Symplectic squeezing of domains in $T^{*} \mathbb{T}^{n}$

Qi Feng
（based on joint work with Jun Zhang ）
University of Science and Technology of China

March， 2024

Background

Denote the standard simplex in $\mathbb{R}_{\geq 0}^{n}$ by $\Delta^{n}(r):=\left\{x_{1}+\cdots+x_{n} \leq r\right\}$. Introduce two domains in $T^{*} \mathbb{T}^{n}$:

$$
P^{2 n}(r):=\mathbb{T}^{n} \times \Delta^{n}(r)
$$

and

$$
Y^{2 n}(r, v):=\mathbb{T}^{n} \times\left((-r, r) v \times v^{\perp}\right)
$$

Here, v is a unit vector in \mathbb{R}^{n} and v^{\perp} denotes the hyperplane in fiber \mathbb{R}^{n} that is perpendicular to v. For instance, when $n=2, v^{\perp}$ is simply a line perpendicular to v.

\dagger There are ($n-1$)-many unbounded directions in the fiber of $Y^{2 n}(r, v)$.

Rigidity

- We have some rigidity on vertical cylinder $Y^{2 n}(r, v)$.
- We say ϕ a $\widetilde{\pi}_{1}\left(\mathbb{T}^{n}\right)$-trivial symplectic embedding if ϕ is a symplectic embedding with $\phi_{*}(\alpha)=\alpha$ for any $\alpha \in \tilde{\pi}_{1}\left(\mathbb{T}^{n}\right):=\left[S^{1}, \mathbb{T}^{n}\right]$.

Theorem (Sikarov, 1989)

There is a $\tilde{\pi}_{1}\left(\mathbb{T}^{n}\right)$-trivial symplectic embedding from $P^{2 n}(s)$ to $Y^{2 n}\left(\frac{r}{2},(\mathbf{1}, \mathbf{0}, \cdots, \mathbf{0})\right)$ if and only if $s \leq r$.

Theorem (Maley-Mastrangeli-Traynor, 2000)

There is a symplectic embedding $\psi: P^{2 n}(s) \rightarrow Y^{2 n}\left(\frac{r}{2},(\mathbf{1}, \mathbf{0}, \cdots, \mathbf{0})\right)$ with

$$
\psi_{*}: H_{1}\left(P^{2 n}(s)\right) \stackrel{\simeq}{\rightarrow} H_{1}\left(Y^{2 n}\left(\frac{r}{2},(1,0, \cdots, 0)\right)\right)
$$

if and only if $s \leq r$.

BPS capacity

In general, Biran, Polterovich and Salamon define the capacity for a pair (W, A) and a nontrivial free homotopy class $\alpha \in \widetilde{\pi}_{1}\left(\mathbb{T}^{n}\right)$:

$$
c_{\mathrm{BPS}}(W, A ; \alpha):=\inf \left\{c>0 \mid \text { If } \sup _{S^{1} \times A} H \leq-c, \text { then } \mathscr{P}_{\alpha}(H) \neq \emptyset\right\}
$$

where $\mathscr{P}_{\alpha}(H)$ denotes the set of Hamiltonian orbits in the homotopy class α. Note that BPS capacity is invariant under $\tilde{\pi}_{1}\left(\mathbb{T}^{n}\right)$-trivial symplectomorphisms.

Theorem (Gong-Xue, 2020)

Let v be a unit vector in \mathbb{R}^{n}. If v is rational, i.e. v is a scalar multiple of an integer vector $\alpha \in \mathbb{Z}^{n} \backslash\{0\}$. Then

$$
c_{\mathrm{BPS}}\left(Y^{2 n}(r, v), \mathbb{T}^{n} ; \pm \alpha\right)=r\|\alpha\| .
$$

Therefore, there exists a obstruction to a $\widetilde{\pi}_{1}\left(\mathbb{T}^{n}\right)$-trivial symplectic embedding from $P^{2 n}(s)$ to $Y^{2 n}(r, v)$ for rational v.

