of n = 2

Then it is easy to verify that

$$\Phi_{A_i}\left(P^4\left(r_i\right)\right) \subset Y^4(1,v_i) \cap Y^4(1+\delta_i,v)$$

up to a shift in the fiber (which is also a symplectomorphism of $\mathcal{T}^*\mathbb{T}^2$). Recall that

$$\left|\frac{p_i}{q_i} - \kappa\right| < \frac{1}{q_i^2} \quad \Rightarrow \quad (\theta_i \le) \tan \theta_i \le \frac{1}{q_i^2}$$

Therefore,

$$\begin{split} \delta_i &= \ell_i \sin \theta_i + \cos \theta_i - 1 \leq \ell_i \theta_i \\ &\leq \ell_i \tan \theta_i \leq \frac{p_i^2 + q_i^2}{q_i^2} \end{split}$$

which is bounded as disired.

Remarks on proof

• If v is rational, then v is a scalar multiple of (p/q, 1) for some coprime $p, q \in \mathbb{Z}$. We can still find a sequence of pairs $\{(p_i, q_i)\}_{i \in \mathbb{N}}$ to approximate (p/q, 1). But to satisfy the condition

$$\lim_{i\to+\infty}q_i=+\infty,$$

we only have

$$\left|\frac{p_i}{q_i} - \frac{p}{q}\right| < \frac{1}{q_i}$$

So our approach fails for rational v.

• In higher dimensional, we can still find unit vectors v_i , which is a rescale of coprime $(p_{i,1}, \dots, p_{i,n})$, to approximate v by higher dimensional vision Dirichlet's approximation theorem. Denote θ_i as the angle between v_i and v, we have

$$\theta_i \sim \frac{1}{p_{i,1}^{1+1/n}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Key step in higher dimension

Proposition

For any coprime
$$(p_1, \dots, p_n)$$
, there exist $A = (a_{ij})_{1 \le i,j \le n} \in SL_n(\mathbb{Z})$
with $(p_1, \dots, p_n)A = (1, 0, \dots, 0)$ and $|a_{ij}| \le C(n)\sqrt{\sum_{k=1}^n p_k^2}$,
where $C(n)$ is a constant only depending on n .

Assume this proposition, denote $r_i = \sqrt{\sum_{j=1}^n p_{i,j}^2}$, then

$$\ell_i = \max_{x \in \Delta^n(r_i)} |A_i x| \le 2 \sum_{j,k=1}^n r_j |(A_i)_{j,k}| \le 2C(n)n^2 r_j^2.$$

We can also verify that

$$\Phi_{A_i}(P^{2n}(r_i)) \subset Y^{2n}(1,v_i) \cap Y^{2n}(1+\delta_i,v)$$

where $\delta_i = \ell_i \sin \theta_i + \cos \theta_i - 1 \sim \ell_i \theta_i$. So we have

$$\frac{r_i}{1+\delta_i} \gtrsim \frac{1}{\frac{1}{r_i} + \frac{\ell_i \theta_i}{r_i}} = \frac{1}{\frac{1}{r_i} + \frac{r_i}{r_i^{1+1/n}}} \to +\infty.$$

Discussion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question (Xue, 2024)

Suppose $w = (w_1, \dots, w_n)$ is \mathbb{Q} -independent, is it possible that there exists a symplectic embedding from $P^{2n}(r)$ to $X^{2n}(1, w)$ for any r > 0?

• We can consider a higher-dimensional **analogue of Arnold's cat map**. Here, for instance,

$$A = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 2 & 5 \\ 2 & 1 & 4 \end{pmatrix} \in SL_3(\mathbb{Z})$$

where its three eigenvalues are $\lambda_1 \approx 0.243$, $\lambda \approx 0.573$, $\lambda_3 \approx 7.184$. Denote v_3 as the unit eigenvector of λ_3 . For any r > 0, sufficiently high iterations of A maps $P^6(r)$ into $X^6(1, v_3)$. The components of v_3 are \mathbb{Q} -independent. • Unfortunately, our method in proving main Theorem is **not** applicable to answer Xue's Question.

• For simplicity, let us illustrate the difficulty when n = 3. Denote v_1 and v_2 the unit vectors perpendicular to w. The directions labelled by v_1 and v_2 are bounded. We approximate v_1 and v_2 by the sequences $\{v_1^i\}_{i\in\mathbb{N}}$ and $\{v_2^i\}_{i\in\mathbb{N}}$ obtained from Dirichlet's approximation theorem.

• The first step is to find $A_i \in SL_3(\mathbb{Z})$ that is able to control both directions v_1^i and v_2^i , for instance,

 $A_i: v_1^i \mapsto (1,0,0) \text{ and } v_2^i \mapsto (0,1,0).$

But we cannot construct such $A_i \in SL_3(\mathbb{Z})$. To make progresses in this direction, one probably needs stronger results from Bézout's identity.

THANK YOU!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで