

Le Laboratoire de Mathématiques Jean Leray

Exact Lagrangians in cotangent bundles with locally conformally symplectic structure

Adrien Currier

2. Nearby Lagrangian conjecture in \mathfrak{lcs} geometry

3. On essential Liouville chords

 \mathfrak{lcs} manifold :

 $\phi \, := {\rm transition} \, \, {\rm map}$

$$\phi^*\omega_{\mathbb{R}^{2n}}=c\omega_{\mathbb{R}^{2n}},\quad c>0$$

Adrien Currier

 \mathfrak{lcs} manifold :

(M, ω, β)

Adrien Currier

 \mathfrak{lcs} manifold :

2*n*-dimensional manifold *M*

Adrien Currier

exact Lagrangians in Ics geometry

 (M, ω, β)

 \mathfrak{lcs} manifold :

2n-dimensional manifold M $(\mathring{M}, \omega, \beta)$ $\omega \in \Omega^2(M)$ such that, for any small enough open set $U \subset M$, $\exists g_U \in C^{\infty}(U) / e^{g_U} \omega_{|U}$ is symplectic

Adrien Currier

lcs manifold :

lcs manifold :

Adrien Currier

Definition (β -exact Lagrangian)

Let $L \subset M$ be a *n*-dimensional submanifold *n* and $i: L \to M$ be the inclusion. If for each open subset $U \subset M$ that is small enough, there is some $f_U \in C^{\infty}(i^{-1}(U))$ such that $e^{g_U \circ i} i^* \lambda = df_U$, then *L* is called a β -exact Lagrangian.

Definition (β -exact Lagrangian)

Let $L \subset M$ be a *n*-dimensional submanifold *n* and $i : L \to M$ be the inclusion. If for each open subset $U \subset M$ that is small enough, there is some $f_U \in C^{\infty}(i^{-1}(U))$ such that $e^{g_U \circ i} i^* \lambda = df_U$, then *L* is called a β -exact Lagrangian.

Fact: *L* is a β -exact Lagrangian if and only if there is some $f \in C^{\infty}(L)$ such that $i^*\lambda = df - f \ i^*\beta =: d_{\beta}f$

Example

1. Let M be a manifold, λ be the canonical Liouville form on T^*M , $\beta \in \Omega^1(M)$ be closed and $\pi : T^*M \to M$ be the canonical projection, then $(T^*M, \lambda, \pi^*\beta)$ is an exact \mathfrak{lcs} manifold.

Example

- 1. Let M be a manifold, λ be the canonical Liouville form on T^*M , $\beta \in \Omega^1(M)$ be closed and $\pi : T^*M \to M$ be the canonical projection, then $(T^*M, \lambda, \pi^*\beta)$ is an exact \mathfrak{lcs} manifold.
- 2. Let (M, α) be a contact manifold, then $(M \times \mathbb{S}^1_{\theta}, \alpha, d\theta)$ is an exact lcs manifold, for θ the coordinate on \mathbb{S}^1_{θ} .

Example

- 1. Let M be a manifold, λ be the canonical Liouville form on T^*M , $\beta \in \Omega^1(M)$ be closed and $\pi : T^*M \to M$ be the canonical projection, then $(T^*M, \lambda, \pi^*\beta)$ is an exact \mathfrak{lcs} manifold.
- 2. Let (M, α) be a contact manifold, then $(M \times \mathbb{S}^1_{\theta}, \alpha, d\theta)$ is an exact lcs manifold, for θ the coordinate on \mathbb{S}^1_{θ} .

 $(\mathbb{S}^3 \times \mathbb{S}^1_{\theta}, \alpha, d\theta)$ is an exact \mathfrak{lcs} manifold!

Example

Let $\Lambda \subset (M, \alpha)$ be a Legendrian, then $\Lambda \times \mathbb{S}^1_{\theta} \subset M \times \mathbb{S}^1_{\theta}$ is a $d\theta$ -exact Lagrangian submanifold.

Adrien Currier

Example

Let $\Lambda \subset (M, \alpha)$ be a Legendrian, then $\Lambda \times \mathbb{S}^1_{\theta} \subset M \times \mathbb{S}^1_{\theta}$ is a $d\theta$ -exact Lagrangian submanifold.

symplectic
$$dim = 2n$$
 $dim = 2n + 1$ $dim = 2n + 2$

Adrien Currier

Conventions

- 1. The exact Lagrangians of symplectic geometry will be called 0-exact Lagrangians.
- 2. *M* and *L* will always be closed connected manifolds of dimension *n*, β will be a closed 1-form on *M* and λ will be the canonical Liouville form on T^*M .
- 3. the various pullbacks of β will also be called β .