Calculation of BPS capacity

Theorem (Gong-Xue, 2020)

If v is irrational, i.e. v is not a scalar multiple of any integer vector. Then for all $\alpha \in H_{1}\left(\mathbb{T}^{n}, \mathbb{Z}\right) \backslash\{0\}$ and all $r>0$, we have

$$
c_{\mathrm{BPS}}\left(Y^{2 n}(r, v), \mathbb{T}^{n} ; \alpha\right)=\infty
$$

- There is no obvious obstruction to $\tilde{\pi}_{1}\left(\mathbb{T}^{n}\right)$-trivial symplectic embedding from $P^{2 n}(s)$ to $Y^{2 n}(r, v)$ for irrational v.
- If we drop the requirement that $\tilde{\pi}_{1}$-trivial, we can indeed construct symplectic embedding. See our main theorem.

Question

What is the precise value of $c_{\mathrm{BPS}}\left(P^{2 n}, \mathbb{T}^{n} ; \alpha\right)$?

Main Theorem

Result

Theorem (F.-Zhang, 2024)

Let v be an irrational unit vector in $\mathbb{R}^{n \geq 2}$, then there exist a symplectic embedding from $P^{2 n}(r)$ to $Y^{2 n}(1, v)$ for any $r>0$.

Corollary

If v is an irrational unit vector, then any bounded domain of $T^{*} \mathbb{T}^{n}$ can symplectically embed into $Y^{2 n}(1, v)$.
\dagger The symplectic embedding in our Theorem is not $\widetilde{\pi}_{1}\left(\mathbb{T}^{n}\right)$-trivial.

- The special case $n=2$ resolves an open problem:

Problem (Gong-Xue, 2020)

Let v be an irrational vector but not an eigenvector of any $A \in \mathrm{SL}_{2}(\mathbb{Z})$. Is it true that for all $r>0$, there exists a symplectic map from $P^{4}(r)$ to $Y^{4}(1, v)$?

When the dimension $2 n \geq 6$ (so $n \geq 3$), instead of the "fat cylinder"

$$
Y^{2 n}(r, v):=\mathbb{T}^{n} \times(-r, r) v \times v^{\perp}
$$

one can consider the following "thin cylinder",

$$
X^{2 n}(r, w):=\mathbb{T}^{n} \times D_{\text {perp }}^{n-1}(r) \times \mathbb{R} w
$$

where $D_{\text {perp }}^{n-1}(r)$ is a disk of radius r in $\mathbb{R}^{n},(n-1)$-dimensional, and perpendicular to the line $\mathbb{R} w$ pointing in the direction of w.

New question

- If there is an rational vector α perpendicular to w, then

$$
X^{2 n}(r, w) \subset Y^{2 n}(r, \alpha) \Rightarrow c_{\mathrm{BPS}}\left(X^{2 n}(r, w), \mathbb{T}^{n} ; \alpha\right) \leq r\|\alpha\|
$$

In an opposite direction, motivated by our main Theorem, here is another intriguing question.

Question (Xue, 2024)

Suppose $D_{\text {perp }}^{n-1}(r)$ contains no rational vectors at all, is it possible that there exists a symplectic embedding from $P^{2 n}(r)$ to $X^{2 n}(1, w)$ for any $r>0$?

Remark

The condition that $D_{\text {perp }}^{n-1}(r)$ contains no rational vectors at all is equivalent to that $w=\left(w_{1}, \cdots, w_{n}\right)$ is \mathbb{Q}-independent.

Classical non-squeezing in $\mathbb{R}^{2 n}$

- Gromov proves that if there exists a symplectic embeddding from $B^{2 n}(r)$ to $B^{2}(1) \times \mathbb{R}^{2 n-2}$, then $r \leq 1$. Here $B^{2}(1)$ is in the coordinate of x_{1} and y_{1}. The bounded direction is important.

Question (Hofer, 1990)

Is there $r>0$, such that the cylinder $B^{2}(r) \times \mathbb{R}^{2 n-2}$ symplectically embeds into $B^{2 n-2}(1) \times \mathbb{R}^{2}$?

Theorem (Pelayo-Ngoc, 2015)

If $n \geq 2$, the cylinder $B^{2}(r) \times \mathbb{R}^{2 n-2}$ can be symplectically embedded into $B^{2 n-2}(1) \times \mathbb{R}^{2}$ for all $r \leq \frac{1}{\sqrt{2^{n-1}+2^{n-2}-2}}$.

