Superheavy Skeleta for non-Normal Crossings Divisors

Elliot Gathercole

Lancaster University

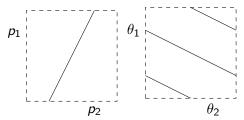
Symplectic Zoominar, October 2024

Elliot Gathercole

Motivating Question

Lagrangian Klein bottle in $(\mathbb{CP}^1 \times \mathbb{CP}^1, \omega)$

$$K = \{p_1 = 2p_2, 2\theta_1 + \theta_2 = 0\} \subset \mathbb{CP}^1 \times \mathbb{CP}^1$$
(1)



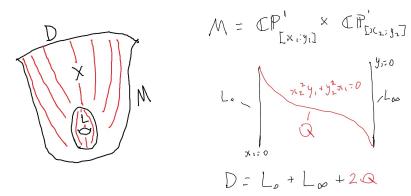
What can be said about K with respect to rigidity?

Theorem

K is superheavy with respect to $1 \in QH^*(\mathbb{CP}^1 \times \mathbb{CP}^1)$.

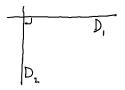
Elliot Gathercole

Skeleta of Divisor Complements



$$PD(D) = 2c_1(TM) = [\omega]$$
(3)

Orthogonal SC Divisors



Theorem (Borman-Sheridan-Varolgunes 2022)

lf

$$D = \sum_{i} \lambda_{i} D_{i} \tag{4}$$

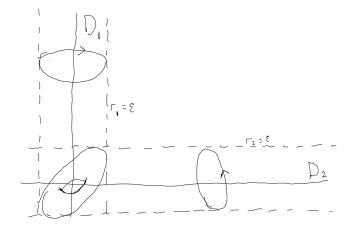
(日) (四) (日) (日) (日)

and $\lambda_i \leq 2$ for all *i* then X has a skeleton which is non-displaceable (in fact, *SH*-full).

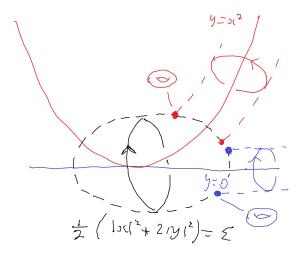
э

Orthogonal SC Divisors Continued

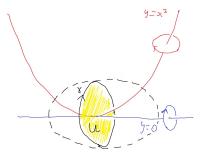
Standard U(1) action on $\nu_{D_i \subset M}$ is generated by a Hamiltonian r_i .



Back to K



Periodic Orbit Properties



$$\mathcal{A}(\gamma, u) = u \cdot D = u \cdot \{y = 0\} + 2u \cdot \{y = x^2\} = 2 + 2 \cdot 2 = 6$$
 (5)

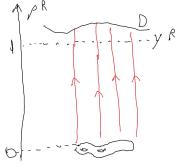
$$CZ(\gamma, u) = CZ(t \mapsto diag(e^{2\pi i t}, e^{4\pi i t})) = 6$$
(6)

This equality is analogous to the condition $\lambda_i = 2$.

1

Special Hamiltonian

Can construct a family of Hamiltonians on M (not smooth at L) such that orbits come from local circle actions.



$$d\rho^R(Z) = \rho^R \tag{7}$$

Definition

A subset $K \subset M$ is superheavy if $\zeta(H) \leq \sup_{K} H$ for all Hamiltonians H.

Using properties of ρ , we have that $\zeta(h \circ \rho^R) \leq h(0)$ if $h'' \geq 0$. We can bound other Hamiltonians by those of this form to prove superheaviness.

Theorem (Mak, C.Y., Sun, Y. and Varolgunes, U. 2024)

If a compact set $K \subset M$ is superheavy, then it is *SH*-full.

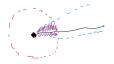
Generalisations

We have proven quite a strong statement about K, but can we apply this to other situations?

In general, we need:

• A stratification of D into embedded symplectic manifolds

- A radial Hamiltonian cutting out each stratum, which generates a circle action
- The radial Hamiltonians to commute when one stratum is contained in the closure of another.



In general, as in SC case, result will depend on σ_{crit} .

$$\sigma_{crit} = \max\left(1 - \frac{\mathcal{A}(\gamma, u)}{CZ(\gamma, u)}\right)$$
(8)

(where this maximum is over 1-periodic orbits γ of the Hamiltonian circle actions, with respect to small caps u).

Theorem

The subset $K_{crit} = \{\rho^0 \le \sigma_{crit}\}$ is superheavy. In particular if $\sigma_{crit} = 0$, the skeleton L is superheavy.

One situation generalising our initial example: $\dim_{\mathbb{C}} M = 2$, and D is locally modelled by the vanishing of quasihomogeneous polynomials

$$f(x^a, y^b) = t^N f(x, y)$$
(9)

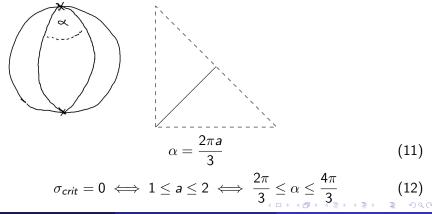
for $t \in \mathbb{C}^*$, where $a, b, N \in \mathbb{N}$.

Radial Hamiltonians for singular points are constructed using the obvious U(1)-action, and radial Hamiltonians for the smooth parts of D using a Moser argument. This sinularity contributes $\frac{N-2(a+b)}{N}$ to σ_{crit} . This also works for surfaces D with ADE type singularities.

$\mathbb{RP}^2 \cup \mathbb{RP}^2 \subset \mathbb{CP}^2$

Take
$$M = \mathbb{CP}^2$$
, $D = aQ_+ + (3 - a)Q_-$, and
 $Q_{\pm} = \{z_1 z_2 \pm z_0^2 = 0\}.$ (10)

L is (approximately, up to Hamiltonian isotopy) a union of two $\mathbb{RP}^2 s$, which correspond to arcs in the symplectic reduction.

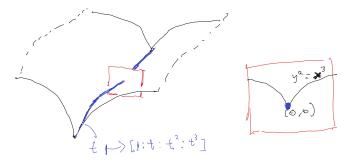


Elliot Gathercole

13/15

Chiang Lagrangian

Take $M = \mathbb{CP}^3$, D the cubic discriminant locus. Then $X = SL(2, \mathbb{C})/D_6$, $L = SU(2)/D_6$ (Chiang Lagrangian).



$$\sigma_{crit} = \frac{12 - 10}{12} = \frac{1}{6}$$

Get a neighbourhood of L of volume $\frac{1}{6^3}$.

(13)

Thank you!

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト