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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
The goal of this talk is to give an
overview, for non-specialists , of
finite dimensional integrable systems
on symplectic manifolds, and then
focus on two special types: toric and
semitoric. I will mention quantum
applications and open problems.
There are three parts:

Integrable systems (15 minutes);
Toric systems (30 minutes);
Semitoric systems (15 minutes).

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

PART 1: INTEGRABLE
SYSTEMS
(approx. 15 minutes)

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[1 of 71] Famous dynamical systems: INTEGRABLE

A dynamical system is INTEGRABLE when it has
many conserved quantities throughout the motion :
for instance energy, momentum ...

Example: Shallow Water Wave (KdV) (infinite dimension).
It took over 100 years to know that it was integrable!

Another example: Spherical pendulum (finite dimension).
Today I will focus on FINITE dimension.
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Let’s see some MOTIVATIONS to
study

Integrable Systems

and learn about some distinguished

Historical Figures
who have been influential in this area
and the connections with other areas.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[2 of 71] MOTIVATIONS to study integrable systems

There are many motivations, including:

1 Their crucial role in describing phenomena from
physics, chemistry and the other sciences.

2 The connection with general dynamical systems
via KAM Theory of small perturbations
(Kolmogorov-Arnold-Moser).

3 The deep connections with topology through the
theory of singular Lagrangian fibrations of the Russian
School, and with mathematical analysis .

Even more, let’s recall what Jürgen Moser told us:
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[3 of 71] J. Moser (Königsberg 1928, Zürich 1999)

The great mathematician Jürgen Moser was a central figure
in pushing the development of integrable systems in the XX
century.

A world leading figure in analysis, Moser was
professor at MIT, NYU and ETH Zürich. In the Proceedings
of his Plenary Talk at the International Congress of
Mathematicians in Berlin (1998) he tells us:

"It is impossible to even touch on the many
ramifications that have evolved from the study of

integrable systems."
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[4 of 71] Moser continues:

Moser, who had a deep knowledge of many areas of pure and
applied mathematics, continues to say:

“Most striking to me is the development of integrable
systems (some 30 years ago)

which did not grow out
of any given problem, but out of a phenomenon

which was discovered by numerical experiments in
fluid dynamics.

Intelligent studies and deep insight opened up to a
novel field impinging on differential geometry,
algebraic geometry, and mathematical physics,

including applications in communication of fiber
optics."
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[5 of 71] INTEGRABLE SYSTEMS: LEADING FIGURES

Integrable systems are studied from many viewpoints. A lot of
authors have made pioneering contributions: Vladimir Arnold, Hans
Duistermaat, Lars H. Eliasson, Anatoly Fomenko, Victor Guillemin,
Nigel Hitchin, Andréi Kolmogorov, Sofya Kovalévskaya, Robert
Langlands, Jürgen Moser, Emmy Noether, Nicolai Reshetikhin,
Karen Uhlenbeck and Alan Weinstein, among many others.

H. Duistermaat 1942-2010 K. Uhlenbeck 1942 N. Hitchin 1946
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[6 of 71] ABEL PRIZE CONTRIBUTION INCLUDES
INTEGRABLE SYSTEMS

The Norwegian Academy of Science and Letters
awarded the 2019 Abel Prize to Karen Uhlenbeck:

“for her pioneering achievements in
geometric partial differential
equations, gauge theory and
integrable systems, and for the
fundamental impact of her work on
analysis, geometry and
mathematical physics."
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Today we focus on finite
dimensional integrable

(Hamiltonian) systems from the
point of view of symplectic

geometry and topology.

How are they defined?
We see it next.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[7 of 71] Classical Integrable Systems: DEFINITION

Let (M2n,ω) be 2n-dimensional symplectic manifold.
A smooth function

F = (f1, . . . , fn) : M2n→ Rn

is an integrable system if two conditions hold:

1 Commutativity: fi is constant along the flow
of Xfj for all i, j, where each Xfi is given by the
equation ω (Xfi, ·) =−dfi.

2 Independence: at almost every point the
vector fields Xf1, . . . ,Xfn are linearly independent.

Extra hypothesis today: the fibers F−1(c) are compact ∀c. Also,
throughout talk, manifolds are ASSUMED TO BE CONNECTED .
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[8 of 71] Historical note about integrable systems

1 Historically the term integrable comes from considering a
symplectic manifold M2n (PHASE SPACE) and a function
(ENERGY FUNCTION or HAMILTONIAN) H : M2n→ R.

2 (M2n with H : M2n→ R) is HAMILTONIAN SYSTEM.

3 What are the integrals of H? : they are the functions
which "commute" with H and are pairwise "independent",
that is, functions satisfying conditions in previous definition.

4 Is there a maximal number of integrals? : yes, with the
conditions, at most n−1 integrals f2, . . . , fn. In this case the
Hamiltonian system (M2n with H : M2n→ R) is integrable.

5 The modern viewpoint is: to consider all integrals
simultaneously (H, f2, . . . , fn) : M2n→ Rn.

6 Generalizations: you can have more than n−1 integrals by
relaxing conditions: superintegrable systems etc.
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[9 of 71] Typical integrable system

What does a typical integrable system F : M4→ R2 look like?

Keep in mind this picture, we’ll COME BACK TO IT later.
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Next I am going to present four
examples of

Integrable systems

which are very well known, and with

EXPLICIT FORMULAS.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[10 of 71] COMPLEX PROJECTIVE SPACE

The COMPLEX PROJECTIVE SPACE is an example of
integrable system which is very important in

ALGEBRAIC GEOMETRY.

It comes endowed with Fubini-Study symplectic form (I
skip formula).

This integrable system

F = (f1, . . . , fn) : CPn→ Rn

is given by the formula

F([z0 : z1 : . . . : zn]) =
( |z1|2

∑
n
i=0 |zi|2

, . . . ,
|zn|2

∑
n
i=0 |zi|2

)
and is induced by the rotational action of a torus on C2n+1.
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[11 of 71] COUPLED SPIN-OSCILLATOR, i.e.
JAYNES-CUMMINGS MODEL (1963)

Another example is the JAYNES-CUMMINGS MODEL ,
which is the integrable system

F = (f1, f2) : S2×R2→ R2

f1(x,y,z,u,v) =
u2 + v2

2
+ z, f2(x,y,z,u,v) =

ux+ vy
2

,

where (x,y,z) are coordinates on S2, (u,v) on R2, and S2×R2

is endowed with dθ ∧dh+du∧dv. It is a crucial model,
explains fundamental physical phenomena, and is
studied in many physics papers (Jaynes-Cummings 1963).
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One of the most famous integrable systems is
the pendulum, which goes back to the XVII
century. How does one describe it mathematically?
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[12 of 71] SPHERICAL PENDULUM

The SPHERICAL PENDULUM is another integrable
system which is fundamental in physics and mathematics,
going back to Huygens in the XVII century.
Mathematically it is given by:

(f1, f2) : T∗S2→ R2,

where f1 is the sum of kinetic energy plus potential

f1(θ ,ϕ,ξθ ,ξϕ) =
1
2

(
ξ

2
θ +

1
sin2

θ
ξ

2
ϕ

)
+ cosθ .

and the first integral is

f2(θ ,ϕ,ξθ ,ξϕ) = ξϕ .

