Symplectic Orbifold Gromov-Witten Invariants (work in progress).

Mark McLean and Alex Ritter

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Our aim is to construct Gromov-Witten invariants of symplectic orbifolds.
- This was done over Q by Chen and Ruan in arXiv:0103156, but we wish to define more general counts (e.g. for K-theory).
- We also wish to present Moduli spaces of holomorphic curves in terms of Global-Kuranishi Charts.
- This is part of a larger project with Ritter in which we will attempt to prove a version of the Crepant resolution conjecture relating Gromov-Witten invariants of birational orbifolds.
- There is also ongoing work by Mak, Seyfaddini and Smith for global quotient orbifolds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Orbifolds

- We think of an *orbifold X* as a 'manifold', except that the charts are locally modelled on open subsets of ℝⁿ quotiented by a finite linear group action.
- So, locally, there is a coordinate chart V ⊂ ℝⁿ together with a linear group action of a finite group Γ on V and a map V/Γ → X which is a homeomorphism onto its image.

orbifolds

- Suppose G is a compact Lie group acting on a smooth manifold M with finite stabilizers.
- Then the quotient X = [M/G] is naturally an orbifold.
- (Slice theorem): For each point x ∈ M, there is a G_x-equivariant submanifold S_x ⊂ M containing x and a G-equivariant neighborhood U_x ⊂ M of x so that so the following map is a G-equivariant diffeomorphism:

$$G \times_{G_x} S_x \to U_x.$$

orbifolds

- After shrinking the slice $S_x \subset M$, we can assume that S_x has a global coordinate system with G_x acting linearly.
- Then (S_x, G_x) is our induced orbifold chart centered at x.
- The set theoretic quotient M/G is called the underlying coarse moduli space which we will write as <u>X</u>.
- Theorem (Pardon): Every smooth orbifold is a quotient [M/G].

Morphisms of Orbifolds

• Let $[M_1/G_1]$ and $[M_2/G_2]$ be orbifolds.

An HS (Hilsum-Skandalis) morphism between these orbifolds is a diagram:

$$P \xrightarrow{f} M_2$$

$$\pi \downarrow G_1 - \text{equiv} \qquad M_1$$

where P is a smooth manifold admitting a $G_1 \times G_2$ -action and with π a principal G_2 -bundle.

- Really, it is an equivalence class of such diagrams.
- Locally, there are charts (V₁, Γ₁), (V₂, Γ₂) and a map Γ₁ → Γ₂ and a Γ₁-equivariant map V₁ → V₂.

Symplectic Orbifold

- A symplectic orbifold is a smooth orbifold X together with a closed non-degenerate 2-form ω on it.
- We can define compatible almost complex structures J on such symplectic orbifolds.

- ► The spaces of such *J*'s is contractible.
- Let us fix (X, ω, J) and $\beta \in H_2(\underline{X}; \mathbb{Z})$.

- We can define a *complex orbifold* to be an orbifold with an integrable almost complex structure.
- A twisted nodal curve Σ is a space of the form Σ̃/ ~ where Σ is a one dimensional complex orbifold and where ~ identifies a finite collection of distinct pairs of points p ~ q so that the following balancing condition holds:
 - ▶ *p* admits an orbifold chart with coordinate *z* and where $\mathbb{Z}/k\mathbb{Z}$ acts by $(m, z) \rightarrow e^{2\pi i m/k} z$ and
 - *q* admits an orbifold chart with coordinate *w* where Z/kZ acts by (*m*, *w*) → e^{-2πim/k}w.

We call Σ the normalization of Σ and the points that we have identified are called the nodes. So, near a node, a twisted nodal curve looks like

$${xy = 0}/{\mathbb{Z}/k\mathbb{Z}} \subset \mathbb{C}^2/{\mathbb{Z}/k\mathbb{Z}}$$

where the group action is $(g, (x, y)) \rightarrow (gx, g^{-1}y)$ where $g = e^{2i\pi m/k}$.

The reason for the balancing condition is it allows the node to be smoothed. Locally

$${xy = t}/(\mathbb{Z}/k\mathbb{Z}), \quad t \in \mathbb{C}$$

is the smoothing of the nodal curve t = 0.

A marking on a twisted nodal curve Σ is a collection of distinct points p₁,..., p_h on Σ disjoint from the nodes and containing all the points with nontrivial stabilizers.

