Symplectic structures from almost symplectic structures

Agustin Moreno j.w. Gironella, Presas, Toussaint

Heidelberg University

Background

Symplectic topology: existence problem

Definition

A symplectic manifold is a manifold M^{2n} with a 2-form ω satisfying:

- $d\omega = 0$.
- ω non-degenerate.

Symplectic topology: existence problem

Definition

A symplectic manifold is a manifold M^{2n} with a 2-form ω satisfying:

- $d\omega = 0$.
- ω non-degenerate.

Existence problem

Which manifolds are symplectic?

Formal symplectic structures

Obvious topological obstruction:

Definition

A formal symplectic manifold is (M^{2n}, Ω, θ) where

- Ω non-degenerate 2-form (i.e. *almost* symplectic).
- $\theta \in H^2(M, \mathbb{R})$, with $\theta^n \neq 0$ if *M* closed.

Formal symplectic structures

Obvious topological obstruction:

Definition

A formal symplectic manifold is (M^{2n}, Ω, θ) where

- Ω non-degenerate 2-form (i.e. *almost* symplectic).
- $\theta \in H^2(M, \mathbb{R})$, with $\theta^n \neq 0$ if *M* closed.

Existence problem (McDuff–Salamon, Problem 1)

Given (M^{2n}, Ω, θ) a formal symplectic manifold, does there exist a symplectic form ω on M such that

- ω is homotopic to Ω through almost symplectic forms, and
- $[\omega] = \theta$?

Some known facts

Theorem (Gromov '69)

If (M, Ω, θ) is formal symplectic with M open, then it can be realized by a symplectic form.

Some known facts

Theorem (Gromov '69)

If (M, Ω, θ) is formal symplectic with M open, then it can be realized by a symplectic form.

For **closed** manifolds, the situation is very different:

Theorem (Taubes '94)

There exist formal symplectic closed 4-manifolds which are not symplectic.

For instance, take $M = (k\mathbb{C}P^2) # (h\overline{\mathbb{C}P^2})$, with $k \ge 3$ odd and $h \ge 0$.

Some known facts

Theorem (Gromov '69)

If (M, Ω, θ) is formal symplectic with M open, then it can be realized by a symplectic form.

For **closed** manifolds, the situation is very different:

Theorem (Taubes '94)

There exist formal symplectic closed 4-manifolds which are not symplectic.

For instance, take $M = (k\mathbb{C}P^2) # (h\overline{\mathbb{C}P^2})$, with $k \ge 3$ odd and $h \ge 0$.

Theorem (Bertelson–Meigniez '21)

If (M, Ω) closed almost symplectic manifold, then Ω can be homotoped to a **conformal** symplectic structure.

The symplectic existence problem is wide open in dim ≥ 6 . To my knowledge, what follows are the first higher-dimensional results.

Results

Stabilized existence problem

We will consider a "stabilized" existence problem.

Definition

Given a formal symplectic manifold (M, Ω, θ) , its stabilization is

$$(\boldsymbol{M} \times \mathbb{T}^2, \Omega + \mu, \theta + [\mu]),$$

with μ an area form on \mathbb{T}^2 .

Stabilized existence problem

We will consider a "stabilized" existence problem.

Definition

Given a formal symplectic manifold (M, Ω, θ) , its stabilization is

$$(\boldsymbol{M} \times \mathbb{T}^2, \Omega + \mu, \theta + [\mu]),$$

with μ an area form on \mathbb{T}^2 .

Stabilized existence problem

When can the stabilization of a formal symplectic manifold be realized by a symplectic form?

Main theorem

Definition

A (positive) **symplectic divisor** in a formal symplectic manifold (M, Ω, θ) is a codimension-2 submanifold Σ such that:

- Up to homotopy of Ω among almost symplectic structures, Ω|_Σ is a symplectic structure on Σ.
- **2** $\theta = PD(\Sigma)$ is the Poincaré dual of Σ .