Here (θ ,ϕ) are spherical angles – with ϕ being rotation angle
about vertical axis and θ measuring angle from north pole –
and (ξθ ,ξϕ) are cotangent conjugate variables.
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[13 of 71] COUPLED ANGULAR MOMENTA

Lastly, it is impossible not to mention a system as important
as the COUPLED ANGULAR MOMENTA of
Sadovskií-Zhilinskií. It is an integrable system essential in
physics.

In order to give formulas, consider R2 > R1 > 0 and
on S2×S2 we take coordinates

(x1,y1,z1,x2,y2,z2).

The integrable system is

Ft = (f1, f2,t) : S2×S2→ R2

where the integrals are

f1(x1,y1,z1,x2,y2,z2) = R1z1 +R2z2,

f2,t(x1,y1,z1,x2,y2,z2)= (1−t)z1+t(x1x2+y1y2+z1z2) ∀t∈ [0,1].
On S2×S2 the symplectic form is the product form
−(R1ωS2⊕R2ωS2), where ωS2 is the standard area form on S2.

Álvaro Pelayo (UCM, Royal Spanish Academy of Sciences) TORIC AND SEMITORIC SYMPLECTIC GEOMETRY



lntegrable Systems 15’ Toric Systems 30’ Semitoric Systems 15’

[13 of 71] COUPLED ANGULAR MOMENTA

Lastly, it is impossible not to mention a system as important
as the COUPLED ANGULAR MOMENTA of
Sadovskií-Zhilinskií. It is an integrable system essential in
physics. In order to give formulas, consider R2 > R1 > 0 and
on S2×S2 we take coordinates

(x1,y1,z1,x2,y2,z2).

The integrable system is

Ft = (f1, f2,t) : S2×S2→ R2

where the integrals are

f1(x1,y1,z1,x2,y2,z2) = R1z1 +R2z2,

f2,t(x1,y1,z1,x2,y2,z2)= (1−t)z1+t(x1x2+y1y2+z1z2) ∀t∈ [0,1].
On S2×S2 the symplectic form is the product form
−(R1ωS2⊕R2ωS2), where ωS2 is the standard area form on S2.

Álvaro Pelayo (UCM, Royal Spanish Academy of Sciences) TORIC AND SEMITORIC SYMPLECTIC GEOMETRY



lntegrable Systems 15’ Toric Systems 30’ Semitoric Systems 15’

[13 of 71] COUPLED ANGULAR MOMENTA

Lastly, it is impossible not to mention a system as important
as the COUPLED ANGULAR MOMENTA of
Sadovskií-Zhilinskií. It is an integrable system essential in
physics. In order to give formulas, consider R2 > R1 > 0 and
on S2×S2 we take coordinates

(x1,y1,z1,x2,y2,z2).

The integrable system is

Ft = (f1, f2,t) : S2×S2→ R2

where the integrals are

f1(x1,y1,z1,x2,y2,z2) = R1z1 +R2z2,

f2,t(x1,y1,z1,x2,y2,z2)= (1−t)z1+t(x1x2+y1y2+z1z2) ∀t∈ [0,1].
On S2×S2 the symplectic form is the product form
−(R1ωS2⊕R2ωS2), where ωS2 is the standard area form on S2.

Álvaro Pelayo (UCM, Royal Spanish Academy of Sciences) TORIC AND SEMITORIC SYMPLECTIC GEOMETRY



lntegrable Systems 15’ Toric Systems 30’ Semitoric Systems 15’

[13 of 71] COUPLED ANGULAR MOMENTA

Lastly, it is impossible not to mention a system as important
as the COUPLED ANGULAR MOMENTA of
Sadovskií-Zhilinskií. It is an integrable system essential in
physics. In order to give formulas, consider R2 > R1 > 0 and
on S2×S2 we take coordinates

(x1,y1,z1,x2,y2,z2).

The integrable system is

Ft = (f1, f2,t) : S2×S2→ R2

where the integrals are

f1(x1,y1,z1,x2,y2,z2) = R1z1 +R2z2,

f2,t(x1,y1,z1,x2,y2,z2)= (1−t)z1+t(x1x2+y1y2+z1z2) ∀t∈ [0,1].

On S2×S2 the symplectic form is the product form
−(R1ωS2⊕R2ωS2), where ωS2 is the standard area form on S2.

Álvaro Pelayo (UCM, Royal Spanish Academy of Sciences) TORIC AND SEMITORIC SYMPLECTIC GEOMETRY



lntegrable Systems 15’ Toric Systems 30’ Semitoric Systems 15’

[13 of 71] COUPLED ANGULAR MOMENTA

Lastly, it is impossible not to mention a system as important
as the COUPLED ANGULAR MOMENTA of
Sadovskií-Zhilinskií. It is an integrable system essential in
physics. In order to give formulas, consider R2 > R1 > 0 and
on S2×S2 we take coordinates

(x1,y1,z1,x2,y2,z2).

The integrable system is

Ft = (f1, f2,t) : S2×S2→ R2

where the integrals are

f1(x1,y1,z1,x2,y2,z2) = R1z1 +R2z2,

f2,t(x1,y1,z1,x2,y2,z2)= (1−t)z1+t(x1x2+y1y2+z1z2) ∀t∈ [0,1].
On S2×S2 the symplectic form is the product form
−(R1ωS2⊕R2ωS2), where ωS2 is the standard area form on S2.

Álvaro Pelayo (UCM, Royal Spanish Academy of Sciences) TORIC AND SEMITORIC SYMPLECTIC GEOMETRY



lntegrable Systems 15’ Toric Systems 30’ Semitoric Systems 15’

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Next let’s see a great

CHALLENGE IN THE FIELD.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[14 of 71] Challenge for XXI Century

In mathematics, equivalent objects are called isomorphic.

When are two integrable systems
F1,F2 isomorphic?

Being isomorphic means there is diffeomorphism of underlying
manifolds which exchanges the systems and symplectic forms.
Invariant: object/property that isomorphic systems share.

CHALLENGE
A great challenge for the XXI century is to:

CONSTRUCT INVARIANTS I1, . . . ,Ik

that classify integrable systems in terms of them.

We want to understand something difficult (INTEGRABLE
SYSTEMS) in terms of something "easy" (INVARIANTS)!
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[15 of 71] What we know about previous challenge

1 It has quantum applications, to inverse problems.

2 It is known how to construct local invariants
(neighborhood of point). Almost nothing about
semilocal (neighborhood of orbit) nor global.

3 After 1988 (Atiyah and others) most successful
techniques: cut-paste models, developed with
collaborators in: Inventiones 2009 , Acta 2011 ,
Ann. Sci. ENS 2013... .

