## Invariant Sets and Hyperbolic Periodic Orbits of Reeb Flows

Based on joint work with Erman Çineli, Başak Gürel and Marco Mazzucchelli References: arXiv:2309.04576, arXiv:2401.01421

Viktor L. Ginzburg

University of California at Santa Cruz

Symplectic Zoominar CRM-Montréal, Princeton/IAS, Tel Aviv, and Paris May 10, 2024

▲口▶ ▲圖▶ ▲理▶ ▲理▶ 三里……

### Table of Contents

- Motivation: Hyperbolic Periodic Orbits  $\implies$  Interesting Dynamics
- Main results
  - Setting
  - Multiplicity
  - Invariant sets
  - Bonus Reeb barcode entropy
- 3 Discussion and context
  - Reeb flows in 3D
  - Multiplicity for  $S^{2n-1 \ge 5}$
  - Invariant sets in dim > 3
  - Barcode entropy

#### About proofs

- Background
- Boundary depth upper bound
- Crossing energy
- Index recurrence
- Outline

Motivation: Hyperbolic Periodic Orbits  $\implies$  Interesting Dynamics

**Phenomenon:** In some instances, the presense of one or several *hyperbolic* or even *locally maximal* periodic orbits forces a Hamiltonian system to have interesting dynamics.

**Some examples** (for Hamiltonian diffeomorphisms):

- Homoclinic intersections: A hyperbolic periodic orbit with transverse homoclinic intersections  $\Rightarrow$  a horseshoe, positive entropy, etc. Note: This is a  $C^1$ -generic condition (Hayashi '97, Xia '96).
- Spectral norm: Sufficiently many hyperbolic periodic orbits of φ ⇒ a lower bound on the spectral norm γ(φ<sup>k</sup>) > ε > 0, ∀k ∈ N;
   Çineli-G.-Gürel, arXiv:2207.03613 and arXiv:2310.00470. Note: This is a C<sup>∞</sup>-generic condition.

### Motivation

• Multiplicity: A hyperbolic fixed point of  $\varphi \colon \mathbb{CP}^n \to \mathbb{CP}^n \Rightarrow |\operatorname{Per}(\varphi)| = \infty$ , G.-Gürel '14.

**Closely related:** Franks Theorem (Franks '92, '96):  $|\operatorname{Per}(\varphi)| = 2$  or  $\infty$  for  $\varphi \colon S^2 \to S^2$ . Generalizations to  $\mathbb{CP}^n$  – the Hofer–Zehnder conjecture: " $|\operatorname{Per}(\varphi)| > n + 1 \Rightarrow |\operatorname{Per}(\varphi)| = \infty$ " (Shelukhin 22').

 Invariant sets: Moreover, a *locally maximal* fixed point of *φ*: ℂℙ<sup>n</sup> → ℂℙ<sup>n</sup> ⇒ | Per(*φ*)| = ∞, G.-Gürel '18.

 Def: Locally maximal = isolated as an invariant set; e.g., hyperbolic fixed point is locally maximal.

**Corollary:** for a *Hamiltonian pseudo-rotation (PR)* of  $\mathbb{CP}^n$  no fixed point is locally maximal. Def:  $\varphi : \mathbb{CP}^n \to \mathbb{CP}^n$  is a PR if  $|\operatorname{Per}(\varphi)| = n + 1$ .

Closely related: For S<sup>2</sup>: Le Calvez–Yoccoz '97, Franks '99.

Goal: Analogs of the last two results to Reeb flows on  $S^{2n-1}$ .

### Main results: Setting

**Mainly interested in:** The contact sphere  $(S^{2n-1}, \alpha)$ ; ker  $\alpha$  = the standard contact structure;  $\varphi^t$  = the Reeb flow of  $\alpha$ . Think of  $(S^{2n-1}, \alpha)$  as the boundary of a star-shaped domain  $W \subset \mathbb{R}^{2n}$ .

**Closed Reeb orbits:**  $\mathcal{P} = \mathcal{P}(\alpha)$  is the collection of closed Reeb orbits;  $\mathring{\mathcal{P}}$  is the set of simple closed Reeb orbits.