- We call Σ = (Σ, p₁, · · · , p_h) a twisted nodal curve with h marked points.
- ► A *twisted nodal curve* $u : \Sigma \to X$ is an *HS*-morphism from the normalization $\widetilde{\Sigma}$ of Σ to X so that
 - It he induced map of stabilizer groups G_σ → G_{u(σ)} is injective for each σ ∈ Σ
 - ▶ and which descends to a continuous map $\underline{\Sigma} \rightarrow \underline{X}$ of coarse moduli spaces.

The genus of u is the arithmetic genus of the underlying coarse moduli space of its domain Σ.

A map u : Σ → X from a twisted nodal curve is stable if it has finitely many automorphisms:

- If the domain has marked points, the the automorphism must fix these marked points.
- We let M_{g,h,β}(X) be the moduli space of stable J-holomorphic maps from genus g twisted nodal curves to X representing β.

▶ **Example:** M = pt, $G = \mathbb{Z}/2$. So $\mathcal{M}_{g,h,0}$ is the moduli space of twisted nodal curves together with a $\mathbb{Z}/2$ principal bundle.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

See arXiv:0106211 Abramovich, Corti, Vistoli.

- ► We wish to put a fundamental class on M_{g,h,β}(X) so that we can integrate pullbacks of cohomology classes from the inertia stack against it to give Gromov-Witten invariants.
- A global Kuranishi chart is a tuple (G, T, E, s) where G is a Lie group acting semi-freely on a manifold T and E is a G-vector bundle over T with a G-equivariant section s.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ We call *T* the *thickening* and *E* the *obstruction bundle*.
- Such a global Kuranishi chart models M_{g,h,β}(X) if this moduli space is homeomorphic to s⁻¹(0)/G.

- The fundamental class is given by [T/G] ∩ s*(Th(E)) where [T/G] is the fundamental class in G-equivariant homology and Th(E) is the Thom class of the obstruction bundle in G-equivariant cohomology.
- Here, we need an appropriate orientation for $T \mathfrak{g}$ and E.
- ► So, how do we construct such a global Kuranishi chart for *M_{g,h,β}(X)*?

Genus Zero Manifold Case

- Let us start in the simpler setting where X is a smooth manifold and the genus is zero.
- The following construction is due to Abouzaid-M-Smith.
- We let *F_{h,d}* be the moduli space of genus zero degree *d* curves with *h* marked points mapping to ℙ^d whose image is not contained in a hyperplane
- This is a smooth quasi-projective variety.
- We let $C_{h,d} \to \mathcal{F}_{h,d}$ be the corresponding universal curve and $C_{h,d}^o$ the complement of its nodes.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Genus Zero Manifold Case

- Let Y_{h,d} → C^o_{h,d} × X be the vector bundle whose fiber over a point (p, x) is the space of anti-holomorphic maps from the tangent bundle of the fiber of C^o_{h,d} at p to T_xX.
- A finite dimensional approximation scheme is a sequence $(V_{\mu}, \lambda_{\mu})_{\mu \in \mathbb{N}}$ of PU(d + 1)-equivariant maps $\lambda_{\mu} : V_{\mu} \to C_c^{\infty}(Y_{h,d})$ from a PU(d + 1) representation V_{μ} so that the union of their images is dense, $V_{\mu} \subset V_{\mu+1}$ and $\lambda_{\mu+1}|_{V_{\mu}} = \lambda_{\mu}$ for each μ .
- We define the pre-thickened moduli space T^{pre} to be the space of tuples (u, φ, e) where φ ∈ F, u : C|_φ → X is a stable map and e ∈ V_μ so that

$$\overline{\partial}_J u(p) = \lambda_\mu(e)(p, u(x)), \quad \forall \ p \in \mathcal{C}^o|_\phi imes X$$

The topology on this space is induced from the Hausdorff topology on graphs in C × X as well as the topology on V_µ.

- A naive guess for the obstruction bundle is V_μ with the section sending (u, φ, e) to e since setting e = 0 gives J-holomorphic curves.
- ► This would be fine if our group G is PGL_C(d + 1) however this does not work since λ_µ cannot be made to be PGL_C(d + 1)-equivariant.
- So we need to reduce the group $PGL_{\mathbb{C}}(d+1)$ to PU(d+1).
- First, choose a Hermitian line bundle $L \rightarrow X$ whose curvature form Ω_L tames J.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A framed curve is a triple (u, Σ, F) where u : Σ → X is a smooth map representing β and F = (f₀, · · · , f_d) is a basis of H⁰(u*L) where d = c₁(L)(β) + 1

The basis F induces a map

$$\phi_F: \Sigma \to \mathbb{P}^d, \quad \phi_F(\sigma) = [\tau f_0(\sigma), \cdots, \tau f_d(\sigma)]$$

where τ is a trivialization $\tau : L|_{\sigma} \cong \mathbb{C}$.

