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Introduction

Notation:
@ Y, a closed oriented three-manifold
A, a contact formon Y : AAdA >0
R, the Reeb vector field: d\(R,:) =0, \(R) = 1.
Periodic orbits of R are called Reeb orbits

o
°
°
e £, the contact structure: £ = Ker(\).
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Introduction

Questions, conjectures

Finite energy foliations of tight
three-spheres and Hamiltonian dynamics

By H. Horer, K. Wysockl, and E. ZEHNDER*

Abstract

Surfaces of sections are a classical tool in the study of 3-dimensional dy-
namical systems. Their use goes back to the work of Poincaré and Birkhoff.
In the present paper we give a natural generalization of this concept by con-
structing a system of transversal sections in the complement of finitely many
distinguished periodic solutions. Such a system is established for nondegener-
ate Reeb flows on the tight 3-sphere by means of pseudoholomorphic curves.
The applications cover the nondegenerate geodesic flows on 735? = RP3 via
its double covering S°, and also nondegenerate Hamiltonian systems in R4
restricted to sphere-like energy surfaces of contact type.
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Introduction

Questions, conjectures

An interesting conjecture from their paper:

Conjecture 1.13. A tight Reeb flow on S3 has either precisely two or
infinitely many geometrically distinct periodic orbits.

As already mentioned, the conjecture is true for dynamically convex con-
tact forms, f)o for f constituting an open subset of C*°(S3, (0,00)), and also
for every generic f € ©2, in view of Corollary 1.10.

(In this case, tight is equivalent to demanding that & is standard.)
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Introduction

Questions, conjectures

Some reasons | find this interesting:

@ Why should the generic case be representative? (e.g. on T2,

there are functions with 3 critical points, but a Morse function
has at least 4.)

@ How do we develop tools to study Reeb flows, without

requiring nondegeneracy? (e.g. usually assume this for
defining Floer theory)
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Introduction

More questions, conjectures

TAUBES’S PROOF
OF THE WEINSTEIN CONJECTURE
IN DIMENSION THREE

MICHAEL HUTCHINGS

ABSTRACT. Does every smooth vector field on a closed three-manifold, for
example the three-sphere, have a closed orbit? The answer is no, according to
counterexamples by K. Kuperberg and others. On the other hand, there is a
special class of vector fields, called Reeb vector fields, which are associated to
contact forms. The three-dimensional case of the Weinstein conjecture asserts
that every Reeb vector field on a closed oriented three-manifold has a closed
orbit. This conjecture was recently proved by Taubes using Seiberg-Witten
theory. We give an introduction to the Weinstein conjecture, the main ideas
in Taubes’s proof, and the bigger picture into which it fits.
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Introduction

More questions, conjectures

Another interesting question, from Hutchings’ '09 article:

Question. If Y is a closed oriented connected 3-manifold other than a sphere or

a lens space, then does every contact form on Y have infinitely many embedded
Reeb orbits?
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Introduction

More questions, thoughts, conjectures

Il'eope3uueckue B PuncaepoBoit I"'eomerpun

J. B. Anocosn

1. B ¢uHCcnepoBoit reoMeTpHH, KaKk H B PUMAHOBOH, PacCMaTpHBaeTCs I'JiaJKoe
MHoroobpasue M, JJa KacaTeJbHbIX BEeKTOPOB KOTOPOro OnpejesieHO NOHSATHE
JUIAHBI (TaK 4TO MOXSHO MOBOPHTB O AJIMHE 11apaMeTPH30BaHHON KPUBOH; Noc/Ie AHASA
JJIMHA paBHA HHTErpany OT JJIMHBI BeKTOpa cKOpocTH). OTJHyMe OT PHMaHOBOH
T€OMETPHH COCTOUT B TOM, YTO BhIpAXKEHHE AJIS JJIMHBI MOXET ObITh 6071ee 001LIUM.
Hwmenno, asmHa BexTopa v e T,M naérca Gynkumeit L(x, v), koTopasi o6paiiaercs
B HYJb JUIb NpH v = 0, nosioxuTesbHa 1py v # 0 M BJISETCS! NOJNOXKHUTEILHO-
OJHOPOZHOM nepBoi creneny no v. Ha L HazaratoTes aBa 00LUMX YCJOBHSA:

YcoBHE JOCTATOYHOH I'IaJKOCTH BHE HYJIEBOIO CEYEHHs KacaTeJ/bHOr0 paccJio-
EHMS;