**Dynamical Convexity (DC)**:  $\mu(x) \ge n + 1$  for all  $x \in \mathcal{P}$ , where  $\mu$  is the lower semi-continuous extension of the Conley–Zehnder index (Hofer–Wysocki-Zehnder '98). Often weaker requirements of this type suffice. Ubiquitous in proofs in higher dimensions.

**Remark:** Convexity  $\Rightarrow$  DC; but a DC hypersurface in  $\mathbb{R}^{2n}$  need not be symplectomorphic to a convex hypersurface (Chaidez–Edtmair '22; Cristofaro-Gardiner–Hind '23; Dardennes–Gutt–Ramos–Zhang '23).

Many counterparts of the proof work in a more general setting:  $M = \partial W^{2n}$  where  $(W, \alpha)$  is a Liouville domain, etc.

### Main results: Multiplicity

**Notation**:  $\hat{\mu}(x) := \lim_{k \to \infty} \mu_{-}(x^{k})/k$  is the mean index of x;  $2\nu(x)$  is the algebraic multiplicity of the eigenvalue 1 of the Poincaré return map of x.

#### Theorem A (ÇGGM, arXiv:2309.04576)

Assume that  $(S^{2n-1}, \alpha)$  has a hyperbolic (simple) closed Reeb orbit z with  $\hat{\mu}(z) > 0$  and

$$\mu(x) \ge \max\left\{3, 2 + \nu(x)\right\} \quad (DC \text{ type condition}) \tag{1}$$

for all  $x \in \mathcal{P}(\alpha)$  with  $\hat{\mu}(x) > 0$ . Then the Reeb flow of  $\alpha$  has infinitely many simple periodic orbits:  $|\mathring{\mathcal{P}}(\alpha)| = \infty$ .

**Remark:** DC  $\Rightarrow$  (1). As a consequence: DC + a hyperbolic orbit  $\Rightarrow$   $|\mathring{\mathcal{P}}(\alpha)| = \infty$ . Note: No non-degeneracy conditions.

イロト 不得下 イヨト イヨト 二日

### Main results: Invariant sets

#### Theorem B (ÇGGM, arXiv:2401.01421)

Assume that  $(S^{2n-1\geq 3}, \alpha)$  is DC, non-degenerate and its Reeb flow has only finitely many simple closed orbits (aka Reeb PR). Then no closed orbit is locally maximal, i.e., isolated as an invariant set.

Remark: Hyperbolic closed orbits are locally maximal. Hence,

up to non-degeneracy and a stronger DC type condition.

**Remark:** Reeb PR's can have interesting dynamics:  $\exists C^{\infty}$ -small ergodic PR perturbations of irrational ellipsoids (Katok '73; Albers–Geiges–Zehmisch '22).

Main results: Bonus - Reeb barcode entropy

#### More general setting:

- A Liouville domain  $(W, \alpha)$ ; Reeb flow  $\varphi^t$  on  $\partial W$ .
- The filtered symplectic homology (non-equivariant, ungraded) persistence module SH(W) := {SH<sup>s</sup>(W) | s ∈ ℝ}.
- $\mathfrak{b}_{\epsilon}(s) = |\{ \text{ bars } > \epsilon \text{ beginning } < s \}|.$
- The  $\epsilon$ -barcode entropy and barcode entropy of ( $W, \alpha$ )

$$\hbar_{\epsilon}(W) := \limsup_{s \to \infty} \frac{\log^+ \mathfrak{b}_{\epsilon}(s)}{s} \text{ and } \hbar(W) := \lim_{\epsilon \to 0+} \hbar_{\epsilon}(W) \in [0, \infty],$$

where  $\log^+ = \max\{\log, 0\}$ .

Main results: Bonus - Reeb barcode entropy

**Theorem:**  $\hbar(\alpha) \leq h_{top}(\varphi)$  (Fender–Lee–Sohn '23). In particular,  $\hbar(\alpha) < \infty$ .

Theorem C (ÇGGM, arXiv:2401.01421)

Let  $K \subset \partial W$  be a compact hyperbolic invariant set of  $\varphi^t$ . Then

 $\mathsf{h}_{\scriptscriptstyle{\mathrm{top}}}(\varphi|_{\mathcal{K}}) \leq \hbar(\mathcal{W}).$ 

Combining these two theorems with the results of Lian–Young '12 or Lima–Sarig '19 extending Katok '80 to flows, we have

Corollary (ÇGGM, arXiv:2401.01421)

Assume that dim  $\partial W = 3$ . Then  $\hbar(W) = h_{top}(\varphi)$ .

