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Introduction

φ∗ωR2n = cωR2n , c > 0

lcs manifold :

φ := transition map
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Introduction

ω(M , , β)

lcs manifold :

2n-dimensional

manifold M

ω ∈ Ω2(M) such that,

for any small enough open set U ⊂ M ,

∃gU ∈ C∞(U) / egUω|U is symplectic

β ∈ Ω1(M) closed,

gluing data for

the maps gU

∀U , β = −dgU
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Introduction

λ(M , , β)

exact lcs manifold :

2n-dimensional

manifold M

λ ∈ Ω1(M) such that,

for any small enough open set U ⊂ M ,

∃gU ∈ C∞(U) / d(egUλ|U) is symplectic

β ∈ Ω1(M) closed,

gluing data for

the maps gU

∀U , β = −dgU
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Introduction

Definition (β-exact Lagrangian)

Let L ⊂ M be a n-dimensional submanifold n and i : L→ M
be the inclusion. If for each open subset U ⊂ M that is small
enough, there is some fU ∈ C∞(i−1(U)) such that
egU◦i i∗λ = dfU , then L is called a β-exact Lagrangian.
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Introduction

Definition (β-exact Lagrangian)

Let L ⊂ M be a n-dimensional submanifold n and i : L→ M
be the inclusion. If for each open subset U ⊂ M that is small
enough, there is some fU ∈ C∞(i−1(U)) such that
egU◦i i∗λ = dfU , then L is called a β-exact Lagrangian.

Fact : L is a β-exact Lagrangian if and only if there is some
f ∈ C∞(L) such that i∗λ = df − f i∗β =: dβf
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Introduction

Example
1. Let M be a manifold, λ be the canonical Liouville form on

T ∗M , β ∈ Ω1(M) be closed and π : T ∗M → M be the
canonical projection, then (T ∗M , λ, π∗β) is an exact lcs
manifold.

2. Let (M , α) be a contact manifold, then (M × S1
θ, α, dθ) is

an exact lcs manifold, for θ the coordinate on S1
θ.

(S3 × S1
θ, α, dθ) is an exact lcs manifold!
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Introduction

Example

Let Λ ⊂ (M , α) be a Legendrian, then Λ× S1
θ ⊂ M × S1

θ is a
dθ-exact Lagrangian submanifold.
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Introduction

Example

Let Λ ⊂ (M , α) be a Legendrian, then Λ× S1
θ ⊂ M × S1

θ is a
dθ-exact Lagrangian submanifold.

contact
dim = 2n + 1

symplectic
dim = 2n

lcs
dim = 2n + 2
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Introduction

Conventions
1. The exact Lagrangians of symplectic geometry will be

called 0-exact Lagrangians.

2. M and L will always be closed connected manifolds of
dimension n, β will be a closed 1-form on M and λ will
be the canonical Liouville form on T ∗M .

3. the various pullbacks of β will also be called β.
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Nearby Lagrangians

Conjecture (nearby Lagrangians)

Let L be a 0-exact Lagrangian of (T ∗M , λ, 0), then L is the
image of the 0-section M by an Hamiltonian isotopy.
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Nearby Lagrangians

Conjecture (nearby Lagrangians)

Let L be a 0-exact Lagrangian of (T ∗M , λ, 0), then L is the
image of the 0-section M by an Hamiltonian isotopy.

Weinstein : a Lagrangian in a symplectic manifold
has a tubular neighborhood that “looks like” its
cotangent bundle

P.S.: there is a lcs version of Weinstein’s neighborhood theorem.
(see Otiman and Stanciu [2017])
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Nearby Lagrangians

Conjecture (nearby Lagrangians)

Let L be a 0-exact Lagrangian of (T ∗M , λ, 0), then L is the
image of the 0-section M by an Hamiltonian isotopy.

Conjecture
Let L be a 0-exact Lagrangian
of (T ∗M , λ, 0), then L is the
image of the 0-section M by
an Hamiltonian isotopy.

Is it true ?
Let L be a β-exact Lagrangian
of (T ∗M , λ, β), then L is the
image of the 0-section M by
an Hamiltonian isotopy (of
“ lcs” type).
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Nearby Lagrangians

Theorem (Abouzaid and Kragh [2018])

Let L be a 0-exact Lagrangian of (T ∗M , λ, 0) and
π : T ∗M → M be the canonical projection. Then π|L : L→ M
is a simple homotopy equivalence.

