Introduction	<i>h</i> -cobordisms	1) fold moving	2) conormal moving	Detection	They differ
0	0	00		000000000	00

Using h-cobordisms to detect non-trivial homotopy groups in spaces of Legendrian

Symplectic Geometry Zoominar Thomas Kragh (Uppsala)

December 18, 2024 Work in progress - joint with Y. Eliashberg

Introduction	<i>h</i> -cobordisms	1) fold moving	2) conormal moving	Detection	They differ
•	○	00	000	000000000	00
Talk ove	rview				

- The *h*-cobordism space $\mathcal{H}(M)$ and partition space Par(M).
- Type 1 maps: How to move a fold to define maps

 $\Phi: \mathcal{H}(M) \to \mathcal{L}eg(C)$ (space of Legendrians).

- Type 2 maps: How to move a conormal to define maps $\Psi : \mathcal{H}(M) \to \mathcal{L}eg(C).$
- Generating functions detect non-triviality of some type 1 maps.
- Gen. hyper surfaces detect non-triviality of some type 2 maps. (if time permits).
- Why they are not the same! (if time permits).

Theorem (Eliashberg, K)

In many cases both maps are non-trivial on homotopy groups, and independently so.

Let M be a compact manifold potentially with ∂ and corners.

Define the *partition* space Par(M) to consist of smooth functions $(C^{\infty} \text{ topology}) f : M \times D^1 \rightarrow D^1$ with $D^1 = [-1, 1]$ such that

•
$$f(x,t) = t$$
 close to $\partial(M \times D^1)$.

• f has 0 as a regular value.

We consider $\{f \leq 0\}$ a cobordism from M to $\{f = 0\}$. We consider the projection to D^1 the basepoint in Par(M).

We define the subspace $\mathcal{H}(M) \subset Par(M)$ to be those cobordisms where $\{f \leq 0\}$ is an *h*-cobordism from *M* to $\{f = 0\}$.

Let $\Lambda \subset C$ be a Legendrian in a contact manifold. Let $F \subset \Lambda$ be a co-oriented codimension 1 smooth submanifold (possibly with ∂ ..).

Locally in C around a tubular neighborhood of $F \times D^1 \subset \Lambda$ we may identify $\Lambda \subset C$ with

$$F \times D^1 \subset J^1(F \times D^1)$$
 Front: $F \times$ $z = \pm \frac{2}{3}\sqrt{t^3}$

So the front projection looks like a standard fold over $F \times \{0\}$ double covering $F \times (0, 1]$. We define $Par(F) \xrightarrow{\Phi_F} \mathcal{L}eg(C)$ by

$$\Phi_F(f) = \{z = \pm \frac{2}{3}\sqrt{f(x,t)}^3\}$$

inside the neighborhood and extended constantly by Λ outside of the neighborhood. Embedded because Reeb chord length is $\frac{4}{3}\sqrt{f}^3$.

Introduction h-cobordisms 1) fold moving 2) conormal moving Detection occorrection they differ occorrection o

Consider the Whitney unknot: $\Lambda \subset J^1(\mathbb{R}^n) = \mathbb{R}^{2n+1}$. Its front projection is given by:

projection is given by:

With fold $F = S^{n-1}$. The image of $\Phi_F : \mathcal{H}(S^{n-1}) \to \mathcal{L}eg(\mathbb{R}^n)$ on $f \in \mathcal{H}(S^{n-1})$ thus has front projection

$$f \mapsto \left\{ z = \pm \frac{2}{3} \sqrt{f(\hat{x}, 1 - \|x\|^2)}^3 \right\} \qquad (f(\hat{x}, t) = t \text{ for } t \le -1)$$

For a smooth manifold X the unit co-sphere $S^*X \xrightarrow{p} X$ is a contact manifold. Let $\Lambda \subset C$ be a Legendrian and let $c : S^*(M \times D^1) \to C$ be a codim 0 contact embedding such that:

•
$$\Lambda \cap \operatorname{Im} c = c(S^*_{M \times D^1} M \times \{0\})$$

Here $S_X^* Y$ is the directed conormal of $Y \subset X$ when Y is a cooriented codim 1 submanifold.

Now we define the map $\operatorname{Par}(M) \xrightarrow{\Psi_M} \mathcal{L}eg(C)$ by

$$\Psi_M(f) = c(S^*_{M \times D^1}{f = 0})$$

inside the image of c extended by Λ elsewhere.

