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1. Questions

Take a real knot in R3: knot ν such that N1(ν) is embedded.

Example: circle S1(r) in R2 real ⇔ r ≥ 1

Question 1 (outer radius)
What is the smallest r such that ν can be isotoped through real
knots to some ν ′ with ν ′ ⊂ B3(r) ?

Example: If ν is the unknot: r = 2
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Take a real knot in R3: knot ν such that N1(ν) is embedded.

Example: circle S1(r) in R2 real ⇔ r ≥ 1

Question 1 (outer radius)
What is the smallest r such that ν can be isotoped through real
knots to some ν ′ with ν ′ ⊂ B3(r) ?

Example: If ν is the unknot: r = 2

Question 2 (cage size) Assume that ν is real and an unknot.

What is the smallest c such that ν is isotopic to S1(1) through
real knots that all lie in B3(c) ?

Nothing is known about these questions.

(see, however, the Fáry–Milnor theorem and Pardon’s work on
distortion)
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L ⊂ R2n: Lagrangian torus, monotone

normalization: 2-monotone

isotopy: Hamiltonian isotopy



Lagrangian versions:

L ⊂ R2n: Lagrangian torus, monotone

normalization: 2-monotone

isotopy: Hamiltonian isotopy

Question 1’ (outer radius)
What is the smallest ρ = πr2 such that L can be Hamiltonianly
isotoped into B2n(ρ) ?

Question 2’ (cage size) Assume that L is Hamiltonian isotopic to
TCliff in R2n.

What is the smallest c such that L is isotopic to TCliff through a
Hamiltonian isotopy supported in B2n(c) ?



In contrast to real knots in R3, something can be said on these
questions:

For n=1 : “Of course” (Schoenfliess + Moser):

Question 1’: ρ = 2

Question 2’: c(L) = inf{a | L ⊂ D2(a)}
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from now on: n=2 (for higher dimensions: take products)



An earlier result:
Cieliebak–Mohnke 2018: always ρ(L) ≥ 2

This is sharp for the Clifford and the Chekanov torus:

32



2. Examples of tori

Goal: find many L in B4(3)

Vianna, Galkin–Mikhalkin: For every Markov triple (a, b, c) there
exists a monotone Lagrangian torus La,b,c in CP2(3), and different

triples yield tori that are not Hamiltonian isotopic.

(1, 1, 1)

(2, 1, 1)

(5, 2, 1)

(13, 5, 1)

(34, 13, 1) (194, 13, 5)

(29, 5, 2)

(433, 29, 5) (169, 29, 2)

The Markov tree, encoding the solutions of a2 + b2 + c2 = 3abc
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knots, see L. Polterovich and F. Schlenk, Lagrangian knots and

unknots – an essay, Celebratio volume for Yasha Eliashberg.
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Furthermore:

Wellschinger 2007: Let S be an embedded symplectic sphere

in CP2 of degree 1. Then there exists a Hamiltonian isotopy ϕ

of CP2 such that ϕ(S) ∩ L = ∅.

hence we obtain L ⊂ B4(3) = CP2 \ϕ(S)

hence La,b,c ⊂ B4(3) all not Hamiltonian isotopic



For a survey on this and other non-metrical aspects of Lagrangian
knots, see L. Polterovich and F. Schlenk, Lagrangian knots and

unknots – an essay, Celebratio volume for Yasha Eliashberg.

Furthermore:

Wellschinger 2007: Let S be an embedded symplectic sphere

in CP2 of degree 1. Then there exists a Hamiltonian isotopy ϕ

of CP2 such that ϕ(S) ∩ L = ∅.

hence we obtain L ⊂ B4(3) = CP2 \ϕ(S)

hence La,b,c ⊂ B4(3) all not Hamiltonian isotopic

Question: What exactly does one get from this?
I.e.: are there different spheres one can remove? In different
homology classes of CP2 \L, or in the same homology class but not
isotopic?



Theorem 1 (i) Exactly 3 homology classes of CP2 \L can be

represented by embedded symplectic spheres of degree 1.

(ii) Any two such symplectic spheres in the same homology class

are Hamiltonian isotopic in CP2 \L.



Theorem 1 (i) Exactly 3 homology classes of CP2 \L can be

represented by embedded symplectic spheres of degree 1.

(ii) Any two such symplectic spheres in the same homology class

are Hamiltonian isotopic in CP2 \L.