- The domains we discuss before are bounded on the fiber, the Lagrangian subspace of $T^{*} \mathbb{T}^{n}$. It is distinct to $B^{2}(r) \times \mathbb{R}^{2 n-2}$, which is bounded on the symplectic subspace of \mathbb{R}^{n}.

Proof

- Arnold's cat map
- Dirichlet's approximation theorem
- Bézout's identity

Arnold's cat map

- We now consider a symplectomorphism in the form of $\Phi_{A}=$ (A^{-1}, A) on $T^{*} \mathbb{T}^{2}$, where A is the famous Arnold's cat map,

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

- There will be two eigenvectors v_{1} and v_{2} such that $A v_{1}=\lambda_{1} v_{1}$ and $A v_{2}=\lambda_{2} v_{2}$. We have the equation for eigenvalues λ_{1} and λ_{2} :

$$
\lambda_{1}+\lambda_{2}=3, \lambda_{1} \lambda_{2}=1 \Rightarrow 0<\lambda_{2}<1<\lambda_{1} .
$$

- The iterations of A, stretchs any domain in \mathbb{R}^{2} along one direction v_{1} while shrinks the other direction v_{2}.
- By Arnold's cat map, we can symplectically embed any bounded domain into $Y^{4}\left(1, v_{2}\right)$:

$$
\Phi_{A^{n}}: P^{4}\left(r_{n}\right) \rightarrow Y^{4}\left(1, v_{2}\right), \quad r_{n} \sim \frac{1}{\lambda_{2}^{n}}
$$

- Note that embeddings produced in this way can only be induced by a matrix $A \in \mathrm{SL}_{2}(\mathbb{Z})$ with $\operatorname{tr}(A)>2$. Its eigenvalues have to be algebraic numbers solving $x^{2}-\operatorname{tr}(A) x+1=0$.
- To prove more general case that v is irrational but not eigenvector of any $A \in \mathrm{SL}_{2}(\mathbb{Z})$, we need take an appropriate sequence $\left\{A_{i} \in\right.$ $\left.\mathrm{SL}_{2}(\mathbb{Z})\right\}_{i \in \mathbb{N}}$ such that
$\Phi_{A_{i}}: P^{4}\left(r_{i}\right) \hookrightarrow Y^{4}\left(1, v_{i}\right) \quad$ with rational v_{i} approximates v but $\operatorname{Im}\left(\Phi_{A_{i}}\right) \subset Y^{4}\left(1+\delta_{i}, v\right)$ such that δ_{i} is bounded.
 when rational v_{i} approximate irrational v δ_{i} 's are uniformly bounded

Approximation

- Suppose v is a scalar multiple of $(\kappa, 1)$ for some irrational number κ. Due to Dirichlet's approximation theorem, there exists a sequence of coprime pairs $\left\{\left(p_{i}, q_{i}\right)\right\}_{i \in \mathbb{N}}$ satisfying

$$
\left|\frac{p_{i}}{q_{i}}-\kappa\right|<\frac{1}{q_{i}^{2}} \quad \text { and } \quad \lim _{i \rightarrow+\infty} q_{i}=+\infty
$$

Then the wanted unit vector v_{i} is a rescale of vector $\left(p_{i}, q_{i}\right)$.

- Consider $\left\{A_{i}\right\}_{i \in \mathbb{N}}$ such that

$$
\begin{equation*}
\left(p_{i}, q_{i}\right) \cdot A_{i}=(1,0) \quad \text { and } \quad r_{i}=\sqrt{p_{i}^{2}+q_{i}^{2}} \tag{*}
\end{equation*}
$$

then we verify with the length of projection along v_{i} direction

$$
\max _{x, y \in \Delta^{2}\left(r_{i}\right)} v_{i} \cdot A_{i}(x-y)=\max _{x, y \in \Delta^{2}\left(r_{i}\right)} \frac{\left(p_{i}, q_{i}\right) \cdot A_{i}(x-y)}{\sqrt{p_{i}^{2}+q_{i}^{2}}} \leq 1 .
$$

Approximation (cont.)