Upcoming theorems are about this ...
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

To address this challenge, it is
necessary to understand integrable
systems in:

neighborhood of regular/singular point, and
neighborhood of regular/singular orbit/fiber.

But ... we know little ... with the
exception of a result by Arnold and
Mineur.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[16 of 71] Arnold-Liouville-Mineur Theorem 1935, 1960

If Xf1(m), . . . , Xfn(m) are linearly independent, m is regular.

The famous Action-Angle Theorem
says that a fiber with only regular points is n-torus Tn in T∗Tn

and in neighborhood F(x1, . . . ,xn,ξ1, . . . ,ξn) = (ξ1, . . . ,ξn)
(assuming preimages of compact sets are compact).

angle 
oordinates

R2

T2 × {0} ≃ Λc

a
tion-angle


oordinates

≃ U ⊂ M

a
tion 
oordinates

Fiber T2

R2

R2

R2

Global version by Duistermaat (Comm. Pure Appl. Math 1980).
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[17 of 71] Singular fiber

... But the most important information about an
integrable system can be found in its singularities: the m
where Xf1(m), . . . ,Xfn(m) are linearly dependent. For example
m0,m1, . . ..

m0

m1

m2

m3

m4

m5

Xf2

Xf1

F −1(0)

M
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[18 of 71] Remember this picture?

Remember our earlier figure of typical integrable system
F : (M4,ω)→ R2 ? It is singular Lagrangian fibration with:

Regular fibers : 2-dimensional tori.

Fibers with singularities : circles, points, pinched tori.

We do not understand (most of) their symplectic invariants with
exceptions: so called toric and semitoric cases (in a moment).
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

The singularities correspond to

critical points of F : M2n→ Rn,

that is, the m such that dm F has rank
< n.

Expanding "in power series",

What are the local models of F?
Very few, and without higher order
terms. Let’s see it.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Álvaro Pelayo (UCM, Royal Spanish Academy of Sciences) TORIC AND SEMITORIC SYMPLECTIC GEOMETRY



lntegrable Systems 15’ Toric Systems 30’ Semitoric Systems 15’

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

The singularities correspond to

critical points of F : M2n→ Rn,

that is, the m such that dm F has rank
< n. Expanding "in power series",

What are the local models of F?
Very few, and without higher order
terms. Let’s see it.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Álvaro Pelayo (UCM, Royal Spanish Academy of Sciences) TORIC AND SEMITORIC SYMPLECTIC GEOMETRY



lntegrable Systems 15’ Toric Systems 30’ Semitoric Systems 15’

[19 of 71] Deep analytic theorem by Eliasson (see also Colin de

Verdière, Rüssmann, Vey, Vũ Ngo.c, Wacheux, Zung ...)

It is known since 1984 that an integrable system without
hyperbolic singularities is given

in neighborhood of each singularity m = (0, . . . ,0),

in symplectic coordinates (x1, . . . ,xn,ξ1, . . . ,ξn) by models:

(Q1,Q2, . . . , . . .)

up to composition (on left) by a local diffeomorphism where ω

has standard form and the models can be:
1 Elliptic: Qi = (x2

i +ξ 2
i )/2;

2 Real: Qi = ξi;
3 Focus-Focus: Qi = (xiξi+1− xi+1ξi, xiξi + xi+1ξi+1).

There is version with hyperbolic singular points (Qi = xiξi, only
other possible model). Singularities: assumed non-degenerate.
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Images of singularities in dimension 4:

hyperboli
-hyperboli
 (rank 0) hyperboli
-ellipti
 (rank 0)ellipti
-ellipti
 (rank 0) fo
us-fo
us (rank 0)

regular (rank 2) transversally ellipti
 (rank 1) transversally hyperboli
 (rank 1)

Álvaro Pelayo (UCM, Royal Spanish Academy of Sciences) TORIC AND SEMITORIC SYMPLECTIC GEOMETRY



lntegrable Systems 15’ Toric Systems 30’ Semitoric Systems 15’

This concludes PART I (Integrable Systems).

Recommended articles for this part:
1 Hamiltonian and symplectic symmetries: an
introduction, Bulletin of the American
Mathematical Society 2017.

2 Symplectic theory of completely integrable
Hamiltonian systems (with S. Vũ Ngo.c) Bulletin
of the American Mathematical Society
2011.
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Let’s solve CHALLENGE in two
important cases:

TORIC AND SEMITORIC.
We will also see related
results/challenges and applications
to Quantum Geometry.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

PART 2: TORIC SYSTEMS
(approx. 30 minutes)

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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Image and fibers of typical toric system on compact
symplectic 4-manifold, viewed as map M→ R2:

THERE ARE NO PINCHED TORI !
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[20 of 71] TORIC SYSTEMS: Atiyah ... 1980s

An integrable system
F = (f1, . . . , fn) : M2n −→ Rn

is toric if all the vector fields
Xf1, . . . ,Xfn generate periodic flows.

The fundamental example is

F = (f1, . . . , fn) : CPn→ Rn

F([z0 : z1 : . . . : zn]) =
( |z1|2

∑
n
i=0 |zi|2

, . . . ,
|zn|2

∑
n
i=0 |zi|2

)
.

It is induced by the rotational torus action on C2n+1.
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[21 of 71] TORIC SYSTEMS ARE CONNECTED TO
POLYTOPES

Theorem (Atiyah Bulletin London Mathematical
Society 1982,Guillemin-Sternberg Inventiones
Mathematicae 1982)

If M2n is compact and F is toric, the classical spectrum
F(M2n) is convex polytope in Rn (simple, rational, smooth).
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[22 of 71] Delzant polytopes

In honor of Thomas Delzant, the polytopes we just saw carry his name.

Definition (DELZANT POLYTOPE)
A Delzant polytope in Rn is a simple, rational
n-polytope such that the primitive edge-direction
vectors at each vertex are basis of Zn.

Notation:D(n)≡ set of Delzant n-polytopes in Rn.
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[23 of 71] Toy toric system

Toy toric system µ = f1 : S2→ R.

θ

(0,0,− 1)

(0,0,0)

(0,0,1)

(α,h) θ · (α,h)
= (θ + α,h)

h

1

− 1

µ(θ,h) = h
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[24 of 71] Classification of toric systems

In the decade of the 1980s, building on ideas of

Atiyah, Guillemin, Horn, Kostant, Schur, Sternberg and others,

Thomas Delzant proved that:

Teorema (Delzant Bull Soc Math France 1988)
The correspondence which sends

[F : (M2n,ω)→ Rn]︸ ︷︷ ︸
isomorphism class of toric system

to F(M)︸ ︷︷ ︸
polytope

⊂ Rn

is a bijection between the isomorphism classes of toric systems
and the set of simple, rational, smooth polytopes.

Around the influence of this theorem, and related ideas, strong
research groups developed at different universities, including
Harvard, MIT and UC Berkeley.
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[25 of 71] Bridge between two mathematical worlds!

Thanks to these impressive theorems,

PROBLEMS ABOUT TORIC SYSTEMS
can be posed as

PROBLEMS ABOUT POLYTOPES.