イロト 不得下 イヨト イヨト 二日

#### Discussion and context: Reeb flows in 3D

Disclaimer: Theorems A and B are mainly of interest when  $\dim > 3$ .

Multiplicity in 3D has been extensively studied and well understood. The 2-or- $\infty$  conjecture has been proved for most of Reeb flows in 3D: Hofer–Wysocki–Zehnder '98, Cristofaro-Gardiner, Hutchings, Ramos, Pomerleano, Hryniewicz, Liu '16–'23, Colin–Dehornoy–Rechtman '23. Nothing as precise as that is true when dim > 3. The (expected) orbit bounds depend very much on the underlying contact manifold and much less is known even for  $S^{2n-1\geq 5}$ .

**Invariants sets in 3D**: Theorem B in 3D  $\leftarrow$  the Franks–Le Calvez–Yoccoz theorem (2D); for the latter theorem is in fact local.

**Related result in a similar spirit:** In 3D, the union of proper closed invariant sets is dense (Cristofaro-Gardiner–Prasad 24'). This does not follow from the Franks–Le Calvez–Yoccoz theorem and the proof also implies Theorem B in 3D.

イロト 不得 トイヨト イヨト 二日

# Discussion and context: Multiplicity for $S^{2n-1\geq 5}$

The question originates in classical mechanics and calculus of variations (Lyapunov, Moser, Rabinowitz, Weinstein, Ekeland, ...).

**Conjecture** : For a Reeb flow on the standard contact  $S^{2n-1}$  either  $|\mathring{\mathcal{P}}| = n$  and all orbits are elliptic or  $|\mathring{\mathcal{P}}| = \infty$  and at least one of the orbits is degenerate or not elliptic. (Along the lines of the Reeb HZ Conjecture aka the Reeb Franks "Theorem".)

**Comment:** A long shot given how little is known! Theorem A is one of the first steps in the "or" direction.

**Unknown:** If the Reeb flow on the standard contact  $S^{2n-1\geq 5}$  must have > 1 simple closed Reeb orbits or > 2 in the non-degenerate case, without a DC type index condition! (Nondegeneracy  $\Rightarrow |\mathcal{P}| > 2$ ; Gürel '15; Abreu–Gutt–Kong–Macarini '19, ... .)

Discussion and context: Multiplicity for  $S^{2n-1\geq 5}$ 

Lower bounds on  $|\mathring{\mathcal{P}}|$  with index requirements – Extensively studied:

- DC type conditions + non-degeneracy  $\Rightarrow |\mathring{\mathcal{P}}| \ge n$ .
- DC type conditions without non-degeneracy  $\Rightarrow$   $|\mathring{P}| \ge \sim n/2$ ; improvements in lower dimensions... .

**Credits:** Breakthrough: Long–Zhu '02. Then in various combinations: Long, Liu, Wang, Hu '02–'24; Gutt–Kang '16; Abreu, Macarini, Gürel, G. '16–'19; ... .

**Related work:** Some upper bounds for "perfect" flows on the sphere and other manifolds; multiplicity results for other manifolds, the contact Conley conjecture, ... .

Theorem B is the first result of this type. Nothing else seems to be known. No general conceptual picture.

**Somewhat related work:** No hypersurfaces in  $\mathbb{R}^4$  with minimal characteristic flow (Fish–Hofer '23) + refinements (Prasad '24); Invariant probability measures (Prasad '21); No hypersurfaces in  $\mathbb{R}^{2n}$  with uniquely ergodic characteristic flow (G.–Niche '15).

Discussion and context: Barcode entropy

Some related results and constructions:

Barcode entropy:

- Barcode entropy for Hamiltonian diffeomorphisms: ÇGG '21-'23
- Barcode entropy for geodesic flows: GGM '23
- Barcode entropy for Reeb flows: Fender-Lee-Sohn '23, Fernandes '24
- Relation of categorical entropy to h<sub>top</sub>: Bae-Lee '22
- Lower semicontinuity of Lagrangian volume: ÇGG '22
- Triangulated persistence categories: Biran–Cornea–Zhang '22, '23

 $\mathfrak{b}_{\epsilon}$ : In some other settings,  $\mathfrak{b}_{\epsilon}$  carries useful geometrical info: Cohen-Steiner–Edelsbrunner–Mileyko '10, I.+L. Polterovich–Stojisavljević '17, Buhovsky–Payette–I.+L. Polterovich–Shelukhin–Stojisavljević '21.

