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Motivation: Hyperbolic Periodic Orbits =⇒ Interesting
Dynamics

Phenomenon: In some instances, the presense of one or several hyperbolic
or even locally maximal periodic orbits forces a Hamiltonian system to have
interesting dynamics.

Some examples (for Hamiltonian diffeomorphisms):
Homoclinic intersections: A hyperbolic periodic orbit with
transverse homoclinic intersections ⇒ a horseshoe, positive entropy,
etc. Note: This is a C 1-generic condition (Hayashi ’97, Xia ’96).

Spectral norm: Sufficiently many hyperbolic periodic orbits of φ ⇒ a
lower bound on the spectral norm γ(φk) > ϵ > 0, ∀k ∈ N;
Çineli–G.–Gürel, arXiv:2207.03613 and arXiv:2310.00470. Note: This
is a C∞-generic condition.
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Motivation
Multiplicity: A hyperbolic fixed point of φ : CPn → CPn ⇒
|Per(φ)| = ∞, G.–Gürel ’14.

Closely related: Franks Theorem (Franks ’92, ’96): |Per(φ)| = 2 or
∞ for φ : S2 → S2. Generalizations to CPn – the Hofer–Zehnder
conjecture: “|Per(φ)| > n + 1 ⇒ |Per(φ)| = ∞” (Shelukhin 22’).
Invariant sets: Moreover, a locally maximal fixed point of
φ : CPn → CPn ⇒ |Per(φ)| = ∞, G.–Gürel ’18.
Def: Locally maximal = isolated as an invariant set; e.g., hyperbolic
fixed point is locally maximal.

Corollary: for a Hamiltonian pseudo-rotation (PR) of CPn no fixed
point is locally maximal.
Def: φ : CPn → CPn is a PR if |Per(φ)| = n + 1.

Closely related: For S2: Le Calvez–Yoccoz ’97, Franks ’99.

Goal: Analogs of the last two results to Reeb flows on S2n−1.
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Main results: Setting

Mainly interested in: The contact sphere (S2n−1, α); kerα = the
standard contact structure; φt = the Reeb flow of α. Think of (S2n−1, α)
as the boundary of a star-shaped domain W ⊂ R2n.

Closed Reeb orbits: P = P(α) is the collection of closed Reeb orbits; P̊
is the set of simple closed Reeb orbits.

Dynamical Convexity (DC): µ(x) ≥ n + 1 for all x ∈ P, where µ is the
lower semi-continuous extension of the Conley–Zehnder index
(Hofer–Wysocki-Zehnder ’98). Often weaker requirements of this type
suffice. Ubiquitous in proofs in higher dimensions.

Remark: Convexity ⇒ DC; but a DC hypersurface in R2n need not be
symplectomorphic to a convex hypersurface (Chaidez–Edtmair ’22;
Cristofaro-Gardiner–Hind ’23; Dardennes–Gutt–Ramos–Zhang ’23).

Many counterparts of the proof work in a more general setting:
M = ∂W 2n where (W , α) is a Liouville domain, etc.
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Main results: Multiplicity

Notation: µ̂(x) := limk→∞ µ−(x
k)/k is the mean index of x ; 2ν(x) is the

algebraic multiplicity of the eigenvalue 1 of the Poincaré return map of x .

Theorem A (ÇGGM, arXiv:2309.04576)

Assume that (S2n−1, α) has a hyperbolic (simple) closed Reeb orbit z with
µ̂(z) > 0 and

µ(x) ≥ max
{
3, 2 + ν(x)

}
(DC type condition) (1)

for all x ∈ P(α) with µ̂(x) > 0. Then the Reeb flow of α has infinitely
many simple periodic orbits: |P̊(α)| = ∞.

Remark: DC ⇒ (1). As a consequence: DC + a hyperbolic orbit ⇒
|P̊(α)| = ∞. Note: No non-degeneracy conditions.

Viktor Ginzburg (UCSC) Barcode entropy May 2024 6 / 26

https://arxiv.org/abs/arXiv:2309.04576


Main results: Invariant sets

Theorem B (ÇGGM, arXiv:2401.01421)

Assume that (S2n−1≥3, α) is DC, non-degenerate and its Reeb flow has
only finitely many simple closed orbits (aka Reeb PR). Then no closed orbit
is locally maximal, i.e., isolated as an invariant set.