• Hence we have an identification $\psi_F : \Sigma \xrightarrow{\cong} C|_{\phi_F}$.

- ▶ Let H_{d+1} be the space of (d + 1) × (d + 1) Hermitian matrices.
- We have an identification

$$\exp: \mathcal{H}_+ \stackrel{\cong}{\longrightarrow} PGL_{d+1}(\mathbb{C})/PU(d+1).$$

• We define $A_F := \exp^{-1} B$ where B is the matrix with *i*, *j* entry

$$\int_{\Sigma} \langle f_i, f_j \rangle \Omega_L.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We define the *thickening* T to be the space of isomorphism classes of tuples (u, Σ, F, e) so that (u ∘ ψ_F⁻¹, φ_F, e) ∈ T^{pre}.
- The group G = PU(d + 1) acts on T via postcomposition in \mathbb{P}^N .

- The obstruction bundle *E* has fiber $\mathcal{H}_+ \times V_\mu$.
- The section s sends (u, Σ, F, e) to (A_F, e) .
- ▶ So, (*G*, *T*, *E*, *s*) is our Global Kuranishi chart.

- We wish to generalize this to higher genus with X an orbifold rather than a manifold.
- There are two problems.
- ► The first problem is that twisted nodal curves with at least one orbifold point don't map to P^d.
- The second problem is that line bundles of a given degree on a higher genus curve aren't unique.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Let us deal with the first problem.
- We will use work of Ross and Thomas.
- Instead of looking at moduli spaces of curve mapping to projective space, we use weighted projective space

 P(w₀, · · · , w_d) = (ℂ^{d+1} − 0)/ ~,
 (z₀, · · · , z_d) ~ (t^{w₀}z₀, · · · , t^{w_d}z_d) for each t ∈ ℂ*.

- Let Y be a complex compact orbifold with only cyclic quotient singularities
- In our case, we are only interested in one dimensional complex orbifolds corresponding to normalizations of twisted nodal curves.
- A line bundle L over Y is locally ample if for each y ∈ Y, the stabilizer of y acts faithfully on the fiber L|_y.
- ► It is globally positive if L^N is the pullback of an ample line bundle from the coarse moduli space Y where N is the least common multiple of all the stabilizers of all the points on Y.

- L is orbi-ample if it is locally ample and globally positive.
- Let $n_i := |H^0(L^i)|$ for each $i \in \mathbb{N}$.
- A k-framing of L is a tuple

$$(f_{ij})_{i=k\cdots,2k,j=0,\cdots,n_i}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where f_{ij} , $j = 1, \dots, n_i$ is a basis for $H^0(L^i)$ for each $i = k, \dots, 2k$.

Define

$$\mathbb{P}_k(L) := \mathbb{P}(k, \cdots, k, k+1, \cdots, k+1, \cdots, 2k, \cdots, 2k)$$

where there are exactly n_i copies of k + i for each $i = 1, \dots, N$.

- Define the map φ_F : Y → P_k(L) sending y ∈ Y to [τf_{ij}(s)]_{i=k···,2k,j=0,···,n_i} where τ is any trivialization τ : L|_s ≃ C.
- Theorem. (Ross, Thomas). φ_F is an embedding for k large if L is orbi-ample.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Let (X, ω) be a symplectic orbifold with compatible almost complex structure J and let β ∈ H₂(X; Z).
- Choose a locally ample orbi-vector bundle W → X (this exists by Pardon's result).
- Choose a Hermitian line bundle L on X which is a pullback from the coarse moduli space whose curvature for Ω_L tames J.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Abramovich and Vistoli have constructed moduli spaces of twisted nodal curves mapping to smooth DM stacks (i.e. complex orbifolds).
- For any weighted projective spaces P, define F := F_{g,h,D}(P) to be the moduli space of stable twisted nodal curves u of degree at most D satisfying H¹(u*O(1)) = 0 and u is automorphism free.
- This is a smooth quasi-projective variety with universal curve
 C := C_{g,h,D}(ℙ) → F_{g,h,D}(ℙ).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Let $k \gg 1$.