These THEOREMS give bridge between two worlds .
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[26 of 71] Why translating from manifolds to polytopes?

Disadvantages:

The combinatorial problem may not be any easier.

Translating problem back and forth is technical.

Advantages:

Since 1990s, major developments about
polytopes.
Some problems in geometry, once translated,
appear to be more doable (seem more
"concrete").
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[27 of 71] Peculiarity of toric systems

The conclusions of these theorems are so strong because the

singularities of toric systems are the simplest ones

since they cannot have focus-focus nor hyperbolic
models:

1 Locally in a neighborhood of m = (0, . . . ,0) endowed with
standard symplectic form:

F(x1, . . . ,xn,ξ1, . . . ,ξn)=
( x2

1 +ξ 2
1

2
, . . . ,

x2
k +ξ 2

k
2︸ ︷︷ ︸

elliptic type

,ξk+1, . . . ,ξn

)
.

2 The fibers are diffeomorphic to tori Tn−k, 0≤ k ≤ n.
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[28 of 71] Fibers of toric systems

LEFT: Toric system on CP2. RIGHT: On CP1×CP1.
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[29 of 71] More classifications of toric systems

The previous theorems have extensions to a variety of cases,
where the symplectic manifold is replaced by a more
general or complicated space. For example, see following
works (and references therein) about:

1 Toric systems on LOG-SYMPLECTIC manifolds
(Poisson manifolds with symplectic structure away from
hypersurfaces with certain configurations):

Li-Gualtieri-Pelayo-Ratiu, Math. Annalen 2017.

2 Toric systems on NON COMPACT manifolds:

Karshon-Lerman, SIGMA 2015.

3 Toric systems on ORBIFOLDS :

Lerman-Tolman, Trans. Amer. Math. Soc. 1997.
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Toric integrable systems provide
useful examples, and many problems
about them are still open, including
famous conjectures.

What are some of these problems?
We see next a small sample ...
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

A Natural Question:

What is the structure (geometric,
topological etc) of the set

M (2n)

of isomorphism classes of (compact
connected) toric integrable systems?
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

THIS CAN BE ANSWERED
USING POLYTOPE THEORY!

Let’s see how next.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[30 of 71] Metrics and topologies

Definition (SYMMETRIC AND HAUSDORFF DISTANCE)

Let C (n) be set of compact convex sets in Rn. Define

δ
V ,δ H : C (n)×C (n)−→ R≥0,

SYMMETRIC : δ
V(P,Q) = Vol(P\Q)+Vol(Q\P),

HAUSDORFF : δ
H(P,Q) = max{max

x∈P
dist(x,Q),max

y∈Q
dist(y,P)}.

Cp(n)⊂ C (n): set of proper ones (non-empty interior).

On Cp(n), δ H and δ V are not equivalent distances, but
induce same topology. We endow D(n) with it.

Endow M (2n) with metrics/topology by M (2n)≡D(n).
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dist(y,P)}.

Cp(n)⊂ C (n): set of proper ones (non-empty interior).

On Cp(n), δ H and δ V are not equivalent distances, but
induce same topology. We endow D(n) with it.

Endow M (2n) with metrics/topology by M (2n)≡D(n).
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[31 of 71] Connectivity of moduli spaces

Theorem (Pelayo-Pires-Ratiu-Sabatini Geom.
Dedicata 2014, Pelayo-Santos 2023 arxiv:2303.02369)

M (2n) is path-connected and dense in Cp(n) .

NOTES:
Case of 2n = 4 due to Pelayo-Pires-Ratiu-Sabatini in
Geometria Dedicata 2014, who asked question for any 2n.
Case of 2n is by Pelayo-Santos in 2023, arxiv:2303.02369.
Same paper solves problems by Fujita, Kitabeppu, Mitsuishi.
Most of paper is "metric geometry" concerning both δ V ,δ H,
and contains a number of other results (technical for talk).
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Another natural question:

What happens with blow-ups of
toric integrable systems?

THIS CAN ALSO BE
ANSWERED USING

POLYTOPES .
How? We see it next.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[32 of 71] Reflexive polytopes

Lattice polytope: polytope with integer vertices.

Definition (REFLEXIVE POLYTOPE)
A reflexive polytope is a lattice polytope such
that every facet-supporting hyperplane is of the form

uF · x = 1,

where uF is the primitive vector normal to the facet.
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[33 of 71] Properties of reflexive polytopes

1 Equivalently, a reflexive polytope is a lattice
polytope whose dual also has integer vertices.

2 Every reflexive polytope has the origin as the
unique interior lattice point. Hence, for
reflexive polytopes AGL(n,Z)-equivalence is the
same as GL(n,Z)-equivalence.
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[34 of 71] Monotone polytopes and monotone blow-ups

Definition (MONOTONE POLYTOPE AND BLOW-UP)

Monotone polytope: Delzant and reflexive.
dim 1 2 3 4 5 6 7 8 9
# 1 5 18 124 866 7622 72256 749892 8229721

Monotone blow-up in monotone polytope:
blow-up ("chop off vertex") that results in
monotone polytope.

These are the only five 2-dimensional monotone polygons (up to
GL(2,Z) equivalence):
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[35 of 71] The monotone simplex

1 n-simplex: convex hull of its n+1 vertices.

2 The smooth unimodular n-simplex is:

∆n :=
{

x ∈ Rn
∣∣∣ xi ≥ 0 ∀i and

n

∑
i=1

xi ≤ 1
}

3 Only monotone n-simplex (mod GL(n,Z)):

−1+(n+1)∆n ' (n+1)∆n
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[36 of 71] McDuff’s Question

McDuff (Geometry and Topology 2011): Is
there a monotone polytope ∆ of dimension n > 2 for
which:

1 one can make at least two monotone and disjoint
blow ups of points,

2 or, more generally, of any two faces of
codimension > 2?
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[37 of 71] Monotone polytopes in dimension three

These are the five maximal monotone 3-polytopes: simplex,
cube, triangular prism, slanted cube, and slanted prism.

Maximal is with respect to inclusion. In dimension 3 they coincide with
those that cannot be obtained as blow-up of another monotone polytope.
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[38 of 71] Full answer to McDuff’s Question

Theorem (Polyhedral version of result by Bonavero 2003,
arXiv:2308.03085)
Only monotone polytopes that admit one monotone blow-up
at a point are the monotone n-simplex (n+1)∆n and the

blow-up of a codimension-two face of it .

Theorem (Pelayo-Santos 2023, arXiv:2308.03085)
1 No monotone polytope of dimension n > 2 admits two

monotone disjoint blow-ups at points.
2 The monotone n-simplex (n+1)∆n admits disjoint

blow-ups at faces F1,F2 if and only if F1,F2 are disjoint
and their codimensions add up to n+2 or n+1 .

So if n≥ 4, the monotone n-simplex admits two disjoint monotone
blow-ups at faces of codimensions > 2.
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[39 of 71] Blow-ups among monotone 3-polytopes.