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

## About proofs: Background

#### Three main ingredients:

- Boundary depth upper bound
- Crossing energy lower bound The key new ingredient (Çineli)
- Index recurrence (IR)

Need to work with specific Hamiltonians rather than symplectic homology and things get a bit technical.

### About proofs: Background

#### Convenient choice: Semi-admissible Hamiltonians.



Fig 1: A semi-admissible Hamiltonian

**Fact:** SH<sup> $\tau$ </sup>(*W*)  $\cong$  HF<sup> $\mathfrak{f}(\tau)$ </sup>(*H*) where  $f(\tau) \approx \tau$  when  $\tau \ll slope(H)$ .

## About proofs: Boundary depth upper bound

**Notation:**  $SH^{\infty}(W)$  is the total symplectic homology, i.e., the action range is  $[0, \infty)$ ; e.g.,  $SH^{\infty}(W) = 0$  when W is displaceable (Viterbo '99, Cieliebak–Frauenfelder–Oancea '10, Sugimoto '16, ...);  $\beta_{max}(W)$  is Usher's boundary depth, i.e., the maximal bar in SH(W).

Theorem (Irie, Shon–G. '18):  $SH^{\infty}(W) = 0 \Longrightarrow \beta_{max} < \infty$ .

**Remark:** Upper bound = non-equivariant *SH*-capacity. In fact, we need a more precise result:

**Theorem (ÇGGM '23):** Assume that SH(W) = 0. Fix a > 0 and let H be a semi-admissible Hamiltonian with slope(H) > a. Then there exists a constant C > 0 depending only on H such that for every sufficiently large  $k \in \mathbb{N}$  and any  $\tau < ka$  the inclusion/quotient map

$$\mathsf{HF}^{\tau}(kH) \to \mathsf{HF}^{\tau+C}(kH)$$
 is zero.

Hence, every bar *I* ending < ka has |I| < C. (Note:  $HF^{\infty}(kH) \neq 0$ .)

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨ ● の ○ ○

## About proofs: Crossing energy

#### **Ingredients**:

- z is a locally maximal (e.g., hyperbolic) closed Reeb orbit of period T.
- H is semi-admissible with slope(H) > T.
- $\tilde{z}$  is the corresponding orbit (never locally maximal) of H.
- Iterated orbits  $z^k$  and  $\tilde{z}^k$ . Note:  $\tilde{z}^k$  is a one-periodic orbit of kH.
- An admissible almost complex structure.

Theorem (Crossing Energy, ÇGGM 2309.04576): Under a minor additional requirement on H, there exists  $\sigma > 0$  such that  $E(u) \ge \sigma$  for any  $k \in \mathbb{N}$  and any Floer cylinder  $u \colon \mathbb{R} \times S^1 \to \widehat{W}$  of kH asymptotic, at either end. to  $\tilde{z}^k$ .

**Remark:** A similar result for periodic orbits z in a locally maximal hyperbolic set of the Reeb flow ( $\zeta$ GGM, arXiv:2401.01421)  $\Rightarrow$  applications to barcode entropy (Theorem C).

## About proofs: Crossing energy

Key point of the proof (Çineli): u cannot get too close to W in  $\widehat{W}$ !



Fig 2: Key point: u stays away from W.

**Remark:** This is a new result and it does not follow from any previously known fact about the behavior of Floer cylinders in  $\widehat{W}$ .

< ロ > < 同 > < 回 > < 回 > < 回 > <

### About proofs: Index recurrence

**Setting and notation**: *r* non-degenerate elements  $\Phi_1, \ldots, \Phi_r$  in Sp(2n)with positive mean indices  $\hat{\mu}(\Phi_i) > 0$ . Set  $\mu_i(k) := \mu(\Phi_i^k)$  for  $k \neq 0 \dots$ .