Remark: Hyperbolic closed orbits are locally maximal. Hence,

Theorem B
almost

Theorem A

up to non-degeneracy and a stronger DC type condition.

Remark: Reeb PR’s can have interesting dynamics: ∃ C∞-small ergodic
PR perturbations of irrational ellipsoids (Katok ’73;
Albers–Geiges–Zehmisch ’22).
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Main results: Bonus – Reeb barcode entropy

More general setting:

A Liouville domain (W , α); Reeb flow φt on ∂W .
The filtered symplectic homology (non-equivariant, ungraded)
persistence module SH(W ) := {SHs(W ) | s ∈ R}.
bϵ(s) = |{ bars > ϵ beginning < s}|.
The ϵ-barcode entropy and barcode entropy of (W , α)

ℏϵ(W ) := lim sup
s→∞

log+ bϵ(s)

s
and ℏ(W ) := lim

ϵ→0+
ℏϵ(W ) ∈ [0, ∞],

where log+ = max{log, 0}.
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Main results: Bonus – Reeb barcode entropy

Theorem: ℏ(α) ≤ htop(φ) (Fender–Lee–Sohn ’23). In particular,
ℏ(α) < ∞.

Theorem C (ÇGGM, arXiv:2401.01421)

Let K ⊂ ∂W be a compact hyperbolic invariant set of φt . Then

htop(φ|K ) ≤ ℏ(W ).

Combining these two theorems with the results of Lian–Young ’12 or
Lima–Sarig ’19 extending Katok ’80 to flows, we have

Corollary (ÇGGM, arXiv:2401.01421)

Assume that dim ∂W = 3. Then ℏ(W ) = htop(φ).
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Discussion and context: Reeb flows in 3D

Disclaimer: Theorems A and B are mainly of interest when dim > 3.

Multiplicity in 3D has been extensively studied and well understood.
The 2-or-∞ conjecture has been proved for most of Reeb flows in 3D:
Hofer–Wysocki–Zehnder ’98, Cristofaro-Gardiner, Hutchings, Ramos,
Pomerleano, Hryniewicz, Liu ’16–’23, Colin–Dehornoy–Rechtman ’23.
Nothing as precise as that is true when dim > 3. The (expected) orbit
bounds depend very much on the underlying contact manifold and much
less is known even for S2n−1≥5.

Invariants sets in 3D: Theorem B in 3D ⇐ the Franks–Le Calvez–Yoccoz
theorem (2D); for the latter theorem is in fact local.

Related result in a similar spirit: In 3D, the union of proper closed
invariant sets is dense (Cristofaro-Gardiner–Prasad 24’). This does not
follow from the Franks–Le Calvez–Yoccoz theorem and the proof also
implies Theorem B in 3D.
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Discussion and context: Multiplicity for S2n−1≥5

The question originates in classical mechanics and calculus of
variations (Lyapunov, Moser, Rabinowitz, Weinstein, Ekeland, ...).

Conjecture : For a Reeb flow on the standard contact S2n−1 either
|P̊| = n and all orbits are elliptic or |P̊| = ∞ and at least one of the orbits
is degenerate or not elliptic. (Along the lines of the Reeb HZ Conjecture
aka the Reeb Franks “Theorem”.)

Comment: A long shot given how little is known! Theorem A is one of the
first steps in the “or” direction.

Unknown: If the Reeb flow on the standard contact S2n−1≥5 must have
> 1 simple closed Reeb orbits or > 2 in the non-degenerate case, without a
DC type index condition! (Nondegeneracy ⇒ |P̊| ≥ 2; Gürel ’15;
Abreu–Gutt–Kong–Macarini ’19, ... .)
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Discussion and context: Multiplicity for S2n−1≥5

Lower bounds on |P̊| with index requirements – Extensively studied:
DC type conditions + non-degeneracy ⇒ |P̊| ≥ n.
DC type conditions without non-degeneracy ⇒ |P̊| ≥∼ n/2;
improvements in lower dimensions... .

