Open enumerative mirror symmetry for lines in the mirror quintic

Sebastian Haney November 15, 2024

Columbia University

The quintic and its mirror

- Let X ⊂ CP⁴ denote a smooth quintic hypersurface equipped with the pullback of the Fubini–Study form.
- The Dwork family of quintic threefolds is the family over \mathbb{C}^\ast with fibers

$$X_z = \left\{ \sum_{j=1}^5 x_j^5 - \frac{z^{1/5}}{5} \prod_{j=1}^5 x_j = 0 \right\} \subset \mathbb{CP}^4 \text{ ; } z \in \mathbb{C}^* \text{ and } |z| < 1$$

- There is an action of $(\mathbb{Z}/5)^3$ on X_z inherited from the action of $(\mathbb{Z}/5)^5$ on \mathbb{CP}^4 .
- The mirror quintic family X[∨] is the family of Calabi–Yau 3-folds with fibers given by crepant resolutions

$$X_z^{\vee} = X_z/(\mathbb{Z}/5)^3$$

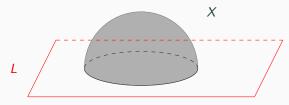
Theorem (Candelas–de la Ossa–Green–Parkes 1991, Givental 1995, Lian–Liu–Yau 1997)

Genus zero Gromov–Witten invariants of X ↓ Period integrals on X[∨]

Theorem (Gantra–Perutz–Sheridan 2015) Assuming the existence of a **negative cyclic open-closed map** on the Fukaya category, the predictions of Candelas–de la Ossa–Green–Parkes are implied by homological mirror symmetry for the quintic.

Open Gromov–Witten invariants

 Let L ⊂ X be a graded Lagrangian submanifold in a Calabi–Yau threefold. The (genus zero) open Gromov–Witten invariants count pseudoholomorphic disks in X with boundary on L.



• To obtain well-defined counts, *L* should be nullhomologous and should come equipped with a choice of bounding cochain and local system (cf. Fukaya, Solomon–Tukachinsky, H.).

Under mirror symmetry, we should have (cf. Witten '95, Ooguri–Vafa '00, Aganagic–Vafa '00):

```
Open Gromov–Witten invariants of X

\uparrow

Relative period integrals on X^{\vee}
```

Example (Walcher 2007, Pandharipande–Solomon–Walcher 2008) Let X be a quintic threefold defined over \mathbb{R} , and $X_{\mathbb{R}} \cong \mathbb{RP}^3 \subset X$ be the set of real points. The open Gromov–Witten invariants of $X_{\mathbb{R}}$ were predicted using mirror symmetry (W '07) and calculated using equivariant localization (PSW '08).

Theorem (H.)

Assume the existence of a negative cyclic open-closed map on the Fukaya category. There is an immersed Lagrangian submanifold \tilde{L}_{null}^5 in the quintic threefold and a rank one \mathbb{C} -local system ∇^{vG} whose open Gromov–Witten potential is a formal power series of the form

$$\Psi(\widetilde{L}^{5}_{\mathrm{null}},\nabla^{\mathrm{vG}}) = \sum_{d=1}^{\infty} \widetilde{n}_{d} Q^{d}$$

where $\tilde{n}_d \in \mathbb{Q}(\sqrt{-3})$ are explicitly determined by relative period integrals computed by Walcher (2012) via homological mirror symmetry.

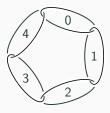
• The first few values of \widetilde{n}_d are

$$\begin{split} \widetilde{n}_1 &= 560000\sqrt{-3} \\ \widetilde{n}_2 &= \frac{44592400000}{3}\sqrt{-3} \\ \widetilde{n}_3 &= \frac{20063791178000000}{27}\sqrt{-3} \\ \widetilde{n}_4 &= \frac{1320551611743490000000}{27}\sqrt{-3} \end{split}$$

• The holonomy representation of ∇^{vG} is valued in $\mathbb{Q}(\sqrt{-3})$.

The minimally-twisted five-component chain link

• Let *L'* denote the complement of the minimally-twisted five-component chain link in *S*³:



- There is a covering space $\widetilde{L'} \to L'$ with deck group $(\mathbb{Z}/5)^3$.
- The subgroup $\pi_1(\widetilde{L}') \subset \pi_1(L')$ is generated by the meridians of the 0th link complement and by fifth powers of the meridians of the other components.
- \widetilde{L}' is a cusped hyperbolic 3-manifold with *invariant trace field* $\mathbb{Q}(\sqrt{-3})$.

The immersion $\widetilde{L}^{5}_{\mathrm{null}}$ is obtained from two copies of a Lagrangian immersion $\widetilde{L}^{5}_{\mathrm{im}} \to X$, whose domain is $\widetilde{L}^{5}_{\mathrm{im}} \cong \widetilde{L}' \cup_{\partial \widetilde{L}'} \widetilde{L}'$.

Conjecture (Jockers–Morrison–Walcher) There is a hyperbolic Lagrangian submanifold of the quintic threefold with invariant trace field $\mathbb{Q}(\sqrt{-3})$.

Theorem (H.) If L is a closed Lagrangian in a closed symplectic manifold (M, ω) with a bounding cochain b defined over a field \mathbb{K} of characteristic 0, then (L, b)has \mathbb{K} -valued open Gromov–Witten invariants.

van Geemen lines

• The van Geemen lines in the Dwork quintic X_z are cut out by

$$x_{1} + \omega x_{2} + \omega^{2} x_{3} = 0$$

$$x_{4} = \frac{a}{3} (x_{1} + x_{2} + x_{3})$$

$$x_{5} = \frac{b}{3} (x_{1} + x_{2} + x_{3})$$

where $a, b, \omega \in \mathbb{C}$ are constants satisfying $1 + \omega + \omega^2 = 0$, $a^5 + b^5 = 27$, and $ab = 6z^{1/5}$.

- (van Geemen) The orbit of C^ω_z under the action of (Z/5)³ × S₅ contains 5000 = 125 × 40 lines, implying that X_z (and X[∨]_z) contains infinitely many lines.
- (Candelas-de la Ossa-van Geemen-van Straten) The families of non-isolated lines in X_z are curves of genus 626. The families of lines in the mirror quintic X_z[∨] are curves of genus 6.

Relative period integrals

- The van Geemen lines descend to lines C^ω_z in the mirror quintic X[∨]_z which do not depend on a, b ∈ C.
- The power series $\Psi(\widetilde{L}_{null}^5, \nabla^{vG})$ is given, up to a change of variables $z \leftrightarrow Q$ and an additive constant in \mathbb{C} , by

$$2\int_{\Gamma_z}\Omega_z$$

where

• Γ_z is a smooth singular 3-chain with boundary

$$\partial \Gamma_z = C_z^{\omega} - C_z^{\omega^2}$$

and;

• Ω_z is a volume form on X_z^{\vee} .

Theorem (H.)

The Lagrangian immersion $\widetilde{L}_{im}^5 \to X$ supports a 1-dimensional family of objects in the Fukaya category which can be identified with a (punctured) genus 6 curve. Each of these objects is mirror to the pushforward of a rank 2 vector bundle on \mathbb{P}^1 .

- Gives an A-model analogue of the results of Candelas-de la Ossa-van Geemen-van Straten.
- The supports of the mirror sheaves are determined by computing the Floer cohomology of $\widetilde{L}_{\rm im}^5$ with a Lagrangian torus.
- The computation of open Gromov–Witten invariants follows from this theorem, together with a comparison of weak proper Calabi–Yau structures on the Fukaya category and derived category (GPS 2015).

Thanks!