Main theorem

Definition

A (positive) **symplectic divisor** in a formal symplectic manifold (M, Ω, θ) is a codimension-2 submanifold Σ such that:

- Up to homotopy of Ω among almost symplectic structures, Ω|_Σ is a symplectic structure on Σ.
- **2** $\theta = PD(\Sigma)$ is the Poincaré dual of Σ .

Our main theorem is the following.

Theorem (Gironella–M.–Presas–Toussaint '24)

Let (M^{2n}, Ω, θ) be a formal symplectic manifold which admits a positive symplectic divisor. Then, its stabilization can be realized by a symplectic form.

Recall: Up to scaling, symplectic manifolds have positive symplectic divisors (Donaldson '96).

Corollary

Let M be a closed 4-manifold.

- If M is simply-connected and admits a formal symplectic structure, then $M \times \mathbb{T}^2$ admits a symplectic structure.
- If M is almost symplectic and min(b⁺₂, b⁻₂) ≥ 2, then M × T² admits a symplectic structure.

In particular, if $M = (k\mathbb{C}P^2) \# (h\overline{\mathbb{C}P^2})$, with $k \ge 3$ odd and $h \ge 0$, then $M \times \mathbb{T}^2$ is symplectic, even though *M* is *not*.

Corollary

Let M be a closed 4-manifold.

- If M is simply-connected and admits a formal symplectic structure, then $M \times \mathbb{T}^2$ admits a symplectic structure.
- If M is almost symplectic and min(b⁺₂, b⁻₂) ≥ 2, then M × T² admits a symplectic structure.

In particular, if $M = (k\mathbb{C}P^2) \# (h\overline{\mathbb{C}P^2})$, with $k \ge 3$ odd and $h \ge 0$, then $M \times \mathbb{T}^2$ is symplectic, even though *M* is *not*.

Remarks

- Formal symplecticity is *topological* (cf. Wu '52), and in 4D so is having symplectic divisors (Bohr '00).
- (1) builds on Donaldson ('83) and Freedmann's ('82) celebrated work.
- (2) uses main thm, and existence of holomorphic curves (Bohr '00).

Preliminaries

Open book decompositions

Contact manifolds

A contact manifold is $(N^{2n-1}, \xi = \ker \alpha)$, α 1-form, $\alpha \wedge d\alpha^{n-1} > 0$.

Contact manifolds

A contact manifold is $(N^{2n-1}, \xi = \ker \alpha), \alpha$ 1-form, $\alpha \wedge d\alpha^{n-1} > 0$.

Two flavors of contact manifolds:

Dichotomy: Rigidity vs. Flexibility.

- tight (rigid/geometric);
- overtwisted (flexible/topological).

Contact manifolds

A contact manifold is $(N^{2n-1}, \xi = \ker \alpha), \alpha$ 1-form, $\alpha \wedge d\alpha^{n-1} > 0$.

Two flavors of contact manifolds:

Dichotomy: Rigidity vs. Flexibility.

• **tight** (*rigid/geometric*);

• overtwisted (flexible/topological).

Eliashberg '93, Borman-Eliashberg-Murphy '15:

- Every almost contact structure is homotopic to a unique overtwisted contact structure.
- In particular, every contact structure is homotopic to a unique overtwisted contact structure (through **almost** contact structures).

Giroux correspondence

Giroux: Contact structures are *supported* by open books.

Given (N, ξ) , there is $N = OBD(P, \phi)$ and a *Giroux form* α for ξ with

- $d\alpha|_{int(P)} > 0$, and
- $\alpha|_B$ contact.

Figure: Supported contact structure.

Theorem (Bourgeois '02)

Open book $(M, \xi) = OBD(P, \phi) \leadsto$ contact structure $(M \times \mathbb{T}^2, \xi_{BO})$.

Theorem (Bourgeois '02)

Open book $(M, \xi) = OBD(P, \phi) \leadsto$ contact structure $(M \times \mathbb{T}^2, \xi_{BO})$.