Credits: Breakthrough: Long–Zhu ’02. Then in various combinations:
Long, Liu, Wang, Hu ’02–’24; Gutt–Kang ’16; Abreu, Macarini, Gürel, G.
’16–’19; ... .

Related work: Some upper bounds for “perfect” flows on the sphere and
other manifolds; multiplicity results for other manifolds, the contact Conley
conjecture, ... .
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Discussion and context: Invariant sets in dim > 3

Theorem B is the first result of this type. Nothing else seems to be
known. No general conceptual picture.

Somewhat related work: No hypersurfaces in R4 with minimal
characteristic flow (Fish–Hofer ’23) + refinements (Prasad ’24); Invariant
probability measures (Prasad ’21); No hypersurfaces in R2n with uniquely
ergodic characteristic flow (G.–Niche ’15).
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Discussion and context: Barcode entropy

Some related results and constructions:

Barcode entropy:
Barcode entropy for Hamiltonian diffeomorphisms: ÇGG ’21–’23
Barcode entropy for geodesic flows: GGM ’23
Barcode entropy for Reeb flows: Fender–Lee–Sohn ’23, Fernandes ’24
Relation of categorical entropy to htop: Bae–Lee ’22
Lower semicontinuity of Lagrangian volume: ÇGG ’22
Triangulated persistence categories: Biran–Cornea–Zhang ’22, ’23

bϵ: In some other settings, bϵ carries useful geometrical info:
Cohen-Steiner–Edelsbrunner–Mileyko ’10, I.+L. Polterovich–Stojisavljević
’17, Buhovsky–Payette–I.+L. Polterovich–Shelukhin–Stojisavljević ’21.
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About proofs: Background

Three main ingredients:
Boundary depth upper bound
Crossing energy lower bound – The key new ingredient (Çineli)
Index recurrence (IR)

Need to work with specific Hamiltonians rather than symplectic homology
and things get a bit technical.
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About proofs: Background

Convenient choice: Semi-admissible Hamiltonians.
 

H herl
her ar b

Fig 1: A semi-admissible Hamiltonian

Fact: SHτ (W ) ∼= HFf(τ)(H) where f (τ) ≈ τ when τ ≪ slope(H).
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About proofs: Boundary depth upper bound

Notation: SH∞(W ) is the total symplectic homology, i.e., the action
range is [0,∞); e.g., SH∞(W ) = 0 when W is displaceable (Viterbo ’99,
Cieliebak–Frauenfelder–Oancea ’10, Sugimoto ’16, ...); βmax(W ) is Usher’s
boundary depth, i.e., the maximal bar in SH(W ).

Theorem (Irie, Shon–G. ’18): SH∞(W ) = 0 =⇒ βmax < ∞.

Remark: Upper bound = non-equivariant SH-capacity. In fact, we need a
more precise result:

Theorem (ÇGGM ’23): Assume that SH(W ) = 0. Fix a > 0 and let H
be a semi-admissible Hamiltonian with slope(H) > a. Then there exists a
constant C > 0 depending only on H such that for every sufficiently large
k ∈ N and any τ < ka the inclusion/quotient map

HFτ (kH) → HFτ+C (kH) is zero.

Hence, every bar I ending < ka has |I | < C . (Note: HF∞(kH) ̸= 0.)
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About proofs: Crossing energy

Ingredients:
z is a locally maximal (e.g., hyperbolic) closed Reeb orbit of period T .
H is semi-admissible with slope(H) > T .
z̃ is the corresponding orbit (never locally maximal) of H.
Iterated orbits – zk and z̃k . Note: z̃k is a one-periodic orbit of kH.
An admissible almost complex structure.

Theorem (Crossing Energy, ÇGGM 2309.04576): Under a minor
additional requirement on H, there exists σ > 0 such that E (u) ≥ σ for
any k ∈ N and any Floer cylinder u : R× S1 → Ŵ of kH asymptotic, at
either end, to z̃k .

Remark: A similar result for periodic orbits z in a locally maximal
hyperbolic set of the Reeb flow (ÇGGM, arXiv:2401.01421) ⇒ applications
to barcode entropy (Theorem C).
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About proofs: Crossing energy

Key point of the proof (Çineli): u cannot get too close to W in Ŵ !
 

i If owxei.us

Hwy
E independent of

b J u

Fig 2: Key point: u stays away from W .