THE 18 MONOTONE 3-POLYTOPES (arranged in rows according
to number of 2-faces) and relations through blow-ups:

Arrows represent monotone blow-ups.
Arrows with v: only two blow-ups at vertices.
Each blow-up adds 1 to number of facets.
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

The previous results concern

POLYTOPES,

but what do they tell us about

TORIC SYSTEMS?
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[40 of 71] TORIC SYSTEMS = Symplectic toric manifolds

In symplectic and algebraic geometry,

TORIC SYSTEMS
F = (f1, . . . , fn) : (M2n,ω)→ Rn

are usually called

SYMPLECTIC TORIC MANIFOLDS

(M2n,ω,Tn)
to emphasize: F induces Hamiltonian n-torus action
on (M2n,ω), by concatenation of Hamiltonian flows
of f1, . . . , fn. Depending on context I use both names.
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[41 of 71] Monotone symplectic manifolds

Definition (MONOTONE SYMPLECTIC MANIFOLD)

A compact symplectic (M2n,ω) is monotone if
there is λ > 0 with [ω] = λc1(M2n).

Notes:
By rescaling, we may assume λ = 1.
∆ is monotone ⇐⇒ ∆ = momentum polytope of
monotone symplectic toric manifold (modulo
λ = 1 and translation).
That is, via the Delzant Correspondence:
Monotone symplectic toric 2n-manifolds
≡ monotone n-polytopes.
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[42 of 71] Symplectic translations

The previous results have symplectic formulations :

Theorem (Bonavero 2003, Pelayo-Santos 2023)
1 The only monotone symplectic toric manifolds

that admit a monotone toric blow-up at a point
are CPn and a blow-up in CPn at a (C∗)n-orbit
of complex codimension two.

2 CPn admits two disjoint monotone toric blow-ups
if and only if exceptional divisors of blow-ups have
complex dimensions adding up to n−2 or n−1.
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

There is a famous conjecture from
the 1980s by Günter Ewald

concerning monotone geometry,

and a generalization by Benjamin
Nill from 2009. In fact, these ideas

have symplectic implications!
Let’s see what we can say ...
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[43 of 71] Ewald’s Conjecture

Ewald’s Conjecture 1988
If P is monotone n-polytope in Rn then the set

Zn∩P∩−P = "symmetric integer points"

contains unimodular basis of Zn, i.e. the standard
basis up to GL(n,Z).

Nill (2009) asked if this generalization might hold:

General Ewald’s Conjecture 2009
If P is lattice Delzant n-polytope with origin in
interior, then Zn∩P∩−P contains unimodular basis
of Zn.
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[44 of 71] Progress on these conjectures

1 Up to n = 7, Ewald’s conjecture was proven
by Øbro (∼ 2007) using computational software.

2 The 2023 preprint arxiv:2310.10366 by
Crespo-Pelayo-Santos contains a theoretical
proof of Ewald’s Conjecture in arbitrary
dimension n for a broad class of polytopes.

3 The paper contains a proof of Generalized
Ewald Conjecture for n = 2.

4 The paper also has proof of Generalized
Ewald Conjecture for n = 3 up to a minor
hypothesis. The case n≥ 4 is open.
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

This is all very interesting, but many
of you are probably wondering

Does Ewald’s Conjecture have
applications in symplectic

geometry?
The answer is YES. I learned of the
connection in work of Dusa McDuff.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[45 of 71] Why do symplectic geometers care about
Ewald’s Conjecture?

Ewald’s Conjecture is connected with the problem
of when fibers of monotone symplectic toric
manifolds:

F−1(c), c ∈ F(M2n),

are displaceable by Hamiltonian isotopy:

Biran-Entov-Polterovich, Comm. Contemp. Math. 2004,
Cho, IMRN 2004,

McDuff, Geom. Top. 2011.

Being displaceable at manifold level can be studied
with polytopes via ideas related to the conjecture.
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[46 of 71] Some examples of this connection

In view of J. Brendel (J. Sympl. Geom. 2023),
the work by Crespo-Pelayo-Santos on Ewald’s
Conjecture implies that if F(M2n) belongs to a
certain (large, explicit) class of polytopes U , then:

the Chekanov torus can be embedded
into the monotone symplectic toric
manifold M2n to yield an exotic
Lagrangian which is not real.

This statement corresponds to Brendel’s result, and
our contribution is to give U (Thanks to J. Brendel
for letting us know about connection).
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[47 of 71] Conclusions

1 Some problems concerning symplectic toric
manifolds can be translated into problems about
polytopes.

2 Perhaps a similar translation can also be done for
more general integrable systems.

3 This has given rise to new problems in
combinatorics.

4 From the viewpoint of symplectic geometry, the
answers to the combinatorial problems may have
crucial consequences.
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[48 of 71] Challenge

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Ewald’s Conjecture is a challenge .
It has symplectic implications.
Some symplectic problems can be
solved as problems about
polytopes. What are key problems
about polytopes which can be
solved as symplectic problems?
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

I conclude PART 2 speaking about
quantum integrable systems.

The hope is that from

Quantum (Spectral) Information

we can extract a lot of

Classical Information .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

First let’s see what we mean by

Quantum Integrable System
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[49 de 71] Quantum integrable systems

Let (Hk)k∈N∗ be Hilbert spaces giving quantization of 2n-manifold
(M2n,ω) (famous method: Kostant-Souriau Geometric Quantization; I
learned about it from B. Kostant and RAC colleague P. L. García).

Quantum integrable system : n self-adjoint
commuting semiclassical operators

ψ1 := (ψ1,k)k∈N∗, . . . , ψn := (ψn,k)k∈N∗

acting on (Hk)k∈N∗, whose principal symbols form
integrable system on M2n. Its (semiclassical)
spectrum is the support of joint spectral measure,
which if Hk are finite dimensional is, for k ∈ N∗,{

(λ1, . . . ,λn) ∈ Rn |
n⋂

j=1

ker(ψj,k−λj,kId) 6= 0
}
.
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
To make these notions (quantization,
principal symbol) precise is
technical, depends on context
(compactness etc) and is beyond the
scope of talk. For introduction:

my 2024 entry speech at Royal Spanish
Academy of Sciences (video, in Spanish);
my 2023 BBVA Foundation Project Opening
Lecture in Madrid (video, in English).
My paper in Bull. Belgian Math. Soc. 2023 and
papers with Charles, Vũ Ngo. c A.E.N.S 2023 and
with Polterovich, Vũ Ngo. c, Proc. LMS 2014.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[50 of 71] Idea of previous concepts: quantization/symbol
Very roughly (if M2n is compact and connected):

Hh̄ := H0(M2n,L k), h̄ =
1
k
,

is space of holomorphic sections of tensor
powers L k of certain line bundle over M2n and our
semiclassical (Berezin-Toeplitz) operators are
sequences