If α Giroux form, $(q_1, q_2) \in \mathbb{T}^2$, and $\Phi = (\Phi_1, \Phi_2) : M \to \mathbb{R}^2$ with $\pi = \frac{\Phi}{|\Phi|}$, then

 $\alpha_{BO} = \alpha + \Phi_1 dq_1 - \Phi_2 dq_2$, Bourgeois form on $M \times \mathbb{T}^2$, $\xi_{BO} = \ker \alpha_{BO}$.

Denote $(\mathbf{M} \times \mathbb{T}^2, \xi_{BO}) = \mathbf{BO}(\mathbf{P}, \phi).$

Theorem (Bourgeois '02)

Open book $(M, \xi) = OBD(P, \phi) \leadsto$ contact structure $(M \times \mathbb{T}^2, \xi_{BO})$.

If α Giroux form, $(q_1, q_2) \in \mathbb{T}^2$, and $\Phi = (\Phi_1, \Phi_2) : M \to \mathbb{R}^2$ with $\pi = \frac{\Phi}{|\Phi|}$, then

 $\alpha_{BO} = \alpha + \Phi_1 dq_1 - \Phi_2 dq_2$, Bourgeois form on $M \times \mathbb{T}^2$, $\xi_{BO} = \ker \alpha_{BO}$.

Denote $(\mathbf{M} \times \mathbb{T}^2, \xi_{BO}) = \mathbf{BO}(\mathbf{P}, \phi).$

Theorem (Lisi–Marinkovic–Niederkrueger '19)

 $BO(P, \phi) \cong BO(P, \phi^{-1})$ as contact manifolds.

Theorem (Bourgeois '02)

Open book $(M, \xi) = OBD(P, \phi) \leadsto$ contact structure $(M \times \mathbb{T}^2, \xi_{BO})$.

If α Giroux form, $(q_1, q_2) \in \mathbb{T}^2$, and $\Phi = (\Phi_1, \Phi_2) : M \to \mathbb{R}^2$ with $\pi = \frac{\Phi}{|\Phi|}$, then

 $\alpha_{BO} = \alpha + \Phi_1 dq_1 - \Phi_2 dq_2$, Bourgeois form on $M \times \mathbb{T}^2$, $\xi_{BO} = \ker \alpha_{BO}$.

Denote $(\mathbf{M} \times \mathbb{T}^2, \xi_{BO}) = \mathbf{BO}(\mathbf{P}, \phi).$

Theorem (Lisi–Marinkovic–Niederkrueger '19)

 $BO(P, \phi) \cong BO(P, \phi^{-1})$ as contact manifolds.

Lemma

If $(M, \xi) = OBD(P_1, \phi_1) = OBD(P_2, \phi_2)$, there is a symplectic cobordism ([0, 1] × M × \mathbb{T}^2, ω) between $BO(P_1, \phi_1)$ and $BO(P_2, \phi_2)$.

Eliashberg–Murphy's h-principle

Let (W, Ω) be an **almost** symplectic cobordism of dimension $2n \ge 4$ between non-empty contact manifolds (N_{\pm}, ξ_{\pm}) .

Theorem (Eliashberg–Murphy '23)

Suppose that ξ_{-} is overtwisted, and if n = 2, assume ξ_{+} is overtwisted.

Then there exists an exact symplectic form $\omega = d\lambda$ on W which is homotopic to Ω as almost symplectic structures, ("conformally") relative boundary.

Main auxiliary result

Stabilized h-principle

Let (W, Ω) be an almost symplectic cobordism of dimension $2n \ge 4$ between non-empty contact manifolds (N_{\pm}, ξ_{\pm}) . Fix an area form μ on \mathbb{T}^2 .

Theorem (Gironella–M.–Presas–Toussaint '24)

 $W \times \mathbb{T}^2$ admits a symplectic form ω such that:

• ω is homotopic to $\Omega + \mu$, through almost symplectic forms, ("conformally") relative boundary.

This is the main technical input for the main result.

Stabilized h-principle

Let (W, Ω) be an almost symplectic cobordism of dimension $2n \ge 4$ between non-empty contact manifolds (N_{\pm}, ξ_{\pm}) . Fix an area form μ on \mathbb{T}^2 .