This means $\Phi_{A_{i}}$ can embed $P^{4}\left(r_{i}\right)$ into $Y^{4}\left(1, v_{i}\right)$. To obtain A_{i} satisfying $(*)$, we will use Bézout's identity.

- For coprime p_{i}, q_{i}, there exist $a_{i}, c_{i} \in \mathbb{Z}$ such that $a_{i} p_{i}+c_{i} q_{i}=1$ and $\left|a_{i}\right| \leq\left|q_{i}\right|,\left|c_{i}\right| \leq\left|p_{i}\right|$. Take

$$
A_{i}=\left(\begin{array}{cc}
a_{i} & -q_{i} \\
c_{i} & p_{i}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

- In fact, $\Phi_{A_{i}}\left(P^{4}\left(r_{i}\right)\right)$ is in $Y^{4}\left(1+\delta_{i}, v\right)$, where δ_{i} is determined by the rectangle spanned by v_{i} and w_{i} (perpendicular to v_{i}).

$$
\begin{aligned}
\Phi_{A_{i}}\left(P^{4}\left(r_{i}\right)\right) & \subset \mathbb{T}^{2} \times\left((-1,1) v_{i} \times\left(-\ell_{i}, \ell_{i}\right) w_{i}\right) \\
& \subset Y^{4}\left(1, v_{i}\right) \cap Y^{4}\left(1+\delta_{i}, v\right)
\end{aligned}
$$

If $\left\{\delta_{i}\right\}_{i \in \mathbb{N}}$ is bounded, then we finish the proof.

Denote θ_{i} by the angle between v_{i} and v. We have $2\left(1+\delta_{i}\right)=$ $2 \ell_{i} \sin \theta_{i}+2 \cos \theta_{i}$. Then $\delta_{i}:=\ell_{i} \sin \theta_{i}+\cos \theta_{i}-1 \leq \ell_{i} \theta_{i}$. Here,

$$
\begin{aligned}
\ell_{i} & :=\max _{x \in \Delta^{2}\left(\sqrt{p_{i}^{2}+q_{i}^{2}}\right)}\left|A_{i} x\right| \\
& =\sqrt{p_{i}^{2}+q_{i}^{2}} \cdot \max \left\{\sqrt{a_{i}^{2}+c_{i}^{2}}, \sqrt{p_{i}^{2}+q_{i}^{2}}\right\} \leq p_{i}^{2}+q_{i}^{2} .
\end{aligned}
$$

Figure: Symplectic embedding $\psi_{A_{i}}$ from $P^{4}\left(r_{i}\right)$ to $Y^{4}\left(1+\delta_{i}, v\right)$.

Then it is easy to verify that

$$
\Phi_{A_{i}}\left(P^{4}\left(r_{i}\right)\right) \subset Y^{4}\left(1, v_{i}\right) \cap Y^{4}\left(1+\delta_{i}, v\right)
$$

up to a shift in the fiber (which is also a symplectomorphism of $T^{*} \mathbb{T}^{2}$).
Recall that

$$
\left|\frac{p_{i}}{q_{i}}-\kappa\right|<\frac{1}{q_{i}^{2}} \quad \Rightarrow \quad\left(\theta_{i} \leq\right) \tan \theta_{i} \leq \frac{1}{q_{i}^{2}}
$$

Therefore,

$$
\begin{aligned}
\delta_{i}=\ell_{i} \sin \theta_{i}+\cos \theta_{i}-1 & \leq \ell_{i} \theta_{i} \\
& \leq \ell_{i} \tan \theta_{i} \leq \frac{p_{i}^{2}+q_{i}^{2}}{q_{i}^{2}}
\end{aligned}
$$

which is bounded as disired.

- If v is rational, then v is a scalar multiple of $(p / q, 1)$ for some coprime $p, q \in \mathbb{Z}$. We can still find a sequence of pairs $\left\{\left(p_{i}, q_{i}\right)\right\}_{i \in \mathbb{N}}$ to approximate $(p / q, 1)$. But to satisfy the condition

$$
\lim _{i \rightarrow+\infty} q_{i}=+\infty
$$

we only have

$$
\left|\frac{p_{i}}{q_{i}}-\frac{p}{q}\right|<\frac{1}{q_{i}}
$$

So our approach fails for rational v.