Index Recurrence Theorem – Non-degenerate Version; GG '20): For every N > 0 (large) and every  $\epsilon > 0$  (small), there exist r integer sequences  $k_{ii} \to \infty$  as  $j \to \infty$  and i = 1, ..., r, and an integer sequence  $d_i \to \infty$ such that for every  $1 \leq |\ell| \leq N$ 

(i) 
$$\left|\hat{\mu}_{i}(k_{ij})-d_{j}\right|<\epsilon$$
 and

(ii) 
$$\mu_i(k_{ij}) = d_j + \mu_i(\ell)$$

**Explanation:** Arbitrary long segments  $[\mu_i(-N), \ldots, \mu_i(N)]$  (with  $\mu_i(0)$ deleted) repeat themselves infinitely many times in the sequences  $\mu_i(k)$  up to a common index shift d; in the derivative sequence  $\mu_i(k) - \mu_i(k-1)$ every interval repeats itself infinitely many times. Hence, recurrence! An IR *event*:  $\{d_i, k_{1i}, \ldots, k_{ri}\}$ .

**Closely related:** The common jump theorem; Long–Zhu '02, ....

#### About proofs: Index recurrence

We need a very particular case of the IRT.

**Corollary:** Assume that all  $\Phi_i$  are dynamically convex:  $\mu(\Phi_i) \ge n + 1$ . Then there exist r integer sequences  $k_{ij} \to \infty$  as  $j \to \infty$  and  $i = 1, \ldots, r$ , and an integer sequence  $d_j \to \infty$  such that

- (i)  $|\mu_i(k_{ij}) d_j| \le n 1$  and  $|\hat{\mu}_i(k_{ij}) d_j| \le \epsilon$ , and
- (ii)  $|\mu_i(k_{ij}) \mu_i(k)| \ge n+1$  when  $k \ne k_{ij}$ .



Fig 3: Indices: an IR event in a DC setting.

イロト 不得下 イヨト イヨト 二日

## About proofs: Outline

#### Simplifying assumptions:

- Non-degeneracy and DC.
- Working with SH(W) including crossing energy rather than HF(H).
- Focus on Theorem A.

**Theorem (a weaker version of Theorem A):** A non-degenerate dynamically convex Reeb flow on  $S^{2n-1}$  with a hyperbolic closed Reeb orbit has infinitely many closed Reeb orbits.

### About proofs: Outline

Generators of the complex CSH(W) where W is a star shaped domain filling of  $(S^{2n-1}, \alpha)$ : Two generators  $\check{y}$  and  $\hat{y}$  with  $|\check{y}| = \mu(y)$  and  $|\hat{y}| = \mu(y) + 1$  for every  $y \in \mathcal{P}$  and one generator of degree n for the interior of W.

By contradiction, assume that  $\mathring{\mathcal{P}}$  is finite:  $\mathring{\mathcal{P}} = \{x_0 = z, x_1, \dots, x_r\}$  with actions  $a_0, \dots, a_r$ ; z is hyperbolic. Can assume  $a_0/\hat{\mu}(z) = 1$ .

Consider an *IR event*:  $\{d, k_0, ..., k_r\}$  suppressing *j* (large!) in the notation. Note:  $d = \hat{\mu}(z) = \mu(z)$ .

**Key observation**:  $\check{z}^{k_0}$  is a non-exact cycle in  $CSH(W) \Rightarrow SH(W) \neq 0 \Rightarrow$  contradiction.

### About proofs: Outline

#### Two groups of orbits:

- Group I:  $a_i/\hat{\mu}(x_i) = a_0/\hat{\mu}(z) = 1$ ; action close to d.
- Group II:  $a_i/\hat{\mu}(x_i) \neq a_0/\hat{\mu}(z)$ ; action far from d.

#### No differential connecting to ž:

- Iterates of Group I within an IR event: action difference is too small (Energy Crossing).
- Iterates of Group II within an IR event: action difference is too large (Upper bound on the boundary depth).
- Other iterates: index difference > 1.

### About proofs: Outline Visualizing an IR event on the action/index plane:



Fig 4: IR event on the index/action plane.

Viktor Ginzburg (UCSC)

### Thanks!

Viktor Ginzburg (UCSC)

Barcode entropy

May 2024

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

26 / 26

æ