Ycnopue BhIMYKJOCTH “eauHuyHblx cdep” L(x,v) = 1 BO BCeXx KacaTe/bHbIX
npocrpaHcreax T,M, ycuieHHoe elé JONOJHHTENbHbIM TpeGoBaHHEM, YTOOI
KPHUBH3HA “eJuHHYHOl cdepbl” (BblYMCIEHHAs 1O OTHOLLIEHHWIO K TIPOM3BOJILHOM
9BKJHZ0BOY MeTpuke B T, M) nurzie He obpalianach B HY/JIb.
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Introduction

Some thoughts of Anosov

Anosov [from “Geodesics in Finsler geometry”|:

"My interest in Finslerian geometry is partly...caused by the desire to highlight in problems of Riemannian
geometry that which is associated with their variational nature alone, and does not depend on other
specific Riemannian features...

In the problem of closed geodesics on a sphere, the most complete results relate to the two-dimensional
sphere. They were obtained by Lyusternik and Shnirelman in 1929...their presentation is limited to
Riemannian metrics... The corresponding reasoning can be modified...as to extend to Finslerian metrics.
For invertible Finsler metrics, the final result is the same.

For irreversible metrics, only the existence of two closed geodesics can be guaranteed... This last result is
of interest because it is sharp. The corresponding example is given by Katok... The example suggests the
following: although the number of closed geodesics that can be expected on the basis of calculus of
variations is usually very small, perhaps it is unimprovable?"
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Introduction

A concrete question

Question (Alvarez Paiva, Burns and Matveev, Long)

Does every Finsler metric on S? have either two or infinitely many
prime closed geodesics?
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Introduction

What is now known about these “two or infinity”
questions?

(Setup: Y a closed connected three-manifold, A a contact form.)
Current state:

@ There are always at least two simple Reeb orbits.
(CG-Hutchings, '13)

@ When there are exactly two simple Reeb orbits, Y is a lens
space and & is universally tight.
(CG-Hryniewicz-Hutchings-Liu, '21)

@ When A is nondegenerate, there are either two or infinitely
many simple Reeb orbits. (Colin-Dehornoy-Rechtman, '20)

@ (For non-specialists: think of nondegenerate as like “Morse”;
holds generically.)

(Many other important contributions/partial results...see discussion
in arxiv:2310.07636)
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Introduction

Today's main theorem

Theorem (CG-Hryniewicz-Hutchings-Liu)

Let Y be a closed connected three-manifold, \ a contact form, and
assume that c1(§) is torsion. Then there are always either two or
infinitely many simple Reeb orbits.

Corollaries:
@ HW/Z's conjecture.
@ Two or infinity conjecture for Finsler geodesics

e Affirmative answer to Hutchings' question, in the special case
where ¢;1(£) is torsion (e.g. Y a rational homology sphere.)

Dan Cristofaro-Gardiner Two or infinity




Introduction

Current state of these questions

Upshot/summary: we now understand the answers to all of the
“two or infinity” questions | mentioned, except for the case of
degenerate contact forms with ¢;(&) not torsion (which one would
guess have infinitely many simple Reeb orbits.)
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Key ideas in the proof

Section 2

Key ideas in the proof
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Key ideas in the proof

Global surfaces of section

Goal: Under assumptions of theorem (i.e. c1(£) torsion) + finitely
many simple Reeb orbits, find an annular global surface of section,
I.e. a compact annulus S such that:

@ S is immersed in Y, the interior int(S) is embedded and
transverse to the Reeb vector field, the boundary of S is on
Reeb orbits.

@ every flow line hits S both forwards and backwards in time.
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Key ideas in the proof

Proof, given a global surface of section

If such a GSS S exists, can define an area-preserving first return

map
P :int(S) — int(S).

by taking a point to the next place at which the flow line through
the point hits int(S). Then, the periodic points of P are in
bijection with the Reeb orbits.

Now apply:
Theorem (Franks)

Any area-preserving homeomorphism of an open annulus with at
least one periodic point has infinitely many.
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Key ideas in the proof

Global surfaces of section and pseudoholomorphic curves

How to find the desired global surface of section S7

Basic idea: Find S via the projection of an index 2 J-holomorphic
cylinder C, in X =R x Y.

Why might one try this?. To first approximation, if deformations
of C foliate X, its projection will be a GSS. Thus, the problem of
finding a GSS is turned into a PDE problem.