Theorem (Gironella–M.–Presas–Toussaint '24)

 $W \times \mathbb{T}^2$ admits a symplectic form ω such that:

• ω is homotopic to $\Omega + \mu$, through almost symplectic forms, ("conformally") relative boundary.

This is the main technical input for the main result.

Note: no assumptions on overtwistedness.

Proof of main theorem

Let (M, Ω, θ) be a formal symplectic manifold, with Σ a positive symplectic divisor.

Lemma

Up to homotopy of Ω , Σ admits a symplectically concave neighbourhood N_{Σ} , with contact boundary ($Y = \partial N_{\Sigma}, \xi_Y$).

Proof of main theorem.

Up to homotopy of Ω near a point, we find a (symplectic) Darboux ball *B* away from N_{Σ} .

Proof of main theorem

Let (M, Ω, θ) be a formal symplectic manifold, with Σ a positive symplectic divisor.

Lemma

Up to homotopy of Ω , Σ admits a symplectically concave neighbourhood N_{Σ} , with contact boundary ($Y = \partial N_{\Sigma}, \xi_Y$).

Proof of main theorem.

Up to homotopy of Ω near a point, we find a (symplectic) Darboux ball *B* away from N_{Σ} . We then split

$$M=B\cup X\cup N_{\Sigma},$$

with X almost symplectic cobordism from $(\mathbb{S}^{2n-1}, \xi_{st})$ to (Y, ξ_Y) .

Proof of main theorem

Let (M, Ω, θ) be a formal symplectic manifold, with Σ a positive symplectic divisor.

Lemma

Up to homotopy of Ω , Σ admits a symplectically concave neighbourhood N_{Σ} , with contact boundary ($Y = \partial N_{\Sigma}, \xi_Y$).

Proof of main theorem.

Up to homotopy of Ω near a point, we find a (symplectic) Darboux ball *B* away from N_{Σ} . We then split

$$M=B\cup X\cup N_{\Sigma},$$

with *X* almost symplectic cobordism from $(\mathbb{S}^{2n-1}, \xi_{st})$ to (Y, ξ_Y) . The pieces $B \times \mathbb{T}^2$, $N_{\Sigma} \times \mathbb{T}^2$ have obvious product symplectic structures. And $X \times \mathbb{T}^2$ has a symplectic structure by the stabilized h-principle.

Proof of the main theorem

Figure: The splitting $M = B \cup X \cup N_{\Sigma}$.

Proof of main auxiliary result

Case of a concordance

A **concordance** is a smoothly trivial cobordism $[0, 1] \times N$.

Case of a concordance

A **concordance** is a smoothly trivial cobordism $[0, 1] \times N$.

Fact

There is always an almost symplectic concordance

 $(X = [0, 1] \times N, \Omega)$

between a closed contact manifold (N^{2n-1}, ξ) and (N^{2n-1}, ξ_{ot}) , where ξ_{ot} is the unique overtwisted structure with $\xi_{ot} \simeq \xi$.

Case of a concordance

A **concordance** is a smoothly trivial cobordism $[0, 1] \times N$.

Fact

There is always an almost symplectic concordance

 $(X = [0, 1] \times N, \Omega)$

between a closed contact manifold (N^{2n-1}, ξ) and (N^{2n-1}, ξ_{ot}) , where ξ_{ot} is the unique overtwisted structure with $\xi_{ot} \simeq \xi$.

Theorem (GMPT '24, Stabilized h-principle for concordances) The stabilized h-principle holds on $X \times \mathbb{T}^2$.

From concordance to general case

The general stabilized h-principle follows: add such concordances near the boundary, use the above, and Eliashberg–Murphy in the complement (which now has overtwisted ends).

Monodromy inversion theorem

 (N, ξ) contact manifold, ξ_{ot} = unique overtwisted structure with $\xi_{ot} \simeq \xi$.

Theorem (Gironella–M.–Presas–Toussaint '24)

There exist open books $N = OBD(P, \phi) = OBD(P_{ot}, \phi_{ot})$ respectively supporting ξ and ξ_{ot} , such that

$$\overline{N} = OBD(P, \phi^{-1}) = OBD(P_{ot}, \phi_{ot}^{-1})$$

support two contact structures ξ^{inv} , ξ^{inv}_{ot} , which are overtwisted and isomorphic.