T := (Th̄ := Πh̄f (·, k) : Hh̄→Hh̄)h̄=1/k, k∈N∗

where multiplication operator f (·, k) has expansion

f0 + k−1f1 + k−2f2 + · · ·
for C∞ topology (Πh̄ surjective orthogonal projector)
and f0 is principal symbol of T.
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[51 of 71] Challenge by Weyl, Bochner and Moser

Inverse Problem for quantum integrable systems
(Origin: Weyl and Bochner at end of XIX century and
beginning of XX, Moser in 1970s, Kac in 1960s)

Given the semiclassical/quantum spectrum

(Xh̄)h̄>0 ⊂ Rd, h̄ =
1
k
, k ∈ N∗

of quantum system

of semiclassical commuting operators

T1 := (T1,h̄)h̄>0, . . . ,Td := (Td,h̄)h̄>0,

What information can we obtain about
classical system of principal symbols

f1, . . . , fd of T1, . . . ,Td?
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

There is a general principle in
quantum mechanics which says
something very interesting about the

Weyl-Bochner-Moser problem.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[52 de 71] QUANTUM MECHANICAL principle

CORRESPONDENCE PRINCIPLE : behavior of quantum
observables converges in high frequency limit (semiclassical,
after rescaling) to analogous behavior of classical observables.

EXAMPLE : it is "generally" known (depends on operators,
compactness etc) that QUANTUM SPECTRUM converges
to CLASSICAL SPECTRUM (image of principal symbols).

Pioneering results by Colin de Verdière (1979, 1980,
pseudodifferential operators), extended by Polterovich, Vũ
Ngo.c, myself (Proc. LMS 2014) to Berezin-Toeplitz case.
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
So we can in principle recover F(M) of classical
system from quantum spectrum! We saw, for
TORIC SYSTEMS: this image (a polytope) is only
invariant. So if we verify convergence we are done.

How about for general integrable
systems?

The spectrum is unlikely to contain all symplectic
information of the principal symbols. But since we
understand very well SEMITORIC SYSTEMS ...
We see what happens with these two cases next.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Using Symplectic Geometry...

... next we solve the inverse quantum
problem by Weyl, Bochner and
Moser for Toric Systems.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[53 de 71] Quantum toric systems

A quantum integrable system

ψ1, . . . ,ψn

is toric if the principal symbols are a
toric system.
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[54 de 71] Solution to Weyl, Bochner and Moser challenge
for toric systems

Teorema (Charles-Pelayo-Vũ Ngo.c, Ann. E.N.S. 2013)

Let ψ1, . . . ,ψn be a quantum toric system on compact (M2n,ω).
Then spectrum of ψ1, . . . , ψn converges to classical spectrum:

So the spectrum determines the classical toric system given by
(M,ω) and the principal symbols of ψ1, . . . , ψn.

Hence, challenge solved in compact toric case! Same paper
shows: toric systems on compact manifolds can be quantized.
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This concludes PART II (Toric Systems).
1 Reduced phase space and toric variety [...] of Delzant spaces (with

J.J. Duistermaat), Math. Proc. Cambr. Phil. Soc. 2009.
2 Isospectrality for quantum toric integrable systems (with L. Charles,

S. Vũ Ngo.c), Ann. Sci. l’École Norm. Sup. 2013.
3 Semiclassical quantization and spectral limits of h-pseudodifferential

and Berezin-Toeplitz operators (with L. Polterovich, S. Vũ Ngo.c),
Proc. London Math. Soc. 2014.

4 The tropical momentum map: a classification of toric log symplectic
manifolds (with M. Gualtieri, S. Li, T. Ratiu), Math. Ann. 2017.

5 Ewald’s Conjecture and integer points in algebraic and symplectic
toric geometry (with L. Crespo, F. Santos), 2023.
arxiv:2310.10366.

6 The structure of monotone blow-ups in symplectic toric geometry
and a question of McDuff (with F. Santos), 2023.
arxiv:2308.03085.

7 Moduli spaces of Delzant polytopes and symplectic toric manifolds
(with F. Santos), 2023. arxiv:2303.02369.
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Toric systems are very interesting,
however they are rare in physical
world. The periodicity of all flows is
too restrictive ... what IF

some flow is not periodic? They
are semitoric and there are many.
Jaynes-Cummings Model, coupled
angular momenta ... let’s see it!
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Álvaro Pelayo (UCM, Royal Spanish Academy of Sciences) TORIC AND SEMITORIC SYMPLECTIC GEOMETRY



lntegrable Systems 15’ Toric Systems 30’ Semitoric Systems 15’

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

PART 3: SEMITORIC
SYSTEMS
(approx. 15 minutes)

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[55 of 71] Picture to keep in mind

Image and fibers of a typical semitoric system on a compact
symplectic 4-manifold, viewed as a map M4→ R2:
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[56 of 71] Semitoric systems in DIMENSION 4

An integrable system on a symplectic
4-manifold (M4,ω):

F = (f1, f2) is semitoric if vector
field Xf1 has periodic flow,

but we do not ask anything of Xf2.

In addition, M4 may not be compact but in order to prove things,
for the moment we also require that they satisfy:

F has no local hyperbolic models;
preimages of compact sets by f1 are compact;
Simple: each fiber of f1 has at most one focus-focus point .
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
The term semitoric is discussed in my paper Top. App. 2023 in
special volumen in honor of my college geometry teacher
Prof. J.M.R. Sanjurjo.

In contrast with toric case,
many physical models are
semitoric, like the ones we
saw earlier; let’s recall them ...
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[57 of 71] Two crucial examples we saw earlier

Among the most important semitoric integrable systems are:
COUPLED ANGULAR MOMENTA by Sadovskií-Zhilinskií

Let R2 > R1 > 0. On M4 = S2×S2 with (x1,y1,z1,x2,y2,z2):
f1 := R1z1 +R2z2

f2,t := (1− t)z1 + t(x1x2 + y1y2 + z1z2)

∀t ∈ [0,1],

with symplectic form −(R1ωS2⊕R2ωS2).

COUPLED SPIN-OSCILLATOR i.e JAYNES-CUMMINGS MODEL

On M4 = S2×R2, (x,y,z)∼ (θ ,h) coordinates on S2, (u,v) on R2,
f1(x,y,z,u,v) = u2+v2

2 + z

f2(x,y,z,u,v) =
ux+vy

2

endowed with dθ ∧dh+du∧dv.
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

In essence: a semitoric system is like
a toric system but in addition it has
very complicated singularities (of
focus-focus type).

How is this reflected in list of
invariants?

Before (toric) there was a polygon,
now there is a polygon and labels .
We see it next.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[58 of 71] Symplectic invariants of semitoric systems

Theorem (Pelayo-Vũ Ngo.c, Inventiones Mathematicae 2009)

A semitoric system (f1, f2) : M4→R2 is symplectically determined
by polygon ∆ constructed from its classical spectrum and points
p1, . . . ,pn ∈ ∆ labelled with invariant k ∈ Z and invariant ∑aijxiyj.

p1, . . . ,pn are focus-focus values , k encodes topology "between"
fibers, ∑i,j aijxiyj encodes dynamics of Xf1 ,Xf2 near focus-focus fibers.
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[59 of 71] Proof in Inventiones Mathematicae 2009

The proof of this theorem:

1 uses ideas or techniques of Arnold, Atiyah, Delzant,
Dufour, Duistermaat, Eliasson, Guillemin, Miranda, Molino,
Sternberg, Toutlet, Zung and others.

