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Quantum connection

Let M be a closed symplectic manifold which is monotone,

[ωM ] = c1(M) ∈ H2(M;R).

The quantum connection on H∗(M;C)[q±1] differentiates with
respect to the variable q:

∇qx = ∂qx + q−1([ωM ] ∗q x),

where ∗q is the small quantum product,

x ∗q y = x ∗(0) y + q x ∗(1) y + q2 x ∗(2) y + · · ·
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Local monodromy theorem

Let S̄ be a complex, smooth projective curve and let

S = S̄ − {p1, · · · , pr}

be the complement of a finite number of points. Suppose we have
a proper smooth algebraic family W : Y −→ S with fibers of
complex dimension n.

Theorem (Griffiths, Grothendieck, Katz)

The local monodromy about each missing point pi has
eigenvalues which are roots of unity and Jordan blocks of size
at most n + 1.

The underlying algebraic vector bundle equipped with its
Gauss-Manin connection has regular singularities.
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Singularities of connections

Take a formal meromorphic connection:

∇Q = ∂Q + AQ where AQ ∈ Matr (C((Q))).

∇Q has a regular singular point if, by a formal gauge
transformation, AQ can be transformed into
ÃQ ∈ Q−1Matr (C[[Q]]).

The connection then has a monodromy given by

exp(−2πi Ã−1)

which is well-defined up to conjugation.
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Pole at q =∞

For the quantum connection, in all known cases, the pole at
q =∞ is irregular.

The next simplest kind of singularity is a singularity of
unramified exponential type, meaning it can be formally gauge
transformed into a direct sum:

∇̃Q =
⊕
k

∇̃Q,k , ∇̃Q,k = ∇̃reg
Q,k + λkQ

−2I , λk ∈ C

Here Q = 1/q.
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Main result I

Theorem (P.-Seidel)

Suppose M is a monotone symplectic manifold which carries a
smooth “anti-canonical divisor” D.

The quantum connection has a singularity of unramified
exponential type at q =∞.

The regularized formal monodromies at q =∞ are
quasi-unipotent (have eigenvalues which are roots of unity).

Remark

Using a different approach involving quantum Steenrod operations,
Zihong Chen has proven this statement without the assumption
that D exists.
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Main result II

Theorem (P.-Seidel)

Suppose M is a monotone symplectic manifold which carries a
smooth “anti-canonical divisor” D. Any Jordan block for an
eigenvalue 6= 1 of the regularized monodromy is of size
≤ dimC(M) and any Jordan block for the eigenvalue 1 is of
size ≤ dimC(M) + 1.

Let f =
∏
λ(t − λ)mλ denote the minimal polynomial for

q−1c1(M) ∗q . Then the size of the Jordan blocks for
monodromy in the summand corresponding to λ are bounded
by mk .

Remark

The second bound arises from a strengthening of Chen’s method
and there is no obvious relation with the first bound.
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Algebraic geometry model

Let’s assume W : Y → A1 is a proper algebraic function. There is
a convenient model for the Gauss-Manin connection given as
follows:

Eq = Ω∗Y [q],

dEqθ = dθ − q dW ∧ θ.

Let E ∗q denote the hypercohomology. They carry an endomorphism
induced by:

∇q : θ 7−→ ∂qθ −W θ,

Proposition

Restricting E ∗q to C∗ = {q 6= 0} yields a connection which has a
regular singularity at q = 0, and a singularity of unramified
exponential type at q =∞.
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Holonomic D-modules

Let Wq be the algebra of differential operators in one variable
q, over C. This is generated by q and ∂q, with the relation

[∂q, q] = 1. (1)

Left Wq-modules are called D-modules.

A D-module Nq is called holonomic if it is finitely generated
and, for every x ∈ Nq, there is a nonzero w ∈Wq such that
wx = 0.

Let Nq be a holonomic D-module. Then there is a nonzero
f ∈ C[q], such that Nq,1/f is isomorphic to a D-module
coming from a connection.
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Fourier-Laplace transform

Take another formal variable t and identify Wt
∼= Wq by setting

t = −∂q, ∂t = q. (2)

Given a Wt-module Nt , the Fourier(-Laplace) transform Nq is
the same vector space space considered as a module over Wq

via (2).

Proposition

Let Nt be a holonomic Wt-module, with only regular singularities
(including at t =∞). Then, the Fourier-Laplace tranform Nq is
nonsingular on C∗. If we look at the associated connection ∇q,
then it has a regular singular point at q = 0, and a singularity of
unramified exponential type at q =∞.
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Symplectic cohomology

Suppose M carries a smooth (anti-canonical) divisor D.