Consider $Q \subset Q \times \mathbb{R}$ (Q closed) and its oriented conormal $S^*_{Q \times \mathbb{R}} Q \subset \mathcal{L}eg(S^*(Q \times \mathbb{R}))$. This defines a type 2 map

$$\Psi_Q: \mathcal{H}(Q) \to \mathcal{L}eg(S^*(Q \times \mathbb{R})).$$

Note that the projection of each produced Legendrian $\Psi_Q(f)$ to $Q \times \mathbb{R}$ is in fact embedded as it is $\{f = 0\} \subset Q \times \mathbb{R}$.

Consider that $J^1\mathbb{R}^n \subset S^*(\mathbb{R}^n \times \mathbb{R})$. Any Legendrian $\Lambda \subset J^1\mathbb{R}^n$ is mapped to a Legendrian whose projection to $\mathbb{R}^n \times \mathbb{R}$ is the front projection of Λ .

It follows that $\Lambda_f = \Phi_{S^{n-1}}(f) \subset J^1 \mathbb{R}^n \subset S^*(\mathbb{R}^n \times \mathbb{R})$ from the first example has a small disc at the top

that agrees with the standard Whitney sphere. Hence we can apply a map of type 2 with $M = D^n$ on each Λ_f getting a combined map

$$\Phi_{S^{n-1}} \# \Psi_{D^n} : \mathcal{H}(S^{n-1}) imes \mathcal{H}(D^n) o \mathcal{L}eg(S^*(Q imes \mathbb{R})).$$

Introduction h-cobordisms 1) fold moving 2) conormal moving Detection They differ 000 Type 1: Lift to generating functions

A generating function (family) is a smooth $G: Q \times \mathbb{R}^k \to \mathbb{R}$ s.t.

• The set $\Sigma_G = \{ dG_{|\mathbb{R}^k} = 0 \}$ is transversely cut out.

It generates an immersed Legendrian $\Sigma_G o J^1(Q)$ whose front is

$$(x,v)\mapsto (x,G(x,v)).$$

It is called quadratic at infinity if

• F(x, v) = q(v) at infinity where q is a n.d.q.f. It is called linear at infinity if

• $F(x, v) = -v_1$ at infinity.

Idea: Controlled "parametrized Morse theory" aka Cerf theory. Example: The Whitney sphere $\Lambda \subset J^1 \mathbb{R}^n$ is generated by

$$G(x, v) = \frac{1}{3}v^3 + (||x||^2 - 1)v.$$

which is "linear" at infinity (k = 1).

Assume we have a generating function $G: Q \times \mathbb{R} \to \mathbb{R}$, either quadratic or linear at ∞ , generating a $\Lambda \subset J^1Q$.

Assume also that our fold $F \subset \Lambda$ (over Q) is such that in some normal neighborhood of the projection $F \times D^1 \subset Q$ we have

$$G((x,t),v) = \frac{1}{3}v^3 + tv$$

with $(x, t) \in F \times D^1 \subset Q$ and (x, t, v) close to $F \subset \Lambda \cong \Sigma_G$. This is what generates the standard fold - so we can again simply define

$$G_f((x,t),v) = \frac{1}{3}v^3 + f(x,t)v$$

depending on $f \in \mathcal{H}(F)$ (with some bumping off). This lifts Φ_F to

 $\Phi^g_F: \mathcal{H}(F) \to \mathcal{L}eg^g(J^1Q) \qquad (\text{Legendrians with such g.f.})$

A positive stabilization σ^+ : Par(M) \rightarrow Par($M \times D^1$) is defined using the following process:

A specific formula:

$$\begin{aligned} (x,v,t) \mapsto \varphi(v)(\underbrace{s^{-1}f(x,st)-t}_{\text{small}}) + t + \underbrace{\psi(x,v,t)}_{0 \text{ close to boundary.}} v^2. \\ \varphi = 1 \text{ for } v \approx 0 \qquad \psi = 1 \text{ when } \varphi(v) > 0. \end{aligned}$$

The homotopy type of $\{f \le 0\}$ is unchanged. You may think of this as fattening the cobordism a bit (and making it standard close to the boundary). *E*.g. an Annulus turns into a solid torus.