Remark: This is a new result and it does not follow from any previously
known fact about the behavior of Floer cylinders in Ŵ .
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About proofs: Index recurrence

Setting and notation: r non-degenerate elements Φ1, . . . ,Φr in S̃p(2n)
with positive mean indices µ̂(Φi ) > 0. Set µi (k) := µ

(
Φk
i

)
for k ̸= 0 ... .

Index Recurrence Theorem – Non-degenerate Version; GG ’20): For
every N > 0 (large) and every ϵ > 0 (small), there exist r integer sequences
kij → ∞ as j → ∞ and i = 1, . . . , r , and an integer sequence dj → ∞
such that for every 1 ≤ |ℓ| ≤ N

(i)
∣∣µ̂i

(
kij
)
− dj

∣∣ < ϵ and
(ii) µi

(
kij
)
= dj + µi (ℓ).

Explanation: Arbitrary long segments [µi (−N), . . . , µi (N)] (with µi

(
0)

deleted) repeat themselves infinitely many times in the sequences µi

(
k) up

to a common index shift d ; in the derivative sequence µi (k)− µi (k − 1)
every interval repeats itself infinitely many times. Hence, recurrence! An IR
event: {dj , k1j , . . . , krj}.

Closely related: The common jump theorem; Long–Zhu ’02, ... .
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About proofs: Index recurrence
We need a very particular case of the IRT.

Corollary: Assume that all Φi are dynamically convex: µ(Φi ) ≥ n + 1.
Then there exist r integer sequences kij → ∞ as j → ∞ and i = 1, . . . , r ,
and an integer sequence dj → ∞ such that
(i)

∣∣µi

(
kij
)
− dj

∣∣ ≤ n − 1 and
∣∣ µ̂i

(
kij
)
− dj

∣∣ ≤ ϵ, and
(ii)

∣∣µi

(
kij
)
− µi (k)

∣∣ ≥ n + 1 when k ̸= kij .
 

otherMII MCI.fi otherMCI

dj n itdg.tn
I djtn.tt jan 1

Fig 3: Indices: an IR event in a DC setting.
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About proofs: Outline

Simplifying assumptions:
Non-degeneracy and DC.
Working with SH(W ) including crossing energy rather than HF(H).
Focus on Theorem A.

Theorem (a weaker version of Theorem A): A non-degenerate
dynamically convex Reeb flow on S2n−1 with a hyperbolic closed Reeb orbit
has infinitely many closed Reeb orbits.
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About proofs: Outline

Generators of the complex CSH(W ) where W is a star shaped domain
filling of (S2n−1, α): Two generators y̌ and ŷ with |y̌ | = µ(y) and
|ŷ | = µ(y) + 1 for every y ∈ P and one generator of degree n for the
interior of W .

By contradiction, assume that P̊ is finite: P̊ = {x0 = z , x1, . . . , xr} with
actions a0, . . . , ar ; z is hyperbolic. Can assume a0/ µ̂(z) = 1.

Consider an IR event: {d , k0, . . . , kr} suppressing j (large!) in the notation.
Note: d = µ̂(z) = µ(z).

Key observation: žk0 is a non-exact cycle in CSH(W ) ⇒ SH(W ) ̸= 0 ⇒
contradiction.
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About proofs: Outline

Two groups of orbits:
Group I: ai/ µ̂(xi ) = a0/ µ̂(z) = 1; action close to d .
Group II: ai/ µ̂(xi ) ̸= a0/ µ̂(z); action far from d .

No differential connecting to ž:
Iterates of Group I within an IR event: action difference is too small
(Energy Crossing).
Iterates of Group II within an IR event: action difference is too large
(Upper bound on the boundary depth).
Other iterates: index difference > 1.
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About proofs: Outline
Visualizing an IR event on the action/index plane:

 

action

Gp I
dtβ

largeGp I
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large
d β I 5it

anid n t

died
Fig 4: IR event on the index/action plane.
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Thanks!
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