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Introduction

We consider Legendrian knots in R3 with the standard contact structure
ξ = ker(dz − ydx), i.e. embeddings Λ : S1 → R3 tangent to ξ.

Figure: Front projection and Lagrangian projection of the right trefoil
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Introduction

Legendrian isotopy between Legendrian knots Λ0,Λ1 is a path of Legendrian
knots from Λ0 to Λ1.

The main question is how to distinguish Legendrian knots up to Legendrian
isotopy.

Legendrian knot invariants:
classical invariants (Thurston-Bennequin number, rotation number)
SFT invariants (Chekanov–Eliashberg dga, rational SFT, . . . )
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Introduction—disk SFT invariants

Chekanov–Eliashberg dga Rational SFT
ACE tensor algebra generated by
qi , i ∈ {1, . . . , n} for γ1, . . . , γn Reeb
chords on Λ, grading by the Maslov
index;

differential : dCE : ACE → ACE

counts index zero pseudoholomor-
phic disks with one positive punc-
ture in the symplectization (R4,R×
Λ).

ANg vector space generated by
cyclic words in qi , pi , i ∈ {1, . . . , n};

differential : dNg = dJ+dstr : ANg →
ANg , where dJ counts index zero
pseudoholomorphic disks with ar-
bitrarily many positive punctures
in the symplectization, dstr inserts
trivial strips.
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Figure: SFT breaking for disks

Milica Ðukić Uppsala University
A deformation of the Chekanov–Eliashberg dga using annuli



Main goal

We take the next step and define an invariant that also includes
J-holomorphic annuli. We also describe a way to compute the invariant
combinatorially from the Lagrangian projection.

Theorem
For every Legendrian knot Λ, there exists an algebra A = A(Λ) with a
second order dga structure (d , {·, ·}) invariant under Legendrian isotopy up
to II order stable tame equivalence. In particular, (A(Λ), d) is a chain
complex such that for Legendrian isotopic knots Λ0,Λ1, we have

H∗(A(Λ0), d0) ∼= H∗(A(Λ1), d1).

Moreover, the count of annuli (which is a part of the differential) can be
replaced with zeros of (obstruction) sections with certain properties, which
gives us a combinatorial way to compute the invariant from the Lagrangian
projection of the knot.
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Chain complex

Chain complex (A(Λ), d):

A(Λ) = Ã ⊕ ℏ(Ã ⊗ Ãcyc)

Ã = ACE tensor algebra (over Q) generated by t±, qi , i ∈ {1, . . . , n} for
γi , i ∈ {1, . . . , n} Reeb chords on Λ, with relation t+t− = t−t+ = 1; grading
by the Maslov index, |ℏ| = −1;

The differential d = dD + dA + ds : A(Λ) → A(Λ) consists of three parts: dD
counts disks, dA counts annuli, and ds a string topological part.

Remarks:
• Taking ℏ = 0 gives us the standard Chekanov–Eliashberg dga;
• We can see elements in A(Λ) as strings (elements in Ã) and pairs of
strings (elements in ℏ(Ã ⊗ Ãcyc)) on R× Λ with negative punctures at the
corresponding chords (up to homotopy relative ends).
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Algebraic structure—second order dga

A = A(Λ) = Ã ⊕ ℏ(Ã ⊗ Ãcyc), Ã = T Q⟨qi , t±⟩/(t+t− = t−t+ = 1)

Definition (second order differential graded algebra)

A second-order differential graded algebra structure (A, d , {·, ·}) on A
consists of an antibracket {·, ·} on Ã and a degree −1 linear map d : A → A
such that (here d0 := πÃ ◦ d ◦ ιÃ)

d(vw) = d(v)w + (−1)|v|vd(w) + ℏπcyc{πÃv , πÃw},

d(ℏ(v ⊗ w)) = (−1)|w|+1ℏ(d0v ⊗ w)− ℏ(v ⊗ d cyc
0 w),

(d0 ⊗ 1 + 1 ⊗ d0){v ,w} = {d0v ,w}+ (−1)|v|{v , d0w} ∈ Ã ⊗ Ã,

d2 = 0.

A degree 0 bilinear map {·, ·} : Ã × Ã → Ã ⊗ Ã is called an antibracket if

{v ,w1w2} = {v ,w1} · (w2 ⊗ 1) + (−1)|v||w1|(1 ⊗ w1) · {v ,w2},

{v1v2,w} = (v1 ⊗ 1) · {v2,w}+ (−1)|v2||w|{v1,w} · (1 ⊗ v2).
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Differential—disk part

dD(w) ∈ A obtained by gluing positive punctures of an index zero
pseudoholomorphic disk (with one or two positive punctures) to the string
w in all possible ways.

More precisely,

dD(qi ) =
∑

u1=pi qi1 ...qik J-hol.
disk, ind(u1)=0

±ta0qi1t
a1 . . . qik t

ak ,

{qi , qj}D =
∑

u2=pi qi1 ...qik pjqj1 ...qjl
J-hol. disk, ind(u2)=0

±ta0qi1 . . . qik t
ak ⊗ tb0qj1 . . . qjl t

bl .

t± — intersections of the boundary with R×{T}, T ∈ Λ a fixed base point.

H H

w w
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Differential—annulus part

dA(w) ∈ A obtained by gluing the positive puncture of an index zero
pseudoholomorphic annulus to w in all possible ways.

More precisely,

dA(qi ) =
∑

uℏ=pi qi1 ...qik ⊗qj1 ...qjl
J-hol. annulus, ind(uℏ)=0

ta0qi1 . . . qik t
ak ⊗ (qj1t

b1 . . . qjl t
bl )cyc,

{qi , qj}A = 0.