2 is inspired by theory of toric integrables systems by
Atiyah, Guillemin, Delzant, Kostant, Sternberg, and the
classifications of the Fomenko School (Bolsinov, Fomenko,
Matveev, Oshemkov, Tabachnikov, Zung, ...).

3 is related to classification of almost-toric systems
(Symington 2002, Leung-Symington 2010,
Hohloch-Sabatini-Sepe-Symington 2017).
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[60 of 71] Classification of semitoric systems
Inventiones: uniqueness. Following: existence. Together: classification.

Theorem (Pelayo-Vũ Ngo.c, Acta Mathematica 2011)

From the

purely combinatorial information of a rational polygon ∆

with certain properties and points p1, . . . ,pn in it, each labelled with
an integer k and a Taylor series ∑i,j aijxiyj, one can construct

symplectic 4-manifold M4 and semitoric system (f1, f2),

whose invariants are ∆, the points p1, . . . ,pn and the labels.

This result is ANOTHER BRIDGE between ON ONE END:

• Symplectic Geometry (of Integrable Systems) and on the other

• a mixture of Combinatorics (polygon ∆), Analysis (Taylor
series) and Topology (the k).
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[61 of 71] Idea of proof, Acta Mathematica 2011

The proof is based on new cut and paste techniques .

One cuts ∆ into pieces over which there are action-angle variables.
Paste together pieces and obtain "continuous" system F, to which
we have to glue/attach fibers of focus-focus models given by
Taylor series. We obtain "system", extremely singular on overlaps:

Hardest part: modify the system to make it C∞-smooth (ε−δ ).
Álvaro Pelayo (UCM, Royal Spanish Academy of Sciences) TORIC AND SEMITORIC SYMPLECTIC GEOMETRY



lntegrable Systems 15’ Toric Systems 30’ Semitoric Systems 15’

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

An indication of good health for a
subject is that there are many people
working on it from different angles.
We conclude this part mentioning a
few active avenues of research in the
"toric/semitoric" worlds:

1 COMPUTATIONS OF INVARIANTS,
2 EXTENSIONS OF THEORY,
3 MODULI SPACES.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[62 of 71] Example of computation of invariants
Theorem (Le Floch-Pelayo, J. Nonlinear Science 2019)
If t = 1/2, R1 = 1, R2 = 5/2, the invariants of the semitoric system
Ft : S2×S2→ R2 of coupled angular momenta are: polygon ∆, one
point p1 ∈ ∆ with labels k1 = 0 and Taylor series S∞ = ∑i,j aijxiyj:

Note: Calculations can be done for arbitrary R1,R2. If Θ = R2
R1
,

h =
2R1

π
arccos

(
1

2
√

Θ

)
+

R1
π

√
4Θ−1− 2R1(Θ−1)

π
arctan(2Θ−1)+ 2R1(Θ−1)

π
arctan

(
(2Θ2−2Θ+1)

√
4Θ−1−2Θ2

(2Θ−1)2

)
.
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[63 of 71] Works about computations of invariants

Symplectic invariants of semitoric systems are computed in:
1 Jaynes-Cummings Model/Coupled spin-oscillator:

Pelayo-Vũ Ngo.c Comm. Math. Physics 2012.
2 Spherical Pendulum: Dullin Journal of Differential

Equations 2013.
3 Coupled Angular Momenta: Le Floch-Pelayo Journal of

Nonlinear Science 2019.
4 Symplectic classification of coupled spin-oscillators:

Alonso-Dullin-Hohloch Journal of Geometry and Physics
2019.

5 Symplectic classification of coupled angular-momenta:
Alonso-Dullin-Hohloch Nonlinearity 2020.

6 Families with two focus-focus singularities:
Alonso-Hohloch Journal of Nonlinear Science 2021.

7 New interpretations/computations of invariants:
Alonso-Hohloch-Palmer arxiv:2309.16614, 2023.
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[64 of 71] Example: extension of original theory 2009-2011

Concerning extensions , my PhD students:
Joseph Palmer, PhD University of California, San Diego 2016
(Illinois Urbana-Champaign, USA)
Xiudi Tang, PhD University of California, San Diego 2018
(Beijing Institute Technology, China),

and I, extended classification of semitoric systems to case of
several focus-focus singularities per fiber (non-simple case).

Theorem (Palmer-Pelayo-Tang, arXiv 2019-2023)
The symplectic invariant of (simple or non-simple) semitoric
systems (f1, f2) : M4→ R2 is convex polygon ∆ with p1, . . . ,pn
inside, each with label (ks ∈ Z, ∑i,j a1

ijx
iyj, . . . ,∑i,j ams

ij xiyj) with
as many series ms as focus-focus points in F−1(ps).

Invariant ks is more complicated. There are several series per ps (when
there is one pinched point in fiber, series due to Vũ Ngo.c, Topology
2003, general case Pelayo-Tang, J. Fixed Point Theory Appl. 2024).
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[65 of 71] Some papers on extensions of semitoric theory

1 Complexity 1 spaces: Karshon-Tolman (several papers),
Sepe-Tolman arxiv:2402.05814, 2024.

2 Toric-focus integrable systems: Ratiu-Wacheux-Zung
Memoirs Amer. Math. Soc. 2023.

3 Hyperbolic singularities:
Dullin-Pelayo J. Nonlinear Science 2016.
Hohloch-Palmer arXiv:2105.00523, 2021.
Gullentops-Hohloch arXiv:2209.15631, 2022.

4 Dimensions 2n > 4; Wacheux, arXiv:1408.1166, 2014,
affine invariant if 2n = 6.

5 Weaker hypothesis: Pelayo-Ratiu-Vũ Ngo.c, Journal of
Symplectic Geometry 2015, Nonlinearity 2017.

6 Faithful semitoric systems:
Hohloch-Sabatini-Sepe-Symington SIGMA 2018.
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[66 of 71] Moduli spaces related to integrable systems

The results about moduli spaces of integrable systems are technical
and we do not discuss them here. I recommend:

1 Pelayo (Proc. Amer. Math. Soc. 2007) studies moduli
space of toric symplectic ball embeddings.

2 Figalli-Pelayo (Adv. Geom. 2016) studies further problem
above.

3 Palmer (J. Geom. Physics 2017) studies moduli spaces of
semitoric systems.

4 Figalli-Palmer-Pelayo (Ann. SNS. Pisa 2018) continuity of
equivariant capacities on these moduli spaces.

5 (Previously mentioned papers) Pelayo-Pires-Sabatini-Ratiu
(Geom. Dedicata 2014) by Pelayo-Santos (arxiv 2023).
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SO we understand now classical
semitoric systems.