Conjecture (nearby Lagrangians)

Let *L* be a 0-exact Lagrangian of $(T^*M, \lambda, 0)$, then *L* is the image of the 0-section *M* by an Hamiltonian isotopy.

```
Nearby Lagrangians
```

Conjecture (nearby Lagrangians)

Let *L* be a 0-exact Lagrangian of $(T^*M, \lambda, 0)$, then *L* is the image of the 0-section *M* by an Hamiltonian isotopy.

Weinstein : a Lagrangian in a symplectic manifold has a tubular neighborhood that "looks like" its cotangent bundle

Conjecture (nearby Lagrangians)

Let *L* be a 0-exact Lagrangian of $(T^*M, \lambda, 0)$, then *L* is the image of the 0-section *M* by an Hamiltonian isotopy.

Weinstein : a Lagrangian in a symplectic manifold has a tubular neighborhood that "looks like" its cotangent bundle

P.S.: there is a Ics version of Weinstein's neighborhood theorem. (see Otiman and Stanciu [2017])

Conjecture

Let *L* be a 0-exact Lagrangian of $(T^*M, \lambda, 0)$, then *L* is the image of the 0-section *M* by an Hamiltonian isotopy.

Is it true ?

Let L be a β -exact Lagrangian of (T^*M, λ, β) , then L is the image of the 0-section M by an Hamiltonian isotopy (of " (cs" type).

Theorem (Abouzaid and Kragh [2018])

Let L be a 0-exact Lagrangian of $(T^*M, \lambda, 0)$ and $\pi : T^*M \to M$ be the canonical projection. Then $\pi_{|L} : L \to M$ is a simple homotopy equivalence.

Corollary Let L be a 0-exact Lagrangian of $(T^*M, \lambda, 0)$ and $\pi : T^*M \to M$ be the canonical projection. Then $(\pi_{|L})_* : H_*(L) \simeq H_*(M).$

Corollary

Let L be a 0-exact Lagrangian of $(T^*M, \lambda, 0)$ and $\pi : T^*M \to M$ be the canonical projection. Then

 $(\pi_{|L})_*: H_*(L) \xrightarrow{\sim} H_*(M).$

Is it true ?

Let L be a β -exact Lagrangian of (T^*M, λ, β) and $\pi : T^*M \to M$ be the canonical projection. Then

 $(\pi_{|L})_*: H_*(L) \xrightarrow{\sim} H_*(M).$

Corollary

Let L be a 0-exact Lagrangian of $(T^*M, \lambda, 0)$ and $\pi : T^*M \to M$ be the canonical projection. Then Let *L* be a β -exact Lagrangian of (T^*M, λ, β) and $\pi : T^*M \to M$ be the canonical projection. Then

Is it true?

 $(\pi_{|L})_*: H_*(L) \xrightarrow{\sim} H_*(M).$

 $(\pi_{|L})_*: HN_*(L, i^*\beta) \xrightarrow{\sim} HN_*(M, \beta).$

Note: *HN*_{*} stands for the Morse-Novikov homology

Why Morse-Novikov ?

It has been successfully used to prove \mathfrak{lcs} versions of classical symplectic theorems.

(e.g. see Chantraine and Murphy [2016] for the proof of an adaptation of the Laudenbach-Sikorav theorem)

Proposition 1 (C.)

There is a manifold M and a β -exact Lagrangian L in (T^*M, λ, β) such that $\pi_{|L}$ induces neither an isomorphism of singular homologies, nor an isomorphism of Morse-Novikov homologies.

Goals

Let $i: L \to (T^*M, \lambda, \beta)$ be a β -exact Lagrangian embedding and $\pi: T^*M \to M$ be the canonical projection.

- 1. Under which conditions is $(\pi_{|L})_* : H_*(L) \to H_*(M)$ an isomorphism?
- 2. Under which conditions is $(\pi_{|L})_* : HN_*(L, i^*\beta) \to HN_*(M, \beta)$ an isomorphism?

Lemma (C.)