H

w
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Differential—string topological part

w : S1\{t1, . . . , tk} → R× Λ a (generic) string on R× Λ with generic
asymptotic behavior, together with a spanning disk w̃ (∂w̃ = w)
holomorphic at the boundary;

B set of boundary self-intersections of w̃ , C set of interior intersections of w̃
with the Lagrangian cylinder R× Λ;

ds(w) = ℏ
∑

B∈B ∇(w ,B) + ℏ
∑

C∈C ±(w ⊗ 1) ∈ ℏ(Ã ⊗ Ãcyc),

where ∇(w ,B) ∈ Ã⊗ Ãcyc is the string pair obtained by resolving the string
w at the intersection B — string coproduct.
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ds(w) doesn’t depend on the choice of the representative string and the
choice of the spanning disk.

γ1

γ2 γ4γ3 γ4γ3γ2

γ1

1+1− 2+3−3+ 4+2−4− 1+1− 2+3−3+ 4+2−4−
Λ

R

Figure: ds(p1p3q3q4) = ±ℏ(p1p3q3q4 ⊗ 1)
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More precisely,

ds(qi ) =
(
lk(Λ, capi )± δ(i−, i+)

)
ℏ(qi ⊗ 1)− δ(i−, i+)ℏ(1 ⊗ qi ),

ds(t
+) = (tb(Λ) + 1) ℏ(t+ ⊗ 1),

ds(t
−) = − tb(Λ)ℏ(t− ⊗ 1)− ℏ(1 ⊗ t−),

where capi is the path from i− = γi (0) to i+ = γi (1) on Λ shifted off of Λ in
a certain way, δ(i−, i+) ∈ {0, 1} depending on the ordering of i−, i+ with
resect to the base point T ∈ Λ.
Additionally,

ds(qi , qj) =δ(j+, i+)qj ⊗ qi + (−1)|qi ||qj |δ(j−, i−)qi ⊗ qj−

−δ(j+, i−)qiqj ⊗ 1 − (−1)|qi ||qj |δ(j−, i+)1 ⊗ qjqi , i ̸= j

ds(qi , qi ) =− δ(i+, i−)qiqi ⊗ 1 − (−1)|qi |δ(i−, i+)1 ⊗ qiqi + δ(i)qi ⊗ qi ,

ds(qi , t
+) ={qi , t+}d = t+ ⊗ qi − qi t

+ ⊗ 1,

ds(t
+, qi ) ={t+, qi}d = −t+qi ⊗ 1 + t+ ⊗ qi . . .
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d2 = 0

d = dD + dA + ds : A → A

Proposition

We have d2 = 0.

Proof idea: Consider the boundary of the 1-dimensional moduli space of
pseudoholomorphic disks and annuli on R× Λ.

Figure: SFT breaking for annuli
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Counting curves

Counting J-holomorphic curves is generally difficult.

We choose a special J given by

J∂x = ∂y + y∂r , J∂y = −∂x − y∂z ,

J∂z = −∂r , J∂r = ∂z ,
(1)

(and take generic Λ).

It is well known that index zero J-holomorphic disks on R× Λ are in
bijection with immersed holomorphic polygons in C (Lagrangian
projection) with boundary on πxyΛ and convex corners at the
self-intersections of πxy (Λ).
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Counting annuli

Lagrangian projections of index zero J-holomorphic annuli on R× Λ belong
to 1-parameter families of holomorphic annuli on πxy (Λ) with corners.

Ω(u0)

u0

lift to R4

Figure: Rigid holomorphic annulus in the Lagrangian projection and its lift after
cutting.
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Figure: Projection of an index zero annulus on R× Λ.
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Counting annuli

Denote by Mπ
k the k-dimensional moduli space of holomorphic annuli on

πxyΛ.

Proposition

There exists a smooth section Ω : Mπ
k → R such that

1 u ∈ Mπ
k can be lifted to a J-holomorphic annulus on R×Λ iff Ω(u) = 0,

2 Ω ⋔ 0, for Λ generic,

3 lim un→ũ
ũ∈∂Mπ

Ω(un) =

{
±∞, ũ non-split boundary
Ω(ũo),

ũ split boundary,
ũo its annular part
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Counting annuli

Example:

Figure: Non-split boundary with Ω → +∞, non-split boundary with Ω → −∞,
split boundary of the moduli space Mπ

1 .
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Counting annuli—combinatorial obstruction section

Conclusion: If we know Ω(Mπ
0 ), we can count index zero annuli on R× Λ.

Difficult to compute! However, the following result allows us to replace the
count of annuli with a count of zeros of a section Ωvir with similar
properties (but with arbitrary Ωvir(Mπ

0 )).

Proposition

Let Ωvir : Mπ
0 ∪Mπ

1 → R be a smooth section such that
1 Ωvir ⋔ 0, Ωvir (Mπ

0 ) ⊂ (R\{0}),

2 lim un→ũ
ũ∈∂Mπ

1

Ωvir (un) =

{
Ω(ũ), ũ non-split boundary
Ωvir (ũo),

ũ split boundary,
ũo∈Mπ

0 annular part

then the second order dga (A(Λ), dΩvir ) defined using the count of zeros of
Ωvir instead of Ω|Mπ

1 is isomorphic to (A(Λ), d).

The idea behind it is that there is a new type of Reidemeister move where
the values of Ω|Mπ

0 can change sign.
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