Sketch of proof of monodromy inversion theorem

By connected sum, suffices with $(N, \xi) = (\mathbb{S}^{2n-1}, \xi_{st})$.

Almost contact structures on spheres, Harris '63

$$\operatorname{ACont}(\mathbb{S}^{2n-1}) \cong \pi_{2n-1}(\operatorname{SO}(2n)/\operatorname{U}(n)) = \begin{cases} \mathbb{Z} \oplus \mathbb{Z}_2 & \text{if } n \equiv 0 \mod 4\\ \mathbb{Z}_{(n-1)!} & \text{if } n \equiv 1 \mod 4\\ \mathbb{Z} & \text{if } n \equiv 2 \mod 4\\ \mathbb{Z}_{(n-1)!/2} & \text{if } n \equiv 3 \mod 4 \end{cases}$$

Sketch of proof of monodromy inversion theorem

By connected sum, suffices with $(N, \xi) = (\mathbb{S}^{2n-1}, \xi_{st})$.

Almost contact structures on spheres, Harris '63

$$\operatorname{ACont}(\mathbb{S}^{2n-1}) \cong \pi_{2n-1}(\operatorname{SO}(2n)/U(n)) = \begin{cases} \mathbb{Z} \oplus \mathbb{Z}_2 & \text{if } n \equiv 0 \mod 4\\ \mathbb{Z}_{(n-1)!} & \text{if } n \equiv 1 \mod 4\\ \mathbb{Z} & \text{if } n \equiv 2 \mod 4\\ \mathbb{Z}_{(n-1)!/2} & \text{if } n \equiv 3 \mod 4 \end{cases}$$

- Case 1: n odd (finite group).
- Case 2: *n* even (infinite group).

Case 1: finite group.

Take
$$1 < k = |\mathsf{ACont}(\mathbb{S}^{2n-1})| < \infty$$
. Let

• Since ξ_{st} represents zero:

$$(\mathbb{S}^{2n-1},\xi_{st})=\#^k(\mathbb{S}^{2n-1},\xi_{st})=OBD(\natural^k(D^*\mathbb{S}^{n-1},\tau)).$$

Case 1: finite group.

Take
$$1 < k = |\mathsf{ACont}(\mathbb{S}^{2n-1})| < \infty$$
. Let

• Since ξ_{st} represents zero:

$$(\mathbb{S}^{2n-1},\xi_{st})=\#^k(\mathbb{S}^{2n-1},\xi_{st})=OBD(\natural^k(D^*\mathbb{S}^{n-1},\tau)).$$

• Since ξ_{ot} also represents zero:

$$\begin{aligned} (\mathbb{S}^{2n-1},\xi_{ot}) &= \#^{k}(\mathbb{S}^{2n-1},\xi_{ot})\#^{k}(\mathbb{S}^{2n-1},\xi_{st}) \\ &= OBD\left(\natural^{k}(P,\phi)\natural^{k}(D^{*}\mathbb{S}^{n-1},\tau)\right). \end{aligned}$$
(1)

Case 1: finite group.

Take
$$1 < k = |\mathsf{ACont}(\mathbb{S}^{2n-1})| < \infty$$
. Let

• Since ξ_{st} represents zero:

$$(\mathbb{S}^{2n-1},\xi_{st})=\#^k(\mathbb{S}^{2n-1},\xi_{st})=OBD(\natural^k(D^*\mathbb{S}^{n-1},\tau)).$$

• Since ξ_{ot} also represents zero:

$$(\mathbb{S}^{2n-1},\xi_{ot}) = \#^{k}(\mathbb{S}^{2n-1},\xi_{ot})\#^{k}(\mathbb{S}^{2n-1},\xi_{st})$$
$$= OBD\left(\natural^{k}(P,\phi)\natural^{k}(D^{*}\mathbb{S}^{n-1},\tau)\right).$$
(1)

Invert the monodromy was two negative stabilizations (hence overtwisted by Casals–Murphy–Presas) representing zero, done.