Corollary
Let L be a 0-exact Lagrangian
of (T ∗M , λ, 0) and
π : T ∗M → M be the
canonical projection. Then

(π|L)∗ : H∗(L)→∼ H∗(M).
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Nearby Lagrangians

Corollary
Let L be a 0-exact Lagrangian
of (T ∗M , λ, 0) and
π : T ∗M → M be the
canonical projection. Then

(π|L)∗ : H∗(L)→∼ H∗(M).

Is it true ?
Let L be a β-exact
Lagrangian of (T ∗M , λ, β)
and π : T ∗M → M be the
canonical projection. Then

(π|L)∗ : HN∗(L, i
∗β)→∼ HN∗(M , β).

Note: HN∗ stands for the Morse-Novikov homology
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Nearby Lagrangians

Why Morse-Novikov ?

It has been successfully used to prove lcs versions of classical
symplectic theorems.

(e.g. see Chantraine and Murphy [2016] for the proof of an
adaptation of the Laudenbach-Sikorav theorem)
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Nearby Lagrangians

Proposition 1 (C.)

There is a manifold M and a β-exact Lagrangian L in
(T ∗M , λ, β) such that π|L induces neither an isomorphism of
singular homologies, nor an isomorphism of Morse-Novikov
homologies.
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Nearby Lagrangians

Goals
Let i : L→ (T ∗M , λ, β) be a β-exact Lagrangian embedding
and π : T ∗M → M be the canonical projection.

1. Under which conditions is (π|L)∗ : H∗(L)→ H∗(M) an
isomorphism?

2. Under which conditions is
(π|L)∗ : HN∗(L, i

∗β)→ HN∗(M , β) an isomorphism?
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Liouville chords

Lemma (C.)

Let α be the canonical contact form on J1M . Then

g :
(
T ∗(M × S1), λM×S1 , dθ

)
→

(
J1M × S1, α, dθ

)
(q, p, θ, z) 7→ (q,−p, θ, z)

is a “Liouville diffeomorphism (of lcs type)”
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Liouville chords

j : T2 → T ∗T2 ' T2 × R2

(θ, φ) 7→ (cos(θ), φ,−3 sin(θ) cos(θ),− sin(θ)3)

j∗λ = −3 sin(θ) cos(θ)d cos(θ)− sin(θ)3dφ

= d sin(θ)3 − sin(θ)3dφ
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Introduction

Reeb chords
dim = 2n − 1

essential Liouville chords
dim = 2n
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Liouville chords

Definition (essential Liouville chords)

Let i : L→ (T ∗M , λ, β) be a β-exact Lagrangian embedding
and f ∈ C∞(i(L),R>0) such that i∗(dβf ) = i∗λ. Assume that
β is not exact.
Given t > 0 and (q, tp), (q, p) ∈ T ∗qM ∩ i(L) such that

ln(f (q, tp))− ln(f (q, p))

ln(t)
≥ 1,

the segment from (q, p) to (q, tp) will be called essential
Liouville chord.
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Liouville chords

Proposition 2 (C.)

Let i : L→ (T ∗M , λ, β) be a β-exact Lagrangian embedding.
If β is not exact, then there is exactly one f ∈ C∞(i(L)) such
that i∗λ = i∗(dβf ).

Theorem 3 (C.)

Let i : L→ (T ∗M , λ, β) be a β-exact Lagrangian embedding.
If β is not exact, then the pullback of β to L is not exact.

Fact : If β is not exact, then dβh = 0 ⇐⇒ h = 0.
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Liouville chords

Theorem 4 (C.)

Let i : L→ (T ∗M , λ, β) be a β-exact Lagrangian embedding
such that i∗λ = dβf for some f ∈ C∞(L,R>0).
If L has no essential Liouville chord, then π|L is a simple
homotopy equivalence.
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Liouville chords

Theorem 4 (C.)

Let i : L→ (T ∗M , λ, β) be a β-exact Lagrangian embedding
such that i∗λ = dβf for some f ∈ C∞(L,R>0).
If L has no essential Liouville chord, then π|L is a simple
homotopy equivalence.

Let L ⊂ (J1
>0M = T ∗M ×R>0, α) be a Legendrian, with α the

canonical contact form, and take the lift of L
L× S1 ⊂ (T ∗(M × S1), λM×S1 , dθ). The projection of the
essential Liouville chords in T ∗M × (R>0)s are the Reeb
chords of L for the contact form α

s
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Liouville chords

Goals
Let i : L→ (T ∗M , λ, β) be a β-exact Lagrangian embedding
and π : T ∗M → M be the canonical projection.

1. Under which conditions is (π|L)∗ : H∗(L)→ H∗(M) an
isomorphism?

no essential Liouville chord
=⇒

π|L is an homology equivalence
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