New invariants for Lagrangian tori

joint with

Richard Hind and Grisha Mikhalkin

November 22, 2024

(ロ)、(型)、(E)、(E)、 E) の(()

1. Questions

Take a **real** knot in \mathbb{R}^3 : knot ν such that $\mathcal{N}_1(\nu)$ is embedded. Example: circle $S^1(r)$ in \mathbb{R}^2 real $\Leftrightarrow r \ge 1$

Question 1 (outer radius)

What is the smallest r such that ν can be isotoped through real knots to some ν' with $\nu' \subset B^3(r)$?

Example: If ν is the unknot: r = 2

1. Questions

Take a **real** knot in \mathbb{R}^3 : knot ν such that $\mathcal{N}_1(\nu)$ is embedded. Example: circle $S^1(r)$ in \mathbb{R}^2 real $\Leftrightarrow r \ge 1$

Question 1 (outer radius)

What is the smallest r such that ν can be isotoped through real knots to some ν' with $\nu' \subset B^3(r)$?

Example: If ν is the unknot: r = 2

Question 2 (cage size) Assume that ν is real and an unknot. What is the smallest c such that ν is isotopic to $S^1(1)$ through real knots that all lie in $B^3(c)$?

Nothing is known about these questions.

(see, however, the Fáry–Milnor theorem and Pardon's work on distortion)

Lagrangian versions:

 $L \subset \mathbb{R}^{2n}$: Lagrangian torus, monotone normalization: 2-monotone isotopy: Hamiltonian isotopy

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Lagrangian versions:

 $L \subset \mathbb{R}^{2n}$: Lagrangian torus, monotone normalization: 2-monotone isotopy: Hamiltonian isotopy

Question 1' (outer radius) What is the smallest $\rho = \pi r^2$ such that *L* can be Hamiltonianly isotoped into $B^{2n}(\rho)$?

Question 2' (cage size) Assume that *L* is Hamiltonian isotopic to T_{Cliff} in \mathbb{R}^{2n} .

What is the smallest c such that L is isotopic to T_{Cliff} through a Hamiltonian isotopy supported in $B^{2n}(c)$?

In contrast to real knots in $\mathbb{R}^3,$ something can be said on these questions:

For
$$n=1$$
: "Of course" (Schoenfliess + Moser):

Question 1': $\rho = 2$

Question 2': $c(L) = \inf\{a \mid L \subset D^2(a)\}$

from now on: n=2 (for higher dimensions: take products)

An earlier result:

Cieliebak–Mohnke 2018: always $\rho(L) \ge 2$

This is sharp for the Clifford and the Chekanov torus:

2. Examples of tori

Goal: find many L in $B^4(3)$

Vianna, Galkin–Mikhalkin: For every Markov triple (a, b, c) there exists a monotone Lagrangian torus $L_{a,b,c}$ in $\mathbb{CP}^2(3)$, and different triples yield tori that are not Hamiltonian isotopic.

The Markov tree, encoding the solutions of $a^2 + b^2 + c^2 = 3abc$

・ロト・「聞・ 《聞・ 《聞・ 《曰・

For a survey on this and other non-metrical aspects of Lagrangian knots, see L. Polterovich and F. Schlenk, *Lagrangian knots and unknots – an essay*, Celebratio volume for Yasha Eliashberg.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

For a survey on this and other non-metrical aspects of Lagrangian knots, see L. Polterovich and F. Schlenk, *Lagrangian knots and unknots – an essay*, Celebratio volume for Yasha Eliashberg.

Furthermore:

Wellschinger 2007: Let S be an embedded symplectic sphere in \mathbb{CP}^2 of degree 1. Then there exists a Hamiltonian isotopy φ of \mathbb{CP}^2 such that $\varphi(S) \cap L = \emptyset$.

hence we obtain $L \subset B^4(3) = \mathbb{C}\mathsf{P}^2 \setminus \varphi(S)$

hence $L_{a,b,c} \subset B^4(3)$ all not Hamiltonian isotopic

For a survey on this and other non-metrical aspects of Lagrangian knots, see L. Polterovich and F. Schlenk, *Lagrangian knots and unknots – an essay*, Celebratio volume for Yasha Eliashberg.