Corollary For every Markov triple (a, b, c) we obtain 1 or 2 or 3
Hamiltonian isotopy classes of monotone tori La,b,c(S

j) in B4(3):

1 if (a, b, c) = (1, 1, 1),

2 if (a, b, c) = (2, 1, 1),

3 if a > b > c .
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Discussion

for (a, b, c) = (1, 1, 1):

Sx

Sy S∞

for (a, b, c) = (2, 1, 1): The Chekanov torus TChek includes in CP2

as L2,1,1 (Oakley–Usher, Wu)

by definition: TChek = L2,1,1(S∞)

The other two tori L2,1,1(Sx) and L2,1,1(Sy ) are Hamiltonian
isotopic (by [z0 : z1 : z2] 7→ [z1 : z0 : z2]).

This torus L2,1,1(Sx) in B4(3) is Ham. isotopic neither to TCliff nor
to TChek:



• It includes in CP2 as L2,1,1, so is not TCliff .

• In C2, L2,1,1(Sx) is Hamiltonian isotopic to TCliff , since both
are the singular stratum of a cube D2(1)× D2(1):

So already in C2, L2,1,1(Sx) is not Ham. isotopic to TChek.

What is its cage number? (Shall see: ∈ [3, 3.6])



Ideas of proofs

Theorem 1 is proven by neck-stretching.

Here, for the special case of Vianna-tori:
Why are there (at most) 3 homology classes represented?

For (a, b, c) = (2, 1, 1):

A

B σ

p

(1, 4)

(4,−1)3
2

3
2

6



Take circles in class (1, 4) ∈ H1(T
2) over σ \ {p}

and one point over p. Get symplectic disc D over σ.

C := [D], in the same way A,B ∈ H2(CP
2, L)

4A+ B + C is an absolute class: = n[CP1]

areas: 4 + 1 + 1 = n3, so n = 2:

4A+ B + C = 2[CP1]



Take circles in class (1, 4) ∈ H1(T
2) over σ \ {p}

and one point over p. Get symplectic disc D over σ.

C := [D], in the same way A,B ∈ H2(CP
2, L)

4A+ B + C is an absolute class: = n[CP1]

areas: 4 + 1 + 1 = n3, so n = 2:

4A+ B + C = 2[CP1]

Now let S ⊂ CP2 \L be an embedded sphere of degree 1.

The divisor classes A∗,B∗,C ∗ generate H2(CP
2 \L;Q), and are

dual to A,B ,C .

[S ] = αA∗ + βB∗ + γC ∗, α, β, γ ∈ Q.

Choose an ω-tame J such that S is J-holomorphic. The disc D

representing C has Maslov index 2, so C can be represented by a
J-disc, so

C · [S ] = γ ≥ 0. Similarly α, β ≥ 0. So α, β, γ ∈ Z≥0



Applying [ω] to
[S ] = αA∗ + βB∗ + γC ∗

get
3 = α6 + β 3

2 + γ 3
2 .

So α = 0.

2 = β + γ has three solutions (2, 0), (1, 1), (0, 2)



Applying [ω] to
[S ] = αA∗ + βB∗ + γC ∗

get
3 = α6 + β 3

2 + γ 3
2 .

So α = 0.

2 = β + γ has three solutions (2, 0), (1, 1), (0, 2)

In general, get the equation

abc = βb2 + γc2, β, γ ∈ Z≥0.

Some congruence arithmetics and Markov numberology yields 3
solutions.
E.g. for (5, 2, 1): 10 = 4β + γ, (2, 2), (1, 6), (0, 10)



For a > b > c the three tori La,b,c(S
j) in B4(3) are not Ham.

isotopic:

Lemma Let φ ∈ Symp(CP2) such that φ(La,b,c) = La,b,c .

Then φ∗ : H1(La,b,c) → H1(La,b,c) is the identity map.

Proof: E.g. by versal deformations and displacement energy profile,
cf. Brendel



For a > b > c the three tori La,b,c(S
j) in B4(3) are not Ham.

isotopic:

Lemma Let φ ∈ Symp(CP2) such that φ(La,b,c) = La,b,c .

Then φ∗ : H1(La,b,c) → H1(La,b,c) is the identity map.

Proof: E.g. by versal deformations and displacement energy profile,
cf. Brendel

Assume now that ∃ a compactly supported symplectomorphism

φ : B4(3) → B4(3) with φ(La,b,c(S1)) = La,b,c(S2).

Then get

ϕ : CP2 → CP2 with ϕ(La,b,c) = La,b,c and ϕ(S1) = S2.

Take any disc D with boundary on La,b,c . By the lemma:

ϕ∗[D] = [D] + E with E an absolute class ∈ H2(CP
2).

area(E ) = 0, so E = 0, so

ϕ∗[D] = [D] in H2(CP
2, L).

