Relative symplectic cohomology of pairs Symplectic Zoominar

Adi Dickstein (Tel-Aviv University)

October 25, 2024

Based on joint work together with Yaniv Ganor, Leonid Polterovich and Frol Zapolsky

- 1. Singular cohomology
- 2. Relative symplectic cohomology
- 3. Ideal-valued quasi-measures
- 4. Applications to symplectic rigidity

Singular cohomology

Singular cohomology of pairs

Singular cohomology is a functor {Top. spaces} \rightarrow {Ab. groups}

 $X \mapsto H^*(X).$

It has a 'standard model' on chain level:

Singular cochain complex is a functor {Top. spaces} \rightarrow {Chain cxs.}

$$X\mapsto C^*(X),$$
 satisfying $H^*(X)=H^*(C^*(X)).$

From functoriality: If $B \subseteq A \subseteq X$ then $\operatorname{res}_B = \operatorname{res}_B^A \circ \operatorname{res}_A$.

The singular cohomology of the pair (X, A) where $A \subseteq X$, is defined by

$$H^*(X,A) = H^*(C^*(X,A))$$

where

$$C^*(X,A) = \ker \left(\operatorname{res}_A \colon C^*(X) \to C^*(A) \right).$$

Singular cohomology. Excisive couples, Mayer-Vietoris and product

Mayer-Vietoris

(A, B) is excisive \iff it satisfies Mayer-Vietoris:

 $\cdots \rightarrow H^*(A \cup B) \rightarrow H^*(A) \oplus H^*(B) \rightarrow H^*(A \cap B) \rightarrow H^{*+1}(A \cup B) \rightarrow \cdots$

is exact.

Cup product

There is a **cup-product** $\smile : H^*(X, A) \times H^*(X, A) \to H^*(X, A)$.

(A, B) excisive couple $\implies \smile : H^*(X, A) \times H^*(X, B) \to H^*(X, A \cup B)$

Relative symplectic cohomology

Relative symplectic cohomology

• (M, ω) - closed symplectic manifold. **Relative symplectic cohomology (Varolgunes)** is a functor

 $\{\text{compact subsets of } M\} \rightarrow \{\Lambda\text{-algebras}\}, \qquad K \mapsto SH^*(K),$

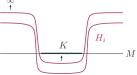
where Λ is the universal Novikov field, and the product was defined by **Tonkonog-Varolgunes**.

Have: $SH^*(M) = QH^*(M)$ as an algebra, and $SH^*(\emptyset) = 0$.

Complex for relative symplectic cohomology

Varolgunes defined a cochain model of relative symplectic cohomology. Let $K \subseteq M$ compact.

• (*H_i*) Hamiltonians adapted to *K*:



Any Hamiltonians (H_i) adapted to K define a complex SC(K) satisfying

$$SH^*(K) = H^*(SC(K)),$$
 where $SC(K) = \lim_{K \to \infty} CF^*(H_i).$

The complex SC(K) is only well-defined up to homotopy equivalence.

Similarly, there are chain-level restriction maps, defined up to homotopy, and they are functorial only up to homotopy.

Relative symplectic cohomology of pairs

Thus it makes sense to define SH(M, K) using homotopy kernels.

A model for the homotopy kernel of $f: C \to C': \operatorname{cocone}(f) = C \oplus C'[-1]$. Therefore we define

$$SC(M, K) = \text{cocone}(\text{res}: SC(M) \rightarrow SC(K))$$

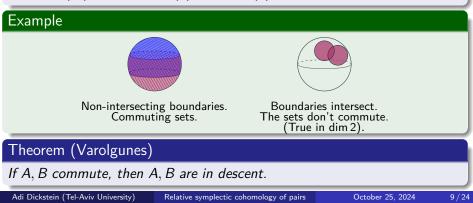
and show that this object is well-defined up to homotopy. Thus SH(M, K) = H(SC(M, K)) is well-defined and is a functor. Relative symplectic cohomology.

Mayer-Vietoris, descent and commuting sets

Similarly to singular cohomology, we have a Mayer-Vietoris sequence for A, B if and only if A, B satisfy a property called **descent**. **Question:** When are subsets in descent?

Definition

Say that compact $A, B \subseteq M$ commute if there exist Poisson commuting $f, g \in C^{\infty}(M)$ with $A = f^{-1}(0), B = g^{-1}(0)$.



Descent and products

For every $K \subseteq M$ we define a product

*:
$$SH(M, K) \times SH(M, K) \rightarrow SH(M, K)$$
.