• We define $\mathscr{F}_{\mathcal{F}}$ be the space of tuples (ϕ, u, R) where

- $\blacktriangleright \phi \in \mathcal{F}$,
- $u: \mathcal{C}|_{\phi} \to X$ is a twisted nodal curve and

$$R = (R_{ij})_{i=k\cdots,2k,j=1,\cdots,n_i} \text{ is a } k \text{-framing of} \\ W_u := K_{\mathcal{C}|_{\phi}} \otimes (u^*W \otimes L^i).$$

• The topology is the Hausdorff topology induced by graphs of R_{ij} on the coarse moduli space of $C \times W_u^{\sum_{i=k}^{2k} n_i}$.

- Let C^o ⊂ C be the complement of the nodes and marked points.
- Let Y → C^o × X be the vector bundle whose fiber over a point (p, x) is the space of anti-holomorphic maps from the tangent space at p of the fiber of C^o to T_xX.

Choose a finite dimensional approximation scheme (λ_μ, W_μ)_{μ∈ℕ}, λ_μ : W_μ → C[∞]_c(Y) for Y. Definition: The pre-thickened moduli space 𝔅^{pre} is the space of tuples ((φ, u, R), e) ∈ 𝔅_𝔅 × V_µ satisfying:

$$\overline{\partial}_{J}u(p)=\lambda_{\mu}(e)(p,u(x)).$$

For k, µ ≫ 1, we get have that *T^{pre}* is a topological manifold (it has a C¹_{loc} structure, when enables us to put a smooth structure on an enlargement of it).

- For each ((φ, u, R), e) ∈ 𝔅^{pre}, define L_u := K_{C|φ}(p₁, · · · , p_h) ⊗ u*L where K_{C|φ} is the canonical bundle.
- We define the *thickened moduli space* 𝔅 to be the space of tuples (φ, u, R, e, F) where (φ, u, R, e) ∈ 𝔅^{pre} and F is a k-framing of L_u.

• We now need to construct the obstruction bundle.

- Define P_𝔅 := P_k(L_u) for some (φ, u, R, e, F) in 𝔅 (this does not depend on the point in 𝔅 for k ≫ 1 after shrinking).
- This is the weighted projective space that our framing F maps to. So, we get a natural map φ_𝔅 : C|_φ → P_𝔅 and hence a map 𝔅 → 𝔅_{𝔅,h,D}(P_𝔅), D ≫ 1.
- Define *F*_{P²_𝔅} to be an appropriate moduli space of maps to P²_𝔅 and let Δ_𝔅 be the normal bundle of the diagonal map *F*_{𝔅,h,D}(P_𝔅) → *F*_{𝔅,h,D}(P²_𝔅).

• We can pull back this diagonal bundle to \mathscr{T} . Call it $\Delta_{\mathscr{T}}$.

- Our obstruction bundle \mathscr{E} is then $\widetilde{\Delta}_{\mathscr{T}} \times \mathcal{H}_{\mathbb{P}_{\mathscr{T}}} \times \mathcal{H}_{W} \times V_{\mu}$.
- The first component tells us how far away the bundle φ^{*}_FO(1) is from L_u. In other words, how far apart is φ and φ_F (which is an element of F_{P²_J} and hence, via a metric maps to Δ̃_J).
- ► The second component H_P is G^C_J/G_J where G_J is the automorphism group of our weighted projective space P_J and G_J is its maximal compact subgroup. It tells us how far our framing F is from being orthogonal.
- ► The third component G^C_W/G_W tells us how far R is from being orthogonal. It is defined analogously. Here G_W is a product of unitary groups.
- The last component tells us how far our map u is from being holomorphic.

- ► Theorem (in progress, M-Ritter). (G_𝔅 × G_W, 𝔅, 𝔅, 𝔅) is a Global-Kuranishi chart for M_{g,h,β}(X). It is unique up to a series of standard operations and their inverses: stabilization, group enlargement and germ equivalence.
- The thickening also admits a C¹_{loc}-structure, which means up to stabilization, it admits a smooth structure.
- If we deform J, then we get cobordant global Kuranishi charts, which shows that our Gromov-Witten counts are in fact invariants of the symplectic form.