Furthermore:

Wellschinger 2007: Let S be an embedded symplectic sphere in \mathbb{CP}^2 of degree 1. Then there exists a Hamiltonian isotopy φ of \mathbb{CP}^2 such that $\varphi(S) \cap L = \emptyset$.

hence we obtain $L \subset B^4(3) = \mathbb{C}\mathsf{P}^2 \setminus \varphi(S)$

hence $L_{a,b,c} \subset B^4(3)$ all not Hamiltonian isotopic

Question: What exactly does one get from this? I.e.: are there different spheres one can remove? In different homology classes of $\mathbb{CP}^2 \setminus L$, or in the same homology class but not isotopic? **Theorem 1** (i) Exactly 3 homology classes of $\mathbb{CP}^2 \setminus L$ can be represented by embedded symplectic spheres of degree 1. (ii) Any two such symplectic spheres in the same homology class are Hamiltonian isotopic in $\mathbb{CP}^2 \setminus L$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem 1 (i) Exactly 3 homology classes of $\mathbb{CP}^2 \setminus L$ can be represented by embedded symplectic spheres of degree 1. (ii) Any two such symplectic spheres in the same homology class are Hamiltonian isotopic in $\mathbb{CP}^2 \setminus L$.

Corollary For every Markov triple (a, b, c) we obtain 1 or 2 or 3 Hamiltonian isotopy classes of monotone tori $L_{a,b,c}(S^j)$ in $B^4(3)$:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1 if
$$(a, b, c) = (1, 1, 1)$$
,
2 if $(a, b, c) = (2, 1, 1)$,
3 if $a > b > c$.

Discussion

for (a, b, c) = (1, 1, 1):

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Discussion

for (a, b, c) = (1, 1, 1):

for (a, b, c) = (2, 1, 1): The Chekanov torus T_{Chek} includes in \mathbb{CP}^2 as $L_{2,1,1}$ (Oakley–Usher, Wu) by definition: $T_{Chek} = L_{2,1,1}(S_{\infty})$

・ロト ・ 四ト ・ 日ト ・ 日下

Discussion

for (a, b, c) = (1, 1, 1):

for (a, b, c) = (2, 1, 1): The Chekanov torus T_{Chek} includes in \mathbb{CP}^2 as $L_{2,1,1}$ (Oakley–Usher, Wu) by definition: $T_{\text{Chek}} = L_{2,1,1}(S_{\infty})$ The other two tori $L_{2,1,1}(S_x)$ and $L_{2,1,1}(S_y)$ are Hamiltonian isotopic (by $[z_0 : z_1 : z_2] \mapsto [z_1 : z_0 : z_2]$). This torus $L_{2,1,1}(S_x)$ in $B^4(3)$ is Ham. isotopic neither to T_{Cliff} nor to T_{Chek} :

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- It includes in \mathbb{CP}^2 as $L_{2,1,1}$, so is not T_{Cliff} .
- In C², L_{2,1,1}(S_x) is Hamiltonian isotopic to T_{Cliff}, since both are the singular stratum of a cube D²(1) × D²(1):

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

So already in \mathbb{C}^2 , $L_{2,1,1}(S_x)$ is not Ham. isotopic to T_{Chek} . What is its cage number? (Shall see: $\in [3, 3.6]$)

Ideas of proofs

Theorem 1 is proven by neck-stretching.

Here, for the special case of Vianna-tori: Why are there (at most) 3 homology classes represented? For (a, b, c) = (2, 1, 1):

(日)

Take circles in class $(1,4) \in H_1(T^2)$ over $\sigma \setminus \{p\}$ and one point over p. Get symplectic disc D over σ . C := [D], in the same way $A, B \in H_2(\mathbb{CP}^2, L)$

4A + B + C is an absolute class: $= n[\mathbb{CP}^1]$

areas: 4 + 1 + 1 = n3, so n = 2:

$$4A + B + C = 2[\mathbb{C}P^1]$$

Take circles in class $(1,4) \in H_1(T^2)$ over $\sigma \setminus \{p\}$ and one point over p. Get symplectic disc D over σ . C := [D], in the same way $A, B \in H_2(\mathbb{CP}^2, L)$

4A + B + C is an absolute class: $= n[\mathbb{CP}^1]$

areas: 4 + 1 + 1 = n3, so n = 2:

$$4A + B + C = 2[\mathbb{C}P^1]$$

Now let $S \subset \mathbb{CP}^2 \setminus L$ be an embedded sphere of degree 1. The divisor classes A^*, B^*, C^* generate $H_2(\mathbb{CP}^2 \setminus L; \mathbb{Q})$, and are dual to A, B, C.

$$[S] = \alpha A^* + \beta B^* + \gamma C^*, \quad \alpha, \beta, \gamma \in \mathbb{Q}.$$

Choose an ω -tame J such that S is J-holomorphic. The disc D representing C has Maslov index 2, so C can be represented by a J-disc, so

$$C \cdot [S] = \gamma \ge 0. \quad \text{Similarly } \alpha, \beta \ge 0. \quad \text{So } \alpha, \beta, \gamma \in \mathbb{Z}_{\ge 0}$$

Applying $[\omega]$ to $[S] = \alpha A^* + \beta B^* + \gamma C^*$

get

$$3 = \alpha 6 + \beta \frac{3}{2} + \gamma \frac{3}{2}.$$

So $\alpha = 0$.