- In higher dimensional, we can still find unit vectors v_{i}, which is a rescale of coprime $\left(p_{i, 1}, \cdots, p_{i, n}\right)$, to approximate v by higher dimensional vision Dirichlet's approximation theorem. Denote θ_{i} as the angle between v_{i} and v, we have

$$
\theta_{i} \sim \frac{1}{p_{i, 1}^{1+1 / n}} .
$$

Proposition

For any coprime $\left(p_{1}, \cdots, p_{n}\right)$, there exist $A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in \operatorname{SL}_{n}(\mathbb{Z})$ with $\left(p_{1}, \cdots, p_{n}\right) A=(1,0, \cdots, 0)$ and $\left|a_{i j}\right| \leq C(n) \sqrt{\sum_{k=1}^{n} p_{k}^{2}}$, where $C(n)$ is a constant only depending on n.
Assume this proposition, denote $r_{i}=\sqrt{\sum_{j=1}^{n} p_{i, j}^{2}}$, then

$$
\ell_{i}=\max _{x \in \Delta^{n}\left(r_{i}\right)}\left|A_{i} x\right| \leq 2 \sum_{j, k=1}^{n} r_{i}\left|\left(A_{i}\right)_{j, k}\right| \leq 2 C(n) n^{2} r_{i}^{2}
$$

We can also verify that

$$
\Phi_{A_{i}}\left(P^{2 n}\left(r_{i}\right)\right) \subset Y^{2 n}\left(1, v_{i}\right) \cap Y^{2 n}\left(1+\delta_{i}, v\right)
$$

where $\delta_{i}=\ell_{i} \sin \theta_{i}+\cos \theta_{i}-1 \sim \ell_{i} \theta_{i}$. So we have

$$
\frac{r_{i}}{1+\delta_{i}} \gtrsim \frac{1}{\frac{1}{r_{i}}+\frac{\ell_{i} \theta_{i}}{r_{i}}}=\frac{1}{\frac{1}{r_{i}}+\frac{r_{i}}{r_{i}^{1+1 / n}}} \rightarrow+\infty .
$$

Discussion

New question

Question (Xue, 2024)

Suppose $w=\left(w_{1}, \cdots, w_{n}\right)$ is \mathbb{Q}-independent, is it possible that there exists a symplectic embedding from $P^{2 n}(r)$ to $X^{2 n}(1, w)$ for any $r>0$?

- We can consider a higher-dimensional analogue of Arnold's cat map. Here, for instance,

$$
A=\left(\begin{array}{lll}
2 & 1 & 3 \\
3 & 2 & 5 \\
2 & 1 & 4
\end{array}\right) \in \mathrm{SL}_{3}(\mathbb{Z})
$$

where its three eigenvalues are $\lambda_{1} \approx 0.243, \lambda \approx 0.573, \lambda_{3} \approx 7.184$. Denote v_{3} as the unit eigenvector of λ_{3}. For any $r>0$, sufficiently high iterations of A maps $P^{6}(r)$ into $X^{6}\left(1, v_{3}\right)$. The components of v_{3} are \mathbb{Q}-independent.

- Unfortunately, our method in proving main Theorem is not applicable to answer Xue's Question.
- For simplicity, let us illustrate the difficulty when $n=3$. Denote v_{1} and v_{2} the unit vectors perpendicular to w. The directions labelled by v_{1} and v_{2} are bounded. We approximate v_{1} and v_{2} by the sequences $\left\{v_{1}^{i}\right\}_{i \in \mathbb{N}}$ and $\left\{v_{2}^{i}\right\}_{i \in \mathbb{N}}$ obtained from Dirichlet's approximation theorem.
- The first step is to find $A_{i} \in \operatorname{SL}_{3}(\mathbb{Z})$ that is able to control both directions v_{1}^{i} and v_{2}^{i}, for instance,

$$
A_{i}: v_{1}^{i} \mapsto(1,0,0) \text { and } v_{2}^{i} \mapsto(0,1,0)
$$

But we cannot construct such $A_{i} \in \mathrm{SL}_{3}(\mathbb{Z})$. To make progresses in this direction, one probably needs stronger results from Bézout's identity.

THANK YOU!

