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Introduction

We consider Legendrian knots in R® with the standard contact structure
¢ = ker(dz — ydx), i.e. embeddings A : S' — R? tangent to &.

Figure: Front projection and Lagrangian projection of the right trefoil
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Introduction

Legendrian isotopy between Legendrian knots Ao, A1 is a path of Legendrian
knots from Ag to A;.

The main question is how to distinguish Legendrian knots up to Legendrian
isotopy.
Legendrian knot invariants:

m classical invariants (Thurston-Bennequin number, rotation number)

m SFT invariants (Chekanov-Eliashberg dga, rational SFT, ...)
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Introduction—disk SF'T invariants

Chekanov—Eliashberg dga

A tensor algebra generated by
gi,i €{1,...,n} for y1,...,v» Reeb
chords on A, grading by the Maslov
index;

differential: dcg ACE s ACE
counts index zero pseudoholomor-
phic disks with one positive punc-
ture in the symplectization (R*, R x
A).
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Rational SFT

ANe vector space generated by
cyclic words in g;, pi,i € {1,...,n};

differential: dng = dj+dsr + A& —
AN where d; counts index zero
pseudoholomorphic disks with ar-
bitrarily many positive punctures
in the symplectization, dsr inserts
trivial strips.
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Figure: SFT breaking for disks
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Main goal

We take the next step and define an invariant that also includes
J-holomorphic annuli. We also describe a way to compute the invariant
combinatorially from the Lagrangian projection.

Theorem

For every Legendrian knot A, there exists an algebra A = A(N) with a
second order dga structure (d,{-,-}) invariant under Legendrian isotopy up
to II order stable tame equivalence. In particular, (A(N), d) is a chain
complex such that for Legendrian isotopic knots No, N1, we have

H*(A(/\o), do) = H>;<(.A(/\1)7 dl)

Moreover, the count of annuli (which is a part of the differential) can be
replaced with zeros of (obstruction) sections with certain properties, which
gives us a combinatorial way to compute the invariant from the Lagrangian
projection of the knot.
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Chain complex

Chain complex (A(A), d):
A(N) = A® h(A® AY)

A = ensor algebra (over Q) generated by t~, gi,i € {1,...,n} for
A=AF ¢ lgeb Q ted by t* 1 f

vi,i € {1,...,n} Reeb chords on A, with relation t"t~ =t~ t" = 1; grading
by the Maslov index, |h| = —1;

The differential d = dp + da + ds : A(A) — A(A) consists of three parts: dp
counts disks, da counts annuli, and ds a string topological part.

Remarks:

e Taking i = 0 gives us the standard Chekanov—Eliashberg dga;

e We can see elements in A(A) as strings (elements in .4) and pairs of
strings (elements in A(A ® A¥)) on R x A with negative punctures at the
corresponding chords (up to homotopy relative ends).
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Algebraic structure—second order dga

A=AN) = A® W(A® AY), A=TQqg,t5)/(tTt™ =t t" =1)

Definition (second order differential graded algebra)

A second-order differential graded algebra structure (A, d,{:,-}) on A
consists of an antibracket {,-} on A and a degree —1 linear map d : 4 — A
such that (here do == mz0do¢y)

d(w) = d(v)w + (=1)"Ivd(w) + Imeye{m zv, mzw},
d(h(v @ w)) = (=) ha(dov @ w) — (v ® d¥w),
(do®1+1®@do){v,w} = {dov,w}+ (=1)"{v,dow} € A® A,
d*=0.

A degree 0 bilinear map {-,-} : Ax A— A® Ais called an antibracket if

{v,mwz} = {v,m}- (w2 @ 1) + (1) (1 @ wa) - {v, wa},
{viva,w} = (v ®1) - {vo, w} + (=D)L w} - (1@ w).
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Differential—disk part

dp(w) € A obtained by gluing positive punctures of an index zero
pseudoholomorphic disk (with one or two positive punctures) to the string
w in all possible ways.

More precisely,
do(qi) = Z g, t™ ... gt

U1=Pp;i iy -+ iy, J-hol.
disk, ind(uy)=0

gl — a0 . e bo . by
{qgi,qi}p = E £t°¢, ... g, t* @ t°qj, ... q;t".
U2=p;i iy ---9i\ Pj9jy -~ qj;
J-hol. disk, ind(u2)=0

t* — intersections of the boundary with R x {T}, T € A a fixed base point.

INRININ
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Differential—annulus part

da(w) € A obtained by gluing the positive puncture of an index zero
pseudoholomorphic annulus to w in all possible ways.