[D] · [S1] = ϕ∗[D] · ϕ∗[S1] = [D] · [S2] : contradiction



3. Variation of the theme: in S2 × S2 and D2 × D2

For S2 × S2, have triangular and quadrilateral bases of ATFs:



Over each base polygon P lives a monotone torus LP .
Now there are 4 Hamiltonian divisor classes in (S2 × S2) \ LP :

Let σ(x , y) = (y , x) be the swap of S2 × S2.
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Theorem Assume that P 6= �. Then

(i) If P is a quadrilateral, then σ(LP) is not Ham. isotopic to LP .
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monotone tori in D(2)× D(2).
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monotone tori in D(2)× D(2).



Over each base polygon P lives a monotone torus LP .
Now there are 4 Hamiltonian divisor classes in (S2 × S2) \ LP :

Let σ(x , y) = (y , x) be the swap of S2 × S2.

Theorem Assume that P 6= �. Then

(i) If P is a quadrilateral, then σ(LP) is not Ham. isotopic to LP .

(ii) From a generic triangle, we obtain 4 Ham. isotopy classes of

monotone tori in D(2)× D(2).

(iii) From a quadrilateral, we obtain 8 Ham. isotopy classes of

monotone tori in D(2)× D(2).

For the proof need:

Lemma Suppose P 6= �. If A ∈ GL(2;Z) takes P to P, then

A = id.



ad (i): Examples of non-monotone tori that are symplectomorphic
but not Hamiltonian isotopic were known before (Cho, Brendel):



4. Outer radius

Recall that for a monotone torus L ⊂ B4(3):

ρB(L) = inf
{

c | ϕ(L) ⊂ B4(c) for someϕ ∈ Ham(B4(3))
}

Also define

ρCP2(L) = inf
{

c | ϕ(L) ⊂ B4(c) ⊂ CP2 for someϕ ∈ Ham(CP2)
}

Then
2 ≤ ρCP2(L) ≤ ρB(L) < 3.

≤ and < cannot be improved, in general. ≤ can be strict.
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Recall that for a monotone torus L ⊂ B4(3):

ρB(L) = inf
{

c | ϕ(L) ⊂ B4(c) for someϕ ∈ Ham(B4(3))
}

Also define

ρCP2(L) = inf
{

c | ϕ(L) ⊂ B4(c) ⊂ CP2 for someϕ ∈ Ham(CP2)
}

Then
2 ≤ ρCP2(L) ≤ ρB(L) < 3.

≤ and < cannot be improved, in general. ≤ can be strict.

In (a, b, c), if c = 1, then a = gn+1 and b = gn, where

g1 = 2, g2 = 5, g3 = 13, g4 = 34, . . .

are the odd-index Fibonacci numbers.



Set Ln := Lgn+1,gn,1(S
c
n ).

Theorem 1 ρB(Ln) = 3−
1

gngn+1

Proposition ρCP2(Ln) ≥ 3−
1

gn(gn+1 − 2gn)

Corollary The invariant ρCP2 distinguishes the tori
Lgn+1,gn,1 ⊂ CP2.

Theorem 2 Assume that a ≥ 5. Then

ρCP2(L(a,b,c)) > 3

(

1−
1

b2

)



“Recall”: The 3 spheres in CP2 \Lgn+1,gn,1 are in class

βB∗ + γC ∗, β = 0, 1, 2.

SC
n := the one with β = 0.

3gn+1

gn

3gn
gn+1

1

1

µ(En)
SC
n

In fact, Sc
n can be chosen disjoint from En

(Casals–Vianna, or use that the space of En
s
→֒ B4(3) is

connected)



Proof of ρB(Ln) ≤ 3−
1

gngn+1
:

SC
n

Ln

ϕ(En)

ψ(En) B ′

CP2

φH

Figure: Construction of a small ball containing Ln



5. Cage size

It is possible that c(La,b,c(S
j)) = 3 always (Dimitroglou-Rizell)



5. Cage size

It is possible that c(La,b,c(S
j)) = 3 always (Dimitroglou-Rizell)

For now:

Proposition There exists an increasing sequence αn ∈ [3, 4) s.t.

c(Lgn+1,gn,1(S
C
n )) ≤ αn.

For instance, α0 = 3, α1 ≈ 3.552, and αn converges to ≈ 3.877.

u
u1 a

A(a, u1)

A(a, u1)

π

u1+ l1

l1

l1

l2
l2

l2