 $2 = \beta + \gamma$ has three solutions (2,0), (1,1), (0,2)

Applying $[\omega]$ to

$$[S] = \alpha A^* + \beta B^* + \gamma C^*$$

get

$$3 = \alpha 6 + \beta \frac{3}{2} + \gamma \frac{3}{2}.$$

So $\alpha = 0$.

 $2 = \beta + \gamma$ has three solutions (2,0), (1,1), (0,2)

In general, get the equation

$$abc = \beta b^2 + \gamma c^2, \qquad eta, \gamma \in \mathbb{Z}_{\geq 0}.$$

Some congruence arithmetics and Markov numberology yields 3 solutions.

E.g. for (5,2,1): $10 = 4\beta + \gamma$, (2,2), (1,6), (0,10)

For a > b > c the three tori $L_{a,b,c}(S^j)$ in $B^4(3)$ are not Ham. isotopic:

Lemma Let $\phi \in \text{Symp}(\mathbb{C}P^2)$ such that $\phi(L_{a,b,c}) = L_{a,b,c}$. Then $\phi_* \colon H_1(L_{a,b,c}) \to H_1(L_{a,b,c})$ is the identity map.

Proof: E.g. by versal deformations and displacement energy profile, cf. Brendel

For a > b > c the three tori $L_{a,b,c}(S^j)$ in $B^4(3)$ are not Ham. isotopic:

Lemma Let $\phi \in \text{Symp}(\mathbb{C}P^2)$ such that $\phi(L_{a,b,c}) = L_{a,b,c}$. Then $\phi_* \colon H_1(L_{a,b,c}) \to H_1(L_{a,b,c})$ is the identity map.

Proof: E.g. by versal deformations and displacement energy profile, cf. Brendel

Assume now that \exists a compactly supported symplectomorphism

$$\phi: B^4(3) \to B^4(3)$$
 with $\phi(L_{a,b,c}(S_1)) = L_{a,b,c}(S_2).$

Then get

$$\varphi\colon \mathbb{C}\mathsf{P}^2\to \mathbb{C}\mathsf{P}^2 \quad \text{with} \quad \varphi(L_{a,b,c})=L_{a,b,c} \text{ and } \varphi(S_1)=S_2.$$

Take any disc D with boundary on $L_{a,b,c}$. By the lemma:

 $\varphi_*[D] = [D] + E \text{ with } E \text{ an absolute class} \in H_2(\mathbb{C}P^2).$ area(E) = 0, so E = 0, so $\varphi_*[D] = [D]$ in $H_2(\mathbb{C}P^2, L).$ $[D] \cdot [S_1] = \varphi_*[D] \cdot \varphi_*[S_1] = [D] \cdot [S_2] : \text{ contradiction}$

3. Variation of the theme: in $S^2 \times S^2$ **and** $D^2 \times D^2$ For $S^2 \times S^2$, have triangular and quadrilateral bases of ATFs:

Over each base polygon P lives a monotone torus L_P . Now there are 4 Hamiltonian divisor classes in $(S^2 \times S^2) \setminus L_P$:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let $\sigma(x, y) = (y, x)$ be the swap of $S^2 \times S^2$.

Over each base polygon P lives a monotone torus L_P . Now there are 4 Hamiltonian divisor classes in $(S^2 \times S^2) \setminus L_P$:

Let $\sigma(x, y) = (y, x)$ be the swap of $S^2 \times S^2$.

Theorem Assume that $P \neq \Box$. Then

(i) If P is a quadrilateral, then $\sigma(L_P)$ is not Ham. isotopic to L_P .

(ii) From a generic triangle, we obtain 4 Ham. isotopy classes of monotone tori in $D(2) \times D(2)$.

(iii) From a quadrilateral, we obtain 8 Ham. isotopy classes of monotone tori in $D(2) \times D(2)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Over each base polygon P lives a monotone torus L_P . Now there are 4 Hamiltonian divisor classes in $(S^2 \times S^2) \setminus L_P$:

Let $\sigma(x, y) = (y, x)$ be the swap of $S^2 \times S^2$.

