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Setup

Notation:

Y , a closed oriented three-manifold

λ, a contact form on Y : λ ∧ dλ > 0

R, the Reeb vector field: dλ(R, ·) = 0, λ(R) = 1.

Periodic orbits of R are called Reeb orbits

ξ, the contact structure: ξ = Ker(λ).
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Questions, conjectures

An interesting conjecture from their paper:

(In this case, tight is equivalent to demanding that ξ is standard.)
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Questions, conjectures

Some reasons I find this interesting:

Why should the generic case be representative? (e.g. on T 2,
there are functions with 3 critical points, but a Morse function
has at least 4.)

How do we develop tools to study Reeb flows, without
requiring nondegeneracy? (e.g. usually assume this for
defining Floer theory)
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More questions, conjectures

Another interesting question, from Hutchings’ ’09 article:
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Some thoughts of Anosov

Anosov [from “Geodesics in Finsler geometry”]:
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A concrete question

Question (Alvarez Paiva, Burns and Matveev, Long)

Does every Finsler metric on S2 have either two or infinitely many
prime closed geodesics?
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What is now known about these “two or infinity”
questions?

(Setup: Y a closed connected three-manifold, λ a contact form.)
Current state:

There are always at least two simple Reeb orbits.
(CG-Hutchings, ’13)

When there are exactly two simple Reeb orbits, Y is a lens
space and ξ is universally tight.
(CG-Hryniewicz-Hutchings-Liu, ’21)

When λ is nondegenerate, there are either two or infinitely
many simple Reeb orbits. (Colin-Dehornoy-Rechtman, ’20)

(For non-specialists: think of nondegenerate as like “Morse”;
holds generically.)

(Many other important contributions/partial results...see discussion
in arxiv:2310.07636)
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Today’s main theorem

Theorem (CG-Hryniewicz-Hutchings-Liu)

Let Y be a closed connected three-manifold, λ a contact form, and
assume that c1(ξ) is torsion. Then there are always either two or
infinitely many simple Reeb orbits.

Corollaries:

HWZ’s conjecture.

Two or infinity conjecture for Finsler geodesics

Affirmative answer to Hutchings’ question, in the special case
where c1(ξ) is torsion (e.g. Y a rational homology sphere.)
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Current state of these questions

Upshot/summary: we now understand the answers to all of the
“two or infinity” questions I mentioned, except for the case of
degenerate contact forms with c1(ξ) not torsion (which one would
guess have infinitely many simple Reeb orbits.)
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Section 2

Key ideas in the proof
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Global surfaces of section

Goal: Under assumptions of theorem (i.e. c1(ξ) torsion) + finitely
many simple Reeb orbits, find an annular global surface of section,
i.e. a compact annulus S such that:

S is immersed in Y , the interior int(S) is embedded and
transverse to the Reeb vector field, the boundary of S is on
Reeb orbits.

every flow line hits S both forwards and backwards in time.
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Proof, given a global surface of section

If such a GSS S exists, can define an area-preserving first return
map

P : int(S) −→ int(S).

by taking a point to the next place at which the flow line through
the point hits int(S). Then, the periodic points of P are in
bijection with the Reeb orbits.

Now apply:

Theorem (Franks)

Any area-preserving homeomorphism of an open annulus with at
least one periodic point has infinitely many.
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Global surfaces of section and pseudoholomorphic curves

How to find the desired global surface of section S?

Basic idea: Find S via the projection of an index 2 J-holomorphic
cylinder C , in X = R× Y .

Why might one try this?: To first approximation, if deformations
of C foliate X , its projection will be a GSS. Thus, the problem of
finding a GSS is turned into a PDE problem.

This approach has a long history, though there are various new
aspects here. e.g. λ is degenerate, but a large part of
J-holomorphic curve theory is in the nondegenerate case
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The problem, in more detail

Thus, there are two (linked) aspects that must be dealt with for
this approach to work:

(P1) Find criteria guaranteeing that a J-holomorphic cylinder
C in X = R× Y projects to a GSS for λ.

(P2) Prove that a J-holomorphic cylinder C satisfying these
criteria actually exists.
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P1: the basic point

(P1: Find criteria guaranteeing that a J-holomorphic cylinder C in
X = R× Y projects to a GSS for λ, without assuming
nondegeneracy)

Key idea: If C converges exponentially fast to the Reeb orbits at
its ends, much of the (well-developed) theory from the
nondegenerate case has a good analogue.
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The nondegenerate case

In the nondegenerate case, for a J-holomorphic cylinder C from γ+
to γ− to project to a GSS, it is known that the following suffice.
(J assumed admissible.)

(1) ind(C ) = 2

(2) C is embedded in R× Y

(3) Let MC denote the component of the moduli space
containing C . Then MC is compact (modulo translation)

(4) (for specialists: γ± have odd Conley-Zehnder index)

(5) (for specialists: gcd(m, ⌊mθ⌋) = 1, when γ+ is an m-fold
cover of a simple orbit γ with rotation number θ. Similarly for
γ−.)

Rough idea: (1 + 3) =⇒ images of curves in MC cover all of X ;
(2 + 4) =⇒ curves in MC disjoint. (5) controls return time near
boundary
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P1: Putting it together

Thus, to prove P1, it remains to find analogues of the 5 criteria on
the previous slide, under the condition of exponential convergence.

Basic idea (for specialists): Use “exponentially weighted Sobolev
spaces”: there is a corresponding Fredholm index, Conley-Zehnder
index, automatic transversality, etc. A long history.