Does this mean we know how to
solve the Weyl-Bochner-Moser

theorem for them?

In fact YES, let’s see how.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[67 of 71] Solution to Challenge for semitoric systems

A quantum integrable system ψ1,ψ2
is semitoric if principal symbols
form semitoric system.

Theorem (Pelayo-Vũ Ngoc, Communications in Mathematical
Physics 2012, Communications in Mathematical Physics 2014
y Le Floch-Pelayo-Vũ Ngo.c, Mathemastiche Annalen 2016)

The spectrum of quantum semitoric integrable system

determines all classical invariants

but perhaps k: that is, determines ∆, p1, . . . ,pn and the ∑i,j aij xiyj.

In 2021 Le Floch-Vũ Ngo.c (arXiv:2104.06704) proved k is determined.
Together with theorem, challenge solved for semitoric systems!
That is, spectrum of quantum system determines classical system.
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[68 of 71] Idea of proofs for quantum theorems

Idea to prove these quantum theorems is first

detect classical invariants in quantum spectrum.

This involves Analysis ε−δ (Microlocal) and Spectral Theory.
Since we know symplectic geometry, we know what to look for.

Once we have invariants, DONE, by previous theorems!
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Hence, we have constructed bridges

between Symplectic Geometry on
the one hand and Combinatorics,

Analysis and Topology
on the other hand, in order to
classify classical integrable systems
and then solve the quantum inverse
problem of Weyl, Bochner, Moser
in the toric/semitoric case. Still, A
LOT LEFT TO DO...
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

... INDEED, it is a challenge to
obtain symplectic classifications of
integrable systems in dimensions 6
or higher (beyond toric). Even in
semitoric case. There is too much
freedom in singularities/singular
fibers. So it is also a challenge to
solve their Weyl-Bochner-Moser
inverse spectral problem.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Progress on the symplectic geometry of integrable
systems in the past 20 years has been remarkable.
Despite of this, current methods do not seem
powerful enough to break the dimension barrier
(more than two degrees of freedom) or
deal with general systems . The field can benefit
from incorporating techniques from other areas. The
recent work on Ewald’s Conjecture (which uses
polytope theory) is an example.
In a recent (2023) special volume in honor of my
college geometry teacher JMR Sanjurjo, I listed
open problems. Solving them may require
"outside" techniques, next I mention a few.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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[69 of 71] Open problems

Thanks to L. Polterovich for explanations about the following.

By Floer theory we get non-trivial measure (Entov-Polterovich,
CMH 2006) on image of integrable system F : M2n→ Rn which
helps detecting its non-displaceable fibers (Polterovich-Rosen,
CRM Monograph 2014 and Polterovich, ECM 2016).

Dickstein-Ganor-Polterovich-Zapolsky (2021),
arXiv:2107.10012, develop categorification of quasi-states: the
image of F : M2n→ Rn contains a structure called IVM
(ideal-valued measure).

PROBLEM. Can these or similar
techniques be used to construct
invariants of integrable systems (eg.
foliations replacing polytope)?
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[70 of 71] More open problems ...

PROBLEM. Use J-holomorphic
techniques to give other proofs of
known results about integrable
systems, or prove new ones.

PROBLEM. Can displaceable (or
non-displaceable) fibers be detected
in semiclassical spectrum of
quantum integrable system?
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[71 of 71] A last challenge ...
IAS Professor Vladimir Voevodsky (born 1966) passed away in
2017. He was a Fields Medallist, and one of the most important
figures in Algebraic Geometry and Algebraic Topology.

In 2015, Voevodsky, Warren and I published paper taking first steps
in p-adic geometry of integrable systems . Can one carry
out the symplectic/quantum geometry I just discussed
over p-adics? I believe so, and this is a great challenge.
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Papers on p-adic (symplectic) integrable systems

The paper I just mentioned by:

Pelayo-Voevodsky-Warren (Mathematical
Structures in Computer Science 2015)

sketches basic ideas of p-adic integrable systems.

Luis Crespo (Cantabria) and I have been working on

p-ADIC JAYNES-CUMMINGS MODEL.

The basic "real" theory (image of system, fibers, etc)
is simple compared to "p-adic" theory, which involves
long calculations, often depending on value of p.
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Further contributions to integrable systems

The literature on integrable systems is extensive . The work I have
presented today has been influenced by ideas of my teachers,
students, mentors, collaborators, and many other authors, including:

Hamiltonian dynamics, symplectic dynamics, analytic methods:
Hofer, Mather, Zehnder (1970s-).
Direct/inverse spectral problems: Charles, Guillemin,
Moser, Polterovich, Sarnak, Sjöstrand, Uhlmann,
Weinstein, Zelditch, Zworski (1970s-).
Fourier integral operators, spectral theory: Colin de Verdière,
Duistermaat, Guillemin, Hörmander, Weinstein (1970s).
Global action-angle coordinates: Duistermaat (1980).
Convexity of toric systems, equivariant theory: Atiyah, Bott,
Guillemin, Heckman, Sternberg (1982, 1988).
Stable bundles and integrable systems: Hitchin (1987).
Singularities: Eliasson, Rüssmann, Vey (1960s-1990s).
Affine, complex geometry, Lagrangian fibrations: Auroux,
Gross-Siebert, Gualtieri, Seidel (2003-).
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Moser’s words

I conclude, with the words of Jürgen Moser in a Plenary
Talk at the 1998 ICM in Berlin:

"In a time of dangerous specialization we should feel
free to use all tools available to us, and use them

with proper taste.

To me it seems idle to argue
whether to prefer solving of challenging problems,

building of abstract structures, or working on
applications. Rather we should keep an open mind

when we approach new problems, and not forget the
unity of mathematics."
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This concludes PART III (Semitoric Systems).
Recommended articles for this part:

1 Semitoric integrable systems on symplectic 4-manifolds (with S. Vũ
Ngo.c), Inventiones Mathematicae 2009.

2 Constructing integrable systems of semitoric type (with S. Vũ
Ngo.c), Acta Mathematica 2011.

3 Hamiltonian dynamics and spectral theory for spin-oscillators (with
S. Vũ Ngo.c), Comm. Math. Phys. 2012.

4 Semiclassical inverse spectral theory for singularities of focus-focus
type (with S. Vũ Ngo.c), Comm. Math. Phys. 2014.

5 Inverse spectral theory for semiclassical Jaynes-Cummings systems
(with Y. Le Floch, S. Vũ Ngo.c), Math. Ann. 2016.

6 Symplectic G-capacities and integrable systems (with A. Figalli and
J. Palmer), Ann. Scuola Norm. Sup. Pisa 2018.

7 Semitoric systems of non-simple type (with J. Palmer and X. Tang),
Preprint 2019, revised 2023. arXiv:1909.03501.

8 Vũ Ngo.c’s Conjecture on focus-focus singular fibers with multiple
pinched points (with X. Tang), J. Fixed Point Theory App. 2024.

HOPE YOU ENJOYED THE TALK. THANKS FOR LISTENING!
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