Similarly to singular cohomology, for every K, K' we have

 $SH(M, K) \times SH(M, K') \rightarrow SH(M, K \cap K') \times SH(M, K \cap K') \xrightarrow{*} SH(M, K \cap K').$

Theorem (D.-Ganor-Polterovich-Zapolsky)

If K, K' are in descent then we have a lift:

*: $SH(M, K) \times SH(M, K') \rightarrow SH(M, K \cup K')$.

Moreover, the product commutes with restriction maps.

Ideal-valued quasi-measure

Ideal valued quasi-measures

 (M, ω) - closed symplectic manifold. A - graded unital algebra. An A-ideal valued quasi-measure, (A-IVQM) is an assignment $U \subseteq M$ open $\mapsto \tau(U) \subseteq A$ graded ideal, satisfying:

- Normalization.
- Monotonicity.
- Additivity.

- Symp₀-invariance.
- Vanishing for disp. sets.
- (quasi-multiplicativity): $\tau(U) * \tau(U') \subseteq \tau(U \cap U')$, if U and U' commute^a.
- (intersection): If U, U' cover M, then $\tau(U \cap U') = \tau(U) \cap \tau(U')$.

 ${}^{a}U$ and U' commute if $M\setminus U$ and $M\setminus U'$ commute

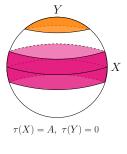
Remark: IVQMs extend to compact sets. $\tau(K) = \bigcap_{\substack{U \supset K \\ \text{open}}} \tau(U)$.

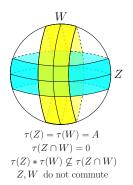
Ideal-valued quasi-measures.

Ideal valued quasi-measures - example

Consider
$$M = S^2$$
 of area = 1. A - graded unital algebra
$$\tau(U) = \begin{cases} 0, & U \text{ is contained in a smooth} \\ & \text{open disk of area} \leq 1/2, \\ A, & \text{else,} \end{cases}$$

where $U \subseteq S^2$ is a connected open set.





Ideal-valued guasi-measures.

Construction of IVQM

Using relative symplectic cohomology we construct an IVQM.

Definition

$$\forall U \subseteq M \text{ open, put } \tau(U) = \ker(\operatorname{res} : SH(M) \rightarrow SH(M \setminus U)).$$

 τ is called the **quantum cohomology IVQM** of (M, ω) .

Theorem (D.-Ganor-Polterovich-Zapolsky)

au is a QH*(M)-IVQM on (M, ω).

Remark

For quasi-multiplicativity we use product on relative cohomology of pairs.

Example

The quantum cohomology IVQM of S^2 was described on the last slide for $A = QH^*(S^2)$.

Computational examples

Example

• On $(\mathbb{T}^{2n} = \mathbb{T}^n(p) \times \mathbb{T}^n(q), dp \wedge dq)$, for $1 \le k \le n$, consider the coisotropic torus

$$T = \{p \in \mathbb{T}^n : p_1 = \cdots = p_k = 0\} \times \mathbb{T}^n(q).$$

A calculation shows

$$au(T) = H^*(\mathbb{T}^{2n}) \cdot \langle [dp_1 \wedge \ldots \wedge dp_k] \rangle$$

Applications to symplectic rigidity

Applications to symplectic rigidity.

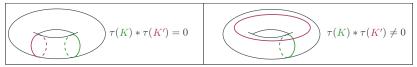
Non-displaceability of two sets

• (M, ω) - a closed symp. manifold. • τ - The *QH*-IVQM on *M*.

Proposition

Let $K, K' \subseteq M$ be compact sets. If $\tau(K) * \tau(K') \neq 0$ then K is $Symp_0$ -non-displaceable from K'.

Examples:



Proof: Assume $\exists \phi \in \text{Symp}_0$ displaces K from K': $\phi(K) \cap K' = \emptyset$. Then $\phi(K)$ and K' commute.

 $\begin{aligned} & (\text{Quasi-multiplicativity}) \implies \tau(\phi(\mathcal{K})) * \tau(\mathcal{K}') \subseteq \tau(\phi(\mathcal{K}) \cap \mathcal{K}') = \tau(\emptyset) = 0. \\ & (\text{Invariance}) \implies \tau(\phi(\mathcal{K})) = \tau(\mathcal{K}), \text{ hence} \\ & 0 \neq \tau(\mathcal{K}) * \tau(\mathcal{K}') \subseteq 0. \quad \text{Contradiction!} \qquad \Box \end{aligned}$

Applications to symplectic rigidity.

Nontrivial symplectic example

Consider
$$(M = \mathbb{T}^{2n} \times S^2, \omega_0 \oplus \sigma)$$
 where
 $(\mathbb{T}^{2n} = \mathbb{T}^n(p) \times \mathbb{T}^n(q), \omega_0 = dp \wedge dq)$, and σ =standard area form.
Let $L, L' \subseteq S^2$ be equators, and consider
 $K = \mathbb{T}^n \times \{\text{pt}\} \times L$ and $K' = \{\text{pt}\} \times \mathbb{T}^n \times L'.$

Theorem (D.-Ganor-Polterovich-Zapolsky)

K is $Symp_0$ -non-displaceable from K'.