We won’t say much more about this here, to leave time for P2.
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P2: the scheme

(P2: Prove that a J-holomorphic cylinder C satisfying the criteria
from P1 actually exists.)

Let us at least give a sense for how this is proved, though it is
quite involved. Outline of the argument:

(1) Approximate λ by (particular) nondegenerate contact forms
λn.

(2) For each λn, find Jn-holomorphic cylinders Cn, using
“embedded contact homology”.

(3) Find the desired cylinder C by taking a limit of the Cn.

A crucial point: That the Cn converge to something with
exponential convergence requires luck! e.g. what if the decay rate
of the Cn is tending to 0??
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Background: embedded contact homology

A crash course:

ECH(Y , λn) homology of a chain complex ECC (Y , λn);
requires λn nondegenerate.

ECC (Y , λn) generated by (certain) sets {(αi ,mi )}, where the
αi are distinct embedded Reeb orbits and the mi are positive
integers.

Chain complex differential ∂ counts I = 1 Jn-holomorphic
curves in R× Y , where I is the “ECH index”. I = 1 (mostly)
forces the curves to be embedded.

ECH(Y , λn) ≃ ĤM(Y ) (Taubes), where ĤM(Y ) is the
Seiberg-Witten Floer cohomology. Implies that ECH is far
from vanishing.
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More ingredients from ECH theory

We will need the following two facts:

F1: U-map. There is an endomorphism map U : ECH −→ ECH,
counting I = 2 curves in X . By Taubes’ isomorphism, it is
non-zero. In fact, for any N, UN is nontrivial.

F2: Partition conditions. The ends of U-map curves are
determined combinatorially by the “rotation number” of the local
flow around the corresponding Reeb orbit. See figures from
[CGHS], [Hutchings] on next page:
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A U-map curve and the partition conditions
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P2: key ideas

Let λn be close to λ.

The approach: Fix N large. The non-triviality of UN gives N index
2 curves C (i). Want: at least one of these curves satisfy criteria
for a GSS.

Key new idea: For N large, “most” of the C (i) are cylinders. [This
is the only place where the assumption c1(ξ) torsion is used.]

Context: No a priori bound on topology of ECH curves! Requires a
new invariant “the score”.

Another input: It was previously known (for specialists: as a
consequence of the ECH Weyl law) that most of the C (i) have∫
C(i) dλn small.

Dan Cristofaro-Gardiner Two or infinity



Introduction
Key ideas in the proof

Open questions
Bonus: The topology of ECH curves

Why are cylinders helpful?

Upshot from previous slide: for each λn close to λ, we have a
U-map cylinder Cn, with

∫
Cn

dλ as small as we’d like.

Key calculation: Let µn denote the rate of convergence of Cn to
the Reeb orbit at its positive end. Then µn is bounded away from
0. (The same holds for the negative end.)

Outline of the calculation:

Let θn denote the rotation number for the Reeb orbit at the
positive end and assume θn −→ 0.

By known theory (“asymptotic analysis”), this is closely
related to µn; working through this, to bound µn, it suffices to
show that θn is slightly negative.

Given that Cn is a cylinder, this follows from the partition
conditions when

∫
Cn

dλn is small enough (!!)
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P2: Putting it all together – sketch

Let’s now conclude by giving a sense for how the argument goes:

Approximate λ by λn.
Find J-holomorphic cylinders Cn for λn from the U-map. As
in the previous slide, their exponential convergence is not
tending to 0 with n.
Show that each Cn satisfies the criteria to project to a GSS.
(We did not explain this, but it uses that

∫
Cn

dλn is small +
the partition conditions.)
Extract the desired curve C as a limit, and check that it
satisfies the criteria in P1. Basic idea of the proof: we’ve
chosen the P1 conditions to be analogues of the
nondegenerate case, and the Cn satisfy those.

Throughout, there are certainly other points too: e.g. we also have
to be careful to guarantee that the length of the orbits for the Cn

stays bounded.
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Open questions
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Some questions

When there are infinitely many simple Reeb orbits, what can
we say about the growth rate? i.e., what lower bound is there
on the number of simple Reeb orbits of action ≤ T?

Are there always infinitely many simple Reeb orbits when
c1(ξ) is not torsion?

What kinds of Reeb orbits must exist? e.g, does S3 always
have an elliptic orbit?

What about other kinds of vector fields, e.g: stable
Hamiltonian (see Cardona-Rechtman)? hypersurfaces in
symplectic manifolds that are not contact type (see Prasad)?
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Dan Cristofaro-Gardiner Two or infinity



Introduction
Key ideas in the proof

Open questions
Bonus: The topology of ECH curves

How do we control the topology of ECH curves?

Basic idea:

Step 1. UN is non-trivial, so can find N curves
C (1), . . . ,C (N) in a row.

Step 2. We know: I (
∑N

i=1 C (i)) = 2N

Step 3. There is another index J0. By the ECH Weyl Law +
assumption that c1(ξ) is torsion, J0 ≈ I = 2N

Step 4. Hence, most curves C (i) have J0 ≈ 2.

By general theory, J0(C ) = −2 + 2g(C1) + e(C ), where
C = C0 ∪ C1 and e is a certain measurement of the ends of C .
(For each orbit γ+ at which C1 has positive ends, define e(γ+) to
be twice the number of ends at γ+, minus 1 if C0 does not have
any ends at γ+. We define e(γ−) analogously. Now sum up.)
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About the score

However, a J0 = 2 curve need not be a cylinder. It is quite a
delicate matter, and “the score” is built to deal with this. The
partition conditions are key.
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