Theorem Assume that $P \neq \Box$. Then

(i) If P is a quadrilateral, then $\sigma(L_P)$ is not Ham. isotopic to L_P .

(ii) From a generic triangle, we obtain 4 Ham. isotopy classes of monotone tori in $D(2) \times D(2)$.

(iii) From a quadrilateral, we obtain 8 Ham. isotopy classes of monotone tori in $D(2) \times D(2)$.

For the proof need:

Lemma Suppose $P \neq \Box$. If $A \in GL(2; \mathbb{Z})$ takes P to P, then A = id.

ad (i): Examples of non-monotone tori that are symplectomorphic but not Hamiltonian isotopic were known before (Cho, Brendel):

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4. Outer radius

Recall that for a monotone torus $L \subset B^4(3)$:

 $\rho_{\mathcal{B}}(L) = \inf \left\{ c \mid \varphi(L) \subset B^{4}(c) \text{ for some } \varphi \in \operatorname{Ham}(B^{4}(3)) \right\}$

Also define

$$\rho_{\mathbb{C}\mathsf{P}^2}(L) \ = \ \inf \left\{ c \mid \varphi(L) \subset B^4(c) \subset \mathbb{C}\mathsf{P}^2 \ \text{for some} \ \varphi \in \operatorname{Ham}(\mathbb{C}\mathsf{P}^2) \right\}$$

Then

$$2 \leq \rho_{\mathbb{C}\mathsf{P}^2}(L) \leq \rho_B(L) < 3.$$

 \leq and < cannot be improved, in general. \leq can be strict.

4. Outer radius

Recall that for a monotone torus $L \subset B^4(3)$:

 $\rho_B(L) = \inf \left\{ c \mid \varphi(L) \subset B^4(c) \text{ for some } \varphi \in \operatorname{Ham}(B^4(3)) \right\}$

Also define

$$\rho_{\mathbb{C}\mathsf{P}^2}(L) \ = \ \inf\bigl\{c \mid \varphi(L) \subset B^4(c) \subset \mathbb{C}\mathsf{P}^2 \ \text{for some} \ \varphi \in \operatorname{Ham}(\mathbb{C}\mathsf{P}^2)\bigr\}$$

Then

$$2 \leq \rho_{\mathbb{C}\mathsf{P}^2}(L) \leq \rho_B(L) < 3.$$

 \leq and < cannot be improved, in general. \leq can be strict. In (a, b, c), if c = 1, then $a = g_{n+1}$ and $b = g_n$, where

$$g_1 = 2, g_2 = 5, g_3 = 13, g_4 = 34, \ldots$$

are the odd-index Fibonacci numbers.

Set
$$L_n := L_{g_{n+1},g_n,1}(S_n^c)$$
.
Theorem 1 $\rho_B(L_n) = 3 - \frac{1}{g_ng_{n+1}}$
Proposition $\rho_{\mathbb{CP}^2}(L_n) \ge 3 - \frac{1}{g_n(g_{n+1} - 2g_n)}$

Corollary The invariant $\rho_{\mathbb{CP}^2}$ distinguishes the tori $L_{g_{n+1},g_n,1} \subset \mathbb{CP}^2$.

Theorem 2 Assume that $a \ge 5$. Then

$$ho_{\mathbb{CP}^2}(L_{(a,b,c)}) > 3\left(1-rac{1}{b^2}
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

"Recall": The 3 spheres in $\mathbb{C}\mathsf{P}^2 \setminus L_{g_{n+1},g_n,1}$ are in class

$$\beta B^* + \gamma C^*, \qquad \beta = 0, 1, 2.$$

 S_n^C := the one with $\beta = 0$.

In fact, S_n^c can be chosen disjoint from \overline{E}_n (Casals–Vianna, or use that the space of $\overline{E}_n \stackrel{s}{\hookrightarrow} B^4(3)$ is connected)

Figure: Construction of a small ball containing L_n

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

5. Cage size

It is possible that $c(L_{a,b,c}(S^j)) = 3$ always (Dimitroglou-Rizell)

5. Cage size

It is possible that $c(L_{a,b,c}(S^j)) = 3$ always (Dimitroglou-Rizell) For now:

Proposition There exists an increasing sequence $\alpha_n \in [3, 4)$ s.t.

$$c(L_{g_{n+1},g_n,1}(S_n^{\mathcal{C}})) \leq \alpha_n.$$

For instance, $\alpha_0 = 3$, $\alpha_1 \approx 3.552$, and α_n converges to ≈ 3.877 .

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