This approach has a long history, though there are various new
aspects here. e.g. ) is degenerate, but a large part of
J-holomorphic curve theory is in the nondegenerate case
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Key ideas in the proof

The problem, in more detail

Thus, there are two (linked) aspects that must be dealt with for
this approach to work:

@ (P1) Find criteria guaranteeing that a J-holomorphic cylinder
Cin X =R x Y projects to a GSS for .

@ (P2) Prove that a J-holomorphic cylinder C satisfying these
criteria actually exists.
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Key ideas in the proof

P1: the basic point

(P1: Find criteria guaranteeing that a J-holomorphic cylinder C in
X =R x Y projects to a GSS for A\, without assuming
nondegeneracy)

Key idea: It C converges exponentially fast to the Reeb orbits at
its ends, much of the (well-developed) theory from the
nondegenerate case has a good analogue.

S,
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Key ideas in the proof

The nondegenerate case

In the nondegenerate case, for a J-holomorphic cylinder C from ~.
to v_ to project to a GSS, it is known that the following suffice.

(J assumed admissible.)

Q@
@
@

@
@

ind(C) =2
C isembedded In R x Y

Let M denote the component of the moduli space
containing C. Then M ¢ is compact (modulo translation)

(for specialists: v+ have odd Conley-Zehnder index)

(for specialists: gcd(m, |[mf]|) = 1, when 4 is an m-fold
cover of a simple orbit v with rotation number 6. Similarly for

7--)

Rough idea: (1 + 3) = images of curves in M ¢ cover all of X;
(24 4) = curves in M disjoint. (5) controls return time near
boundary
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Key ideas in the proof

P1: Putting it together

Thus, to prove P1, it remains to find analogues of the 5 criteria on
the previous slide, under the condition of exponential convergence.

Basic idea (for specialists): Use “exponentially weighted Sobolev

spaces’: there is a corresponding Fredholm index, Conley-Zehnder
index, automatic transversality, etc. A long history.

We won't say much more about this here, to leave time for P2.
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Key ideas in the proof

P2: the scheme

(P2: Prove that a J-holomorphic cylinder C satisfying the criteria
from P1 actually exists.)

Let us at least give a sense for how this is proved, though it is
quite involved. Outline of the argument:

@ Approximate A by (particular) nondegenerate contact forms
An.

@ For each A\,, find J,-holomorphic cylinders C,,, using
“embedded contact homology".

@ Find the desired cylinder C by taking a limit of the C,.

A crucial point: That the C, converge to something with
exponential convergence requires luck! e.g. what if the decay rate
of the C, is tending to 077
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Key ideas in the proof

Background: embedded contact homology

A crash course:

@ ECH(Y,\,) homology of a chain complex ECC(Y, A\p);
requires A\, nondegenerate.

@ ECC(Y,\,) generated by (certain) sets {(a;, m;)}, where the
«; are distinct embedded Reeb orbits and the m; are positive
Integers.

@ Chain complex differential 0 counts I = 1 J,-holomorphic

curves in R x Y, where [ is the “ECH index”. | =1 (mostly)
forces the curves to be embedded.

o ECH(Y,\,) ~ HM(Y) (Taubes), where HM(Y) is the
Seiberg-Witten Floer cohomology. Implies that ECH is far
from vanishing.
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Key ideas in the proof

More ingredients from ECH theory

We will need the following two facts:

F1: U-map. There is an endomorphism map U : ECH — ECH,
counting /| = 2 curves in X. By Taubes’ isomorphism, it is
non-zero. In fact, for any N, UN is nontrivial.

F2: Partition conditions. The ends of U-map curves are
determined combinatorially by the “rotation number” of the local
flow around the corresponding Reeb orbit. See figures from
[CGHS], [Hutchings| on next page:
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Key ideas in the proof

A U-map curve and the partition conditions

Y .
2] 3 1 5 6 7 8

781 ) 3
6/7,7/8 ) 6 A
5/6,6/7 4 6,1 6,2
4/5,5/6 3 51 | 5.2 5,3
3/4,4/5 11 | 42 | 43 | 44
5/7,3/4 || 2 7 7,1
2/3,5/7 31132 | 33 I3y T1330
5/8,2/3 . 3
3/5,5/8 a1 | 92 b 51 5 5T
4/7,3/5 g " 221 | 202 7 7.1
1/2,4/7 - 4% 139,21(2,2,2,2
3/7,1/2 s 51 7 7,1
2/5,3/7 3 31 51,1 | 53
3/8,2/5 8
B S| 83 | 331\
2/7,1/3 7 7,1
1/4,2/7 1,1 ‘ R e E S S Y
1/5,1/4 5 51 | 51,1 [51,1,1
1/6,1/5 11,1 6 61 | 6,01
1/7,1/6 1,1,1,1 . 7 71
1/8,1/7 L ERRY I
0,1/8 SR W