Proof:
$$\tau(K) * \tau(K') \supseteq H^*(\mathbb{T}^{2n}) \cdot [\omega_0^n] \otimes QH^*(S^2) \neq 0.$$

Note: They are smoothly displaceable.

Remark: Ham-non displaceability was proven in 2018, by Kawasaki arXiv:1811.00527.

Adi Dickstein (Tel-Aviv University)

Relative symplectic cohomology of pairs

Involutive Maps

• (M, ω) - a closed symplectic manifold.

Definition

A smooth map $f: M \to Y$ is called *involutive* if $\{f^*F, f^*G\} = 0$ for all $F, G \in C^{\infty}(Y)$.

Example

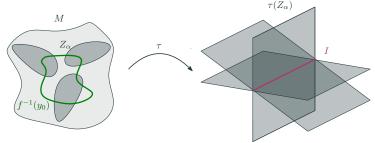
- A map $f = (f_1, f_2, \dots, f_N) : M \to \mathbb{R}^N$ is involutive if and only if $\{f_i, f_j\} = 0$ for all i, j.
- On $(\mathbb{T}^{2n} = \mathbb{T}^n(p) \times \mathbb{T}^n(q), dp \wedge dq)$, the map $f: \mathbb{T}^{2n} \to \mathbb{T}^n$, $(p, q) \mapsto q$ is involutive.

 (M, ω) - closed symplectic manifold.

A - graded unital algebra. τ an A-IVQM on (M, ω) .

f. $M \rightarrow Y$ - involutive map. dim Y = d.

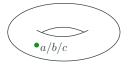
Symplectic central fiber theorem: *I* - graded ideal with $I^{d+1} \neq 0$. Then $\exists y_0 \in Y$ s.t. $f^{-1}(y_0)$ intersects all the compact sets $Z \subseteq M$ with $I \subseteq \tau(Z)$.



Applications to symplectic rigidity.

IVQMs - symplectic centerpoint – concrete example

Torus \mathbb{T}^6 , with coordinates $(p_i, q_i) \in \mathbb{T}^2$, $\omega = \sum dp \wedge dq$. For $a, b, c \in \mathbb{T}^2$ consider coisotropic subtori:



$$T_1(a) = \{ (\mathbf{p}, \mathbf{q}) | (q_1, q_2) = a \},$$

$$T_2(b) = \{ (\mathbf{p}, \mathbf{q}) | (p_1, p_3) = b \},$$

$$T_3(c) = \{ (\mathbf{p}, \mathbf{q}) | (p_2, q_3) = c \}.$$

Set $T(a, b, c) = T_1(a) \cup T_2(b) \cup T_3(c)$

Theorem (D–Ganor–Polterovich–Zapolsky)

Every involutive map $\mathbb{T}^6\times S^2\to Y^2$ has a fiber intersecting all sets of the form:

 $T(a, b, c) \times equator.$

An equator in S^2 is any loop dividing S^2 into two disks of equal area.

Virtual commutation

Question: Given two subsets $A, B \subseteq M$, can we make them commute?

Definition: Subsets $A, B \subseteq M$ virtually commute if $\exists \varphi \in \text{Symp}_0(M)$ such that A and $\varphi(B)$ commute.

Example

Every two closed disks $D, D' \subset S^2$ virtually commute.

Applications to symplectic rigidity.

Virtually commuting - Examples

Proposition: Let (M, ω) be a symplectic manifold, let K be a compact subset of M and let L be an isotropic, closed and connected submanifold of M. If L, K commute then either $L \cap K = \emptyset$ or $L \subseteq K$.

Example

Consider
$$(\mathbb{T}^{2n} = \mathbb{T}^n(p) \times \mathbb{T}^n(q), dp \wedge dq).$$

Denote

$$A = \{\mathsf{pt}\} imes \mathbb{T}^n(q) imes L, \ B = \mathbb{T}^n(p) imes \{\mathsf{pt}\} imes L \subset \mathbb{T}^{2n} imes S^2,$$

where L is an equator.

Then A, B do not virtually commute.

Indeed, topological reasons implies that $\nexists \varphi \in \text{Symp}_0 \text{ s.t. } \varphi(B) \subseteq A$. Additionally, using **IVQM** we proved that $\nexists \varphi \in \text{Symp}_0 \text{ s.t. } A \cap \varphi(B) = \emptyset$.

B is a closed connected Lagrangian submanifold, thus the Proposition implies that A,B do not virtually commute.