Then using a standard model for a tubular neighborhood of D,
the complement X := M \ D is a convex symplectic manifold.

The analogue of the Gauss-Manin D-module will be a
q-deformations of (S1-equivariant) symplectic cohomology of
X . The most basic of these is

SC ∗q (X ) := (SC ∗(X )[q], dq).

There are variations on this e.g.

SC ∗q±(X ) := (SC ∗(X )[q, q−1], dq),
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The telescope complex

Begin with the usual telescope model for symplectic
cohomology SH∗(X ):

SC ∗(X ) =
(
CF (0)⊕ CF (1)⊕ · · ·

)
⊕ η
(
CF (0)⊕ CF (1)⊕ · · ·

)
(3)

where CF (w) are Floer complexes of slope approximately w
and η is a variable of degree −1.

We deform this by counting curves with m additional marked
points that pass through the divisor D. For example, For
every w ≥ 0 and m > 0, we have maps:

CF ∗+1−2m(w + m) CF ∗(w)
dm

m points︷ ︸︸ ︷
oo (4)
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The telescope complex II

The final product looks like this:
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Deformed SH∗ versus QH∗

Theorem (Theorem A)

There is a canonical isomorphism

PSSq
log : H∗(M)[q]⊕

⊕
w≥1

H∗(D)zw ∼= H∗(SC ∗q (X )),

The map is q-linear on the H∗(M)[q] component.

Corollary

After inverting q, we obtain an isomorphsim

H∗(M)[q, q−1] ∼= H∗(SC ∗q±(X )).
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Motivation

The above theorem can be viewed as a refinement of work of
Borman-Sheridan-Varolgunes, who constructed (in the setting
of snc anti-canonical divisors D) a spectral sequence

SH∗(X )[q±] => H∗(M)[q±] (5)

Remark

M. El-Alami and N. Sheridan extended the ideas in [BSV] to prove

SH∗q±(X ) ∼= H∗(M)[q±].
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The map, part I

For all m ≥ 0, one can define maps

CF ∗−2m(m) CM∗(M)

m points︷ ︸︸ ︷
sm

oo (6)

The first component of the PSSq
log map is given by:

PSS
q,(0)
log =

∑
m

qmsm : CM∗(M) −→ SC ∗q . (7)

which is then extended q-linearly.
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The map, part II

Fix w ≥ 1. For all m ≥ 0, we can look at moduli spaces with
tangency conditions:

CF ∗−2m(w + m) CM∗(D)zw

m points︷ ︸︸ ︷
w

sw ,m
oo (8)

The w-th component of the PSSq
log map is given by:

PSS
q,(w)
log =

∑
m

qmsw ,m : CM∗(D)zw −→ SC ∗q . (9)
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k[q]-module structure

The induced q module structure on

H∗(M)[q]⊕
⊕
w≥1

H∗(D)zw

is interesting and seems to be determined by relative GW
invariants. For a class α ∈ H∗(D):

q · (αz1) = i∗(α) ∈ H∗(M).

Conjecture

q · (αz2) = (c1(ND) ∪ α)z1 + qGW
(1)
0,2 (i∗(α)).

q · (αz3) = (???).
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SC ∗S1(X ) and SC ∗(X )q,u

There is an S1-equivariant version of symplectic cohomology
which incorporates “loop rotation equivariance”. We have
deformed S1-equivariant theory

SC ∗(X )q,u := (SC ∗S1(X )[q], dq).

as well as variants e.g. SC ∗(X )q,u± .

SH∗(X )q,u± carries a connection ∇q. Let’s define the
symplectic Gauss-Manin D-module to be

(SH∗(X )q,u± ,∇q). (10)
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Equivariant comparison

There is an isomorphism:

PSSq
log ,eq : H∗(M)[u, q]

⊕
w≥1

H∗(D)[u]zw ∼= SH∗(X )q,u. (11)

It is given by counting thimbles with “angle decorations” and
additional marked points.

The map is k[u, q]-linear on the H∗(M)[u, q] component.
After inverting q we obtain:

PSSq
log ,eq : H∗(M)[u, q±] ∼= SH∗(X )u,q± . (12)
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Katz’ approach

Take a field F of characteristic p > 0 and S a curve over F. The
p-curvature ψ(∇) of a flat connection (E ,∇) is the map
DerF(S) −→ EndF(E ,E ) given by

ψ(∇) = (∇δ)p −∇δ[p] . (13)

In the specific case of a rational connection in one variable,

∇∂z = ∂z + A, A ∈ Matr (F(z)) (14)

The p-curvature is the z-linear endomorphism

ψ(∇∂z ) = ∇p
∂z
∈ Matr (F(z)). (15)
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Katz’ theorem

Let R ⊂ Q̄ be the ring obtained by starting with the integers in
some algebraic number field, and inverting finitely many elements.
Let ∇∂z be a connection defined over R, which means that
A ∈ Matr (R[z ]).