Figure 1: The positive partitions p (m) for 2 < m < 8 and all §. The left
column shows the interval in which @ mod 1 lies, and the top row indicates
m. (Borrowed from [21])

DETYY faro-Gardiner
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Key ideas in the proof

P2: key ideas

Let A\, be close to .

The approach: Fix N large. The non-triviality of UV gives N index
2 curves C(i). Want: at least one of these curves satisfy criteria
for a GSS.

Key new idea: For N large, “most” of the C(i) are cylinders. [This
is the only place where the assumption c;(£) torsion is used.]

Context: No a priori bound on topology of ECH curves! Requires a
new invariant “the score".

Another input: It was previously known (for specialists: as a
consequence of the ECH Weyl law) that most of the C(/) have
fC(i) d)\, small.
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Key ideas in the proof

Why are cylinders helpful?

Upshot from previous slide: for each A\, close to A, we have a
U-map cylinder Cp, with [~ d as small as we'd like.

Key calculation: Let i, denote the rate of convergence of C, to
the Reeb orbit at its positive end. Then u, is bounded away from
0. (The same holds for the negative end.)

Outline of the calculation:
@ Let 0, denote the rotation number for the Reeb orbit at the
positive end and assume 6, — 0.

@ By known theory (“asymptotic analysis" ), this is closely
related to u,; working through this, to bound u,, it suffices to

show that 6, is slightly negative.

@ Given that C, is a cylinder, this follows from the partition
conditions when [ d, is small enough (!!)
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Key ideas in the proof

P2: Putting it all together — sketch

Let’'s now conclude by giving a sense for how the argument goes:

@ Approximate A\ by A\,.

@ Find J-holomorphic cylinders C, for A\, from the U-map. As
in the previous slide, their exponential convergence is not
tending to 0 with n.

@ Show that each C, satisfies the criteria to project to a GSS.
(We did not explain this, but it uses that an d)\, is small +
the partition conditions.)

@ Extract the desired curve C as a limit, and check that it
satisfies the criteria in P1. Basic idea of the proof: we've
chosen the P1 conditions to be analogues of the
nondegenerate case, and the C, satisfy those.

Throughout, there are certainly other points too: e.g. we also have
to be careful to guarantee that the length of the orbits for the C,
stays bounded.
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Open questions

Section 3

Open questions
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Open questions

Some questions

@ When there are infinitely many simple Reeb orbits, what can
we say about the growth rate? i.e., what lower bound is there
on the number of simple Reeb orbits of action < T7

@ Are there always infinitely many simple Reeb orbits when
c1(&) is not torsion?

e What kinds of Reeb orbits must exist? e.g, does S3 always
have an elliptic orbit?

@ What about other kinds of vector fields, e.g: stable
Hamiltonian (see Cardona-Rechtman)? hypersurfaces in
symplectic manifolds that are not contact type (see Prasad)?
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Bonus: The topology of ECH curves

Section 4

Bonus: The topology of ECH curves
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Bonus: The topology of ECH curves

How do we control the topology of ECH curves?

Basic idea:
o Step 1. UN is non-trivial, so can find N curves
C(1),...,C(N) in a row.
o Step 2. We know: (SN, C(i)) =2N
@ Step 3. There is another index Jy. By the ECH Weyl Law +
assumption that c;(¢) is torsion, Jo ~ [ = 2N
@ Step 4. Hence, most curves C(i) have Jy =~ 2.

By general theory, Jo(C) = —2 4+ 2g( (1) + e(C), where

C = (y U (7 and e is a certain measurement of the ends of C.
(For each orbit v at which C; has positive ends, define e(v4.) to
be twice the number of ends at v, minus 1 if (5 does not have
any ends at ;. We define e(y_) analogously. Now sum up.)
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Bonus: The topology of ECH curves

About the score

However, a Jy = 2 curve need not be a cylinder. It is quite a
delicate matter, and “the score” is built to deal with this. The
partition conditions are key.
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