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exact [¢s manifold :

2n-dimensional B € Q(M) closed,
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Introduction

Definition (f-exact Lagrangian)

Let L C M be a n-dimensional submanifold nand i : L - M
be the inclusion. If for each open subset U C M that is small
enough, there is some fy € C*(i~1(U)) such that

e8U° j*\ = dfy, then L is called a 3-exact Lagrangian.
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Introduction

Definition (f-exact Lagrangian)

Let L C M be a n-dimensional submanifold nand i : L - M
be the inclusion. If for each open subset U C M that is small
enough, there is some fy € C®(i~1(U)) such that

e8u° j*\ = dfy, then L is called a 3-exact Lagrangian.

Fact : L is a S-exact Lagrangian if and only if there is some
f € C®(L) such that i*A = df — f i*3 =: dgf
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Example

1. Let M be a manifold, A be the canonical Liouville form on
T*M, 8 € Q'(M) be closed and 7 : T*M — M be the
canonical projection, then (T*M, A\, 7*(3) is an exact lcs
manifold.
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Example
1. Let M be a manifold, A be the canonical Liouville form on
T*M, 3 € Q'(M) be closed and 7 : T*M — M be the
canonical projection, then (T*M, A\, 7*(3) is an exact lcs
manifold.
2. Let (M, ) be a contact manifold, then (M x S}, v, df) is
an exact [cs manifold, for 6 the coordinate on Sé.

l

(S® x S, v, dB) is an exact [cs manifold!
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Let A C (M, ) be a Legendrian, then A x S} C M x S} is a
df-exact Lagrangian submanifold.
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Example

Let A C (M, ) be a Legendrian, then A x S} C M x S} is a
df-exact Lagrangian submanifold.

symplectic contact [cs
dim = 2n dim=2n+1 dim = 2n+2
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Introduction

Conventions

1. The exact Lagrangians of symplectic geometry will be
called 0-exact Lagrangians.

2. M and L will always be closed connected manifolds of
dimension n, 5 will be a closed 1-form on M and \ will
be the canonical Liouville form on T*M.

3. the various pullbacks of 5 will also be called .
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Nearby Lagrangians

Conjecture (nearby Lagrangians)

Let L be a O-exact Lagrangian of (T*M, \,0), then L is the
image of the O-section M by an Hamiltonian isotopy.
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Nearby Lagrangians

Conjecture (nearby Lagrangians)

Let L be a O-exact Lagrangian of (T*M, \,0), then L is the
image of the 0-section M by an Hamiltonian isotopy.

!

Weinstein : a Lagrangian in a symplectic manifold
has a tubular neighborhood that “looks like" its
cotangent bundle

P.S.: there is a lcs version of Weinstein's neighborhood theorem.
(see Otiman and Stanciu [2017])
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Nearby Lagrangians

Conjecture Is it true ?

Let L be a 0-exact Lagrangian Let L be a 3-exact Lagrangian

of (T*M, X,0), then L is the of (T*M, X\, B), then L is the

image of the O-section M by image of the 0-section M by

an Hamiltonian isotopy. an Hamiltonian isotopy (of
“les” type).
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Nearby Lagrangians

Theorem (Abouzaid and Kragh [2018])

Let L be a 0-exact Lagrangian of (T*M, X\,0) and
m: T*M — M be the canonical projection. Then m, : L — M
is a simple homotopy equivalence.
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Nearby Lagrangians

Corollary

Let L be a 0-exact Lagrangian of (T*M, \,0) and
w: T*M — M be the canonical projection. Then

(m10)s : Ho(L) = H,(M).
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Corollary Is it true ?

Let L be a 0-exact Lagrangian Let L be a B-exact

of (T*M, X,0) and Lagrangian of (T*M, X, 3)

m: T*M — M be the and 7w : T*M — M be the

canonical projection. Then canonical projection. Then
(7))« © Ho(L) = H.(M). (7))« o Ho(L) = H.(M).
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Nearby Lagrangians

Corollary Is it true ?

Let L be a 0-exact Lagrangian Let L be a B-exact

of (T*M, X,0) and Lagrangian of (T*M, X, 3)

m: T*M — M be the and 7 : T*M — M be the

canonical projection. Then canonical projection. Then
(mie)« + Ho(L) = Ho(M). (m1)« - HNL(L, i*B) = HN.(M, 3).