Let α be the canonical contact form on J^1M . Then

$$g: \left(T^*(M \times \mathbb{S}^1), \lambda_{M \times \mathbb{S}^1}, d\theta\right) \to \left(J^1M \times \mathbb{S}^1, \alpha, d\theta\right)$$
$$(q, p, \theta, z) \mapsto (q, -p, \theta, z)$$

is a "Liouville diffeomorphism (of lcs type)"

Adrien Currier

Liouville chords

$$\begin{split} j : \quad \mathbb{T}^2 &\to \ \mathcal{T}^* \mathbb{T}^2 \simeq \mathbb{T}^2 \times \mathbb{R}^2 \\ (\theta, \phi) &\mapsto (\cos(\theta), \phi, -3\sin(\theta)\cos(\theta), -\sin(\theta)^3) \end{split}$$

Liouville chords

$$\begin{split} j : \quad \mathbb{T}^2 &\to \ \mathcal{T}^* \mathbb{T}^2 \simeq \mathbb{T}^2 \times \mathbb{R}^2 \\ (\theta, \phi) &\mapsto (\cos(\theta), \phi, -3\sin(\theta)\cos(\theta), -\sin(\theta)^3) \end{split}$$

Adrien Currier

Liouville chords

Definition (essential Liouville chords)

Let $i: L \to (T^*M, \lambda, \beta)$ be a β -exact Lagrangian embedding and $f \in C^{\infty}(i(L), \mathbb{R}_{>0})$ such that $i^*(d_{\beta}f) = i^*\lambda$. Assume that β is not exact.

Given t > 0 and $(q, tp), (q, p) \in T_q^*M \cap i(L)$ such that

$$\frac{\ln(f(q,tp)) - \ln(f(q,p))}{\ln(t)} \ge 1,$$

the segment from (q, p) to (q, tp) will be called essential Liouville chord.

Proposition 2 (C.)

Let $i : L \to (T^*M, \lambda, \beta)$ be a β -exact Lagrangian embedding. If β is not exact, then there is exactly one $f \in C^{\infty}(i(L))$ such that $i^*\lambda = i^*(d_{\beta}f)$.

Adrien Currier

Proposition 2 (C.)

Let $i : L \to (T^*M, \lambda, \beta)$ be a β -exact Lagrangian embedding. If β is not exact, then there is exactly one $f \in C^{\infty}(i(L))$ such that $i^*\lambda = i^*(d_{\beta}f)$.

Theorem 3 (C.)

Let $i : L \to (T^*M, \lambda, \beta)$ be a β -exact Lagrangian embedding. If β is not exact, then the pullback of β to L is not exact.

Proposition 2 (C.)

Let $i : L \to (T^*M, \lambda, \beta)$ be a β -exact Lagrangian embedding. If β is not exact, then there is exactly one $f \in C^{\infty}(i(L))$ such that $i^*\lambda = i^*(d_{\beta}f)$.

Theorem 3 (C.)

Let $i : L \to (T^*M, \lambda, \beta)$ be a β -exact Lagrangian embedding. If β is not exact, then the pullback of β to L is not exact.

Fact : If β is not exact, then $d_{\beta}h = 0 \iff h = 0$.

Theorem 4 (C.)

Let $i : L \to (T^*M, \lambda, \beta)$ be a β -exact Lagrangian embedding such that $i^*\lambda = d_\beta f$ for some $f \in C^\infty(L, \mathbb{R}_{>0})$. If L has no essential Liouville chord, then $\pi_{|L}$ is a simple homotopy equivalence.

Theorem 4 (C.)

Let $i : L \to (T^*M, \lambda, \beta)$ be a β -exact Lagrangian embedding such that $i^*\lambda = d_\beta f$ for some $f \in C^\infty(L, \mathbb{R}_{>0})$. If L has no essential Liouville chord, then $\pi_{|L}$ is a simple homotopy equivalence.

Let $L \subset (J_{>0}^1 M = T^*M \times \mathbb{R}_{>0}, \alpha)$ be a Legendrian, with α the canonical contact form, and take the lift of L $L \times \mathbb{S}^1 \subset (T^*(M \times \mathbb{S}^1), \lambda_{M \times \mathbb{S}^1}, d\theta)$. The projection of the essential Liouville chords in $T^*M \times (\mathbb{R}_{>0})_s$ are the Reeb chords of L for the contact form $\frac{\alpha}{s}$

Liouville chords

Goals

Let $i: L \to (T^*M, \lambda, \beta)$ be a β -exact Lagrangian embedding and $\pi: T^*M \to M$ be the canonical projection.

1. Under which conditions is $(\pi_{|L})_* : H_*(L) \to H_*(M)$ an isomorphism?

no essential Liouville chord \implies $\pi_{|L}$ is an homology equivalence

Adrien Currier

References

Abouzaid, M., and Kragh, T. [2018]. Simple homotopy equivalence of nearby lagrangians. *Acta Mathematica*, *220*(2), 207 – 237.

Chantraine, B., and Murphy, E. [2016]. Conformal symplectic geometry of cotangent bundles. *Journal of Symplectic Geometry*.

Otiman, A., and Stanciu, M. [2017]. Darboux-weinstein theorem for locally conformally symplectic manifolds. *Journal of Geometry and Physics*, 111, 1-5. doi: https://doi.org/10.1016/j.geomphys.2016.10.006