More precisely,

— ao 3, by b
da(gi) = E t°qy ... g t™ ® (qgj, t ...qjt Neye,
UR=P;Ciy ---qi) DGy ---qj
J-hol. annulus, ind(up)=0

{ai,qi}a=0.

Milica Pukié Uppsala University
A DEFORMATION OF THE CHEKANOV—ELIASHBERG DGA USING ANNULI



Differential—string topological part

w:S\{t1,..., tx} = R x A a (generic) string on R x A with generic
asymptotic behavior, together with a spanning disk w (0w = w)
holomorphic at the boundary;

B set of boundary self-intersections of w, C set of interior intersections of w
with the Lagrangian cylinder R x A;

de(W) = Y ge V(W, B) + h Y cee £(w @ 1) € h(A @ A7),
where V(w, B) € A® A is the string pair obtained by resolving the string
w at the intersection B — string coproduct.
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ds(w) doesn’t depend on the choice of the representative string and the
choice of the spanning disk.

Y1 Q4!
2 Ya Y2 Ya
A
17 473" 274+t 37 2% 1F 1~ 4737 274+ 37 2% 17
R
)
Figure: ds(p1p3q3qa) = £h(p1p3g3qs @ 1)
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More precisely,

ds(qi) = (Ik(A,cap;) £ 8(i™, ")) h(qi @ 1) = 6(i™, i )A(1 @ qi),
ds(tt) = (tb(A) + 1) A(tT ® 1),
ds(t7) = —tb(A)(t” ®1)—h(1®t ),
where cap; is the path from i~ = v;(0) to it = 7;(1) on A shifted off of A in
a certain way, 6(i~,i*) € {0,1} depending on the ordering of i, it with
resect to the base point T € A.
Additionally,
ds(ai, @) =0, i) q; @ qi + (1) 1915(7, i) g ® q—
=00, i) © 1~ (-1 715G, i) 1@ ggi # )
ds(qi,qi)) = = 0(i*, i )qigi @ 1 = (—=1)!9'5(i™,i")1 @ qigs + 5(i)ai @ ai,
ds(gi, t") ={qi, t }a =t @q —aqt' @1,
ds(t",q) ={t",qla=-tTq@l+t @4q...
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d?>=0

d=do+datds:A— A

Proposition
We have d? = 0.

Proof idea: Consider the boundary of the 1-dimensional moduli space of
pseudoholomorphic disks and annuli on R x A.

Figure: SFT breaking for annuli
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Counting curves

Counting J-holomorphic curves is generally difficult.

We choose a special J given by

10 =0, +yd,, JO, = -0 — yo,,
19, = —0,, 1o, = 0.,

(and take generic A).

It is well known that index zero J-holomorphic disks on R x A are in
bijection with immersed holomorphic polygons in C (Lagrangian
projection) with boundary on 7, A and convex corners at the
self-intersections of 7y, (/).
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Counting annuli

Lagrangian projections of index zero J-holomorphic annuli on R X A belong
to 1-parameter families of holomorphic annuli on ., (A) with corners.

Figure: Rigid holomorphic annulus in the Lagrangian projection and its lift after
cutting.
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Figure: Projection of an index zero annulus on R X A.
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Counting annuli

Denote by MJ the k-dimensional moduli space of holomorphic annuli on
Ty \.

Proposition

There exists a smooth section 2 : M} — R such that
u € M7} can be lifted to a J-holomorphic annulus on R x A iff Q(u) =0,
Q 0, for N generic,

lim o Qun) = +o0, u~non—splzt boundary
~'-'n*>'-'7r n Q(~ ) u split boundary,
ueoOM Uo), Uo its annular part
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Example:

Figure: Non-split boundary with € — +00, non-split boundary with Q — —oo,

split boundary of the moduli space MT.
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Counting annuli—combinatorial obstruction section

Conclusion: If we know Q(MGg), we can count index zero annuli on R x A.

Difficult to compute! However, the following result allows us to replace the
count of annuli with a count of zeros of a section Q2" with similar
properties (but with arbitrary Q""(Mg)).

Proposition

Let QY : MZ UMT — R be a smooth section such that
Q" Mo, Q(MF) C (R\{0}),

lim o e Q" (un) = {Q(E), U non-split boundary

vir (~ u split boundary
eOM] Q" (uo), ;

o€ Mg annular part

then the second order dga (A(A), dovir) defined using the count of zeros of
Q" instead of Q| mg is isomorphic to (A(N), d).

The idea behind it is that there is a new type of Reidemeister move where
the values of Q| sz can change sign.
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