Note: HN, stands for the Morse-Novikov homology
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Nearby Lagrangians

Why Morse-Novikov ?

It has been successfully used to prove Ics versions of classical
symplectic theorems.

(e.g. see Chantraine and Murphy [2016] for the proof of an
adaptation of the Laudenbach-Sikorav theorem)
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Nearby Lagrangians

Proposition 1 (C.)

There is a manifold M and a [3-exact Lagrangian L in

(T*M, X, B) such that m, induces neither an isomorphism of
singular homologies, nor an isomorphism of Morse-Novikov
homologies.
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Nearby Lagrangians

Goals
Let i: L — (T*M, )\, () be a S-exact Lagrangian embedding
and 7 : T*M — M be the canonical projection.
1. Under which conditions is (m.). : H.(L) = H.(M) an
isomorphism?
2. Under which conditions is
(i)« : HN(L, i*B) = HN,(M, j3) an isomorphism?
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Liouville chords

Lemma (C.)

Let o be the canonical contact form on J*M. Then

g (T(M x §'), Asr, d6) — (J'M x §*, a, d6)
(q.p,0,2z) = (q,—p,0,2)

is a “Liouville diffeomorphism (of les type)”
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Liouville chords

ji T? - T*T? ~ T? x R?
(0, ) — (cos(f), ¢, —3sin(8) cos(#), — sin(6)?)

J*A = —3sin(0) cos(#)d cos(8) — sin(0)*d¢
= dsin(0)® —sin(6)3d¢
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Liouville chords

Definition (essential Liouville chords)

Leti: L— (T*M, )\, ) be a S-exact Lagrangian embedding
and f € C*(i(L),R-o) such that i*(dsf) = i*A. Assume that
B is not exact.

Given t > 0 and (q, tp),(q,p) € T;M N i(L) such that

In(t) -

the segment from (q, p) to (g, tp) will be called essential
Liouville chord.
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Liouville chords

Proposition 2 (C.)

Leti:L— (T*M,\, () be a 5-exact Lagrangian embedding.
If 5 is not exact, then there is exactly one f € C*°(i(L)) such
that i*\ = i*(dsf).
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Proposition 2 (C.)

Leti:L— (T*M,\, () be a 5-exact Lagrangian embedding.
If 5 is not exact, then there is exactly one f € C*°(i(L)) such
that i*\ = i*(dsf).

Theorem 3 (C.)

Leti:L— (T*M,\, () be a 5-exact Lagrangian embedding.
If B is not exact, then the pullback of 5 to L is not exact.
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Liouville chords

Proposition 2 (C.)

Leti:L— (T*M,\, () be a 5-exact Lagrangian embedding.
If 5 is not exact, then there is exactly one f € C*°(i(L)) such
that i*\ = i*(dsf).

Theorem 3 (C.)

Leti:L— (T*M,\, () be a 5-exact Lagrangian embedding.
If B is not exact, then the pullback of 5 to L is not exact.

Fact : If 3 is not exact, then dsh=0 <= h=0.
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Liouville chords

Theorem 4 (C.)

Leti:L— (T*M,\, ) be a B-exact Lagrangian embedding
such that i*\ = dgf for some f € C>(L,R~y).

If L has no essential Liouville chord, then m, is a simple
homotopy equivalence.
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Liouville chords

Theorem 4 (C.)

Leti:L— (T*M,\,3) be a 3-exact Lagrangian embedding
such that i*\ = dgf for some f € C*(L,R-y).

If L has no essential Liouville chord, then ), is a simple
homotopy equivalence.

Let L C (J1gM = T*M X R.q, ) be a Legendrian, with « the
canonical contact form, and take the lift of L

L xSt C (T*(M x S'), \yyxst, d). The projection of the
essential Liouville chords in T*M x (Rs)s are the Reeb

chords of L for the contact form %
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Liouville chords

Goals
Leti: L— (T*M, )\, ) be a $-exact Lagrangian embedding
and 7 : T*M — M be the canonical projection.
1. Under which conditions is (m.). : H.(L) = H.(M) an
isomorphism?

no essential Liouville chord
\_, =

7. is an homology equivalence
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