Theorem (Katz)

(a) If the reduction mod p has nilpotent p-curvature for all primes
p, then the original connection, considered as defined over the
complex numbers, has regular singularities, and quasi-unipotent
monodromy around each singularity.

(b) More precisely, suppose there is some µ such that the mod p
reduction satisfies ∇pµ

∂z
= 0, for all p. Then the original connection

has monodromy whose Jordan blocks have a most size µ.
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nc-monodromy theorem

Let R be the algebra of functions on a smooth irreducible curve S
in characteristic p > 0. Let A be a dg-algebra over a R and A is
free as an R-module. The monodromy theorem has the following
analogue in non-commutative geometry:

Theorem (Kaledin, Petrov-Vaintrob-Vologodsky)

Let A be a smooth and proper DG algebra over R, and let d be a
positive integer such that

HHR
m(A,A) = 0, for every m with |m| > d .

Then the p-curvature of the Gauss-Manin connection on HPR
∗ (A)

is nilpotent of exponent ≤ d + 1.
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W(X ) as an nc-fibration

We consider the wrapped Fukaya category W(X ) and view it as
linear over k[t], where t = s1,0(1). Let

f (t) =
∏
λ

(t − λ)mλ (16)

be the minimal polynomial for the operation q−1c1(M)∗q.

Theorem

The wrapped Fukaya category
W(X )k[t,1/f (t)] :=W(X )⊗k[t] k[t, 1/f (t)] is smooth over
R = k[t, 1/f (t)].

Remark

One should compare this to the result of Ganatra-Pardon-Shende
that the wrapped Fukaya category is smooth over k (which is an
ingredient in the proof).
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We now consider a different localization of SH∗S1,q:

SH∗S1,q,1/f (X ) = k[∇u∂q , f (∇u∂q)−1]⊗k[∇u∂q ]
SH∗S1,q(X ). (17)

Theorem

There is an identification

HPk[t,1/f (t)](W(X )k[t,1/f (t)]) ∼= SH∗+n
S1,q,1/f

(X ). (18)

which identifies
t −→ u∇q,∇GM −→ q.

Remark

This says that the two D-modules are Fourier-Laplace dual.
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Bound on the Jordan blocks

In Petrov-Vaintrob-Vologodsky, the bound on the exponent is
d + 1 where HHR

∗ (A) = 0 for ∗ > d .

In our geometric context, SH∗(X ) is concentrated in degrees
[0, 2n− 1] (this is easy to see from the periodic flow along the
boundary).

Using this together with the relation between Hochschild
homology and deformed symplectic cohomology, we conclude
that we can take d = n − 1, which implies the bound on the
Jordan blocks.
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p-curvature of quantum connection

Let ψu∂q = ψ(∇u∂q) denote the p-curvature of the quantum
connection. Then one can readily make the following
computations:

(a) qpψu∂q(x) = c1(M) ∗q · · · ∗q c1(M)︸ ︷︷ ︸
p

∗qx + O(u).

(b) qpψu∂q(x) = (c1(M)p − up−1c1(M)) ∪ x + O(q).

(c) qpψu∂q commutes with q∇u∂q (by definition).
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quantum Steenrod operations

Set k = Fp. Introduce another formal variable θ, of degree 1. The
quantum Steenrod operation yields, for any c ∈ H∗(M,Fp)[q], an
endomorphism of degree p|c |,

QΣc : H∗(M)[q, u, θ] −→ H∗(M)[q, u, θ]. (19)

Here are some basic properties:

(a’)
QΣc(x) = c ∗q · · · ∗q c︸ ︷︷ ︸

p

∗qx + O(u, θ).

(b’) QΣc(x) = St(c) ∪ x + O(q), where St is a classical total
Steenrod operation. If c is of degree 2 and is the mod p
reduction of a Z-valued cohomology class,

QΣc(x) = (cp − up−1c) ∪ x + O(q). (20)
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p-curvature=QSt

Theorem (Seidel-Wilkins)

QΣc commutes with q∇u∂q (here, the connection has been tacitly
extended to be θ-linear).

Theorem (P.-Seidel, forthcoming)

For any prime p, we have an equality of operations:

qpψu∂q = QΣc1(M). (21)

Remark

The relation between p-curvature and quantum Steenrod
operations was observed by Jae Hee Lee.

Chen used a weaker version of this statement (which he
attributes to Seidel) to give his alternative proof of the
exponential type property.
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