Case 2: infinite group.

Similar argument, but matching elements in $ACont(\mathbb{S}^{2n-1})$ is trickier and needs:

Lemma (Gironella–M.–Presas–Toussaint '24)

Let $(\mathbb{S}^{2n-1}, \xi_{neg}) = OBD(D^*\mathbb{S}^{n-1}, \tau^{-1})$. If n even, ξ_{neg} has infinite order in $ACont(\mathbb{S}^{2n-1})$.

Case 2: infinite group.

Similar argument, but matching elements in $ACont(S^{2n-1})$ is trickier and needs:

Lemma (Gironella–M.–Presas–Toussaint '24)

Let $(\mathbb{S}^{2n-1}, \xi_{neg}) = OBD(D^*\mathbb{S}^{n-1}, \tau^{-1})$. If *n* even, ξ_{neg} has infinite order in $ACont(\mathbb{S}^{2n-1})$.

Remark: If n = 2, ξ_{neg} corresponds to $-1 \in \pi_3(SO(4)/U(2)) = \mathbb{Z}$. For n > 2, seems unknown (?).

Proof of stabilized h-pple for concordances

 $X = N \times [0, 1]$ almost symplectic concordance between (N, ξ) and (N, ξ_{ot}) . Let $\overline{N} = OBD(P, \phi^{-1}) = OBD(P_{ot}, \phi_{ot}^{-1})$ supporting $\xi^{inv} \cong \xi_{ot}^{inv}$. From properties of Bourgeois manifolds:

Lemma

Since $\xi^{inv} \cong \xi^{inv}_{ot}$, there is a symplectic concordance

$$(\overline{Y} = [0, 1] \times \overline{N} \times \overline{\mathbb{T}^2}, \overline{\omega})$$

between the Bourgeois manifolds $BO(P, \phi^{-1})$ and $BO(P_{ot}, \phi_{ot}^{-1})$, with $[\overline{\omega}] = -[\mu]$.

Recall: $BO(P, \phi) \cong BO(P, \phi^{-1}), BO(P_{ot}, \phi_{ot}) \cong BO(P_{ot}, \phi_{ot}^{-1}).$

Recall:
$$BO(P, \phi) \cong BO(P, \phi^{-1}), BO(P_{ot}, \phi_{ot}) \cong BO(P_{ot}, \phi_{ot}^{-1}).$$

These diffeomorphisms are both isotopic to

$$N \times \mathbb{T}^2 \to \overline{N} \times \overline{\mathbb{T}^2}, \ (p, q_1, q_2) \mapsto (p, q_1, -q_2),$$

and so extend to a concordance:

$$F: Y = [0,1] \times N \times \mathbb{T}^2 \xrightarrow{\cong} \overline{Y} = [0,1] \times \overline{N} \times \overline{\mathbb{T}^2}.$$

We let $\omega = F^*\overline{\omega}$.

End of proof

(Boundary conditions) ω may not have the same boundary conditions as Ω + μ. Corrected via lemma of Massot–Niederkrueger–Wendl.

End of proof

- (Boundary conditions) ω may not have the same boundary conditions as Ω + μ. Corrected via lemma of Massot–Niederkrueger–Wendl.
- (homotopy class) Homotope to the form ω̃ + μ where ω̃ has no T² terms → ω̃ induces loop Λ_t of almost contact forms based at Λ₀, ξ_{ot} = ker Λ₀ → parametric h-principle (BEM '15) can be used to correct.

End of proof

- (Boundary conditions) ω may not have the same boundary conditions as Ω + μ. Corrected via lemma of Massot–Niederkrueger–Wendl.
- (homotopy class) Homotope to the form ω̃ + μ where ω̃ has no T² terms → ω̃ induces loop Λ_t of almost contact forms based at Λ₀, ξ_{ot} = ker Λ₀ → parametric h-principle (BEM '15) can be used to correct.
- (homology class) The symplectic form ω lies in the cohomology class θ + [μ] by construction.

Thank you!