Introduction	<i>h</i> -cobordisms	1) fold moving	2) conormal moving	Detection	They differ	
0	0	00	000	000●00000		
Stabilizations						

When f is a Morse function we can use Morse theory to give $\{f \leq 0\}/M$ a based CW structure with one non-trivial cell per critical point. Then $\sigma^+(f)$ has the same critical points with the same Morse indices and builds the same homotopy type.

However, there is also σ^- : $Par(M) \rightarrow Par(M \times D^1)$, which is called a negative stabilization. This is defined in the same way but using $-v^2$ instead of v^2 . However, the homotopy type of $\{f \le 0\}$ changes for this.

Considering the Morse theory it is relatively easy to see that the new homotopy type is the reduced suspension of $\{f \le 0\}/M$ (the Morse indices are all increased by 1). Alt: positive stabilization of $\{f \ge 0\}$.

We define $\sigma = \sigma^+ \circ \sigma^- : \mathsf{Par}(M) \to \mathsf{Par}(M imes (D^1)^2)$ and

$$\mathcal{H}_{\infty}(M) \subset \mathsf{Par}_{\infty}(M) = \operatorname{colim}_{k \to \infty} \mathsf{Par}(M \times (D^1)^{2k})$$

using these maps.

Introduction h-cobordisms 1) fold moving 2) conormal moving Detection They differ 000 00000000 000

Stable range and computations

There are in fact many non-trivial homotopy groups in $\mathcal{H}_{\infty}(M)$. To utilize these the two following theorems are most relevant for us.

Theorem (Igusa)

Either stabilization $\mathcal{H}(M) \to \mathcal{H}(M \times D^1)$ is $\frac{\dim M - 7}{2}$ connected.

Let $i : N \subset M$ be a codimension 0 submanifold. Let $\mathcal{H}(N) \to \mathcal{H}(M)$ be the map that extends the function by the projection to D^1 (extension by "0"). This commutes with stabilizations and thus induces maps $i_* : \mathcal{H}_{\infty}(N) \to \mathcal{H}_{\infty}(M)$.

Theorem (Waldhausen)

The map i_* is k - 2 connected if i is k connected.

We can for any smooth map $i: N \to M$ more generally lift to an embedding $\tilde{i}: N \to M \times D^{2k}$ and get an induced map

 $\mathcal{H}(N) \to \mathcal{H}_{\infty}(M).$ (stable range)

Introduction h-cobordisms 1) fold moving 2) conormal moving Detection on They differ on the difference function

For a generating function $G : Q \times \mathbb{R}^k \to \mathbb{R}$ we can construct the difference function:

$$DG: Q \times \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}$$

by DG(x, v, w) = G(x, v) - G(x, w) (bumped off). Its critical points are in 1-1 with Reeb orbits. Classically this defines generating function homology:

 $GH_*(G) = MC_*(DG_{\varepsilon})$ (Morse homology)

where $\varepsilon > 0$ is very small and $g_{\varepsilon} = g_{|\{g \ge \varepsilon\}}$. However, there is much richer structure in realizing that $\{\varepsilon \le DG \le \varepsilon^{-1}\}$ is a cobordism! Its one end $M_k = \{DG = \varepsilon^{-1}\}$ does not depend on G (within the fixed family quadratic/linear), which makes it (almost) possible to define a map

$$\mathcal{L}eg^{g}(J^{1}(Q)) \to \operatorname{Par}(M_{k}).$$

This is not useful as an invariant of Legendrian isotopies as on needs to *stabilize* the generating functions.

Stabilizing generating functions is similar and compatible. So we get a map

$$D_1: \mathcal{L}eg^g_\infty(J^1Q) o \mathsf{Par}_\infty(Q). \qquad ("\,Q \simeq M_\infty").$$

It is known that

$$\mathcal{L}eg^g_\infty(J^1Q) o \mathcal{L}eg(J^1Q)$$

is a Serre fibration. We essentially prove the follow two statements (in some cases):

- The composition $\mathcal{H}(F) \xrightarrow{\Phi_F^g} \mathcal{L}eg_{\infty}^g(J^1Q) \xrightarrow{D_1} \operatorname{Par}_{\infty}(Q)$ is (essentially) the map induced by $i : F \to Q$.
- The composition from the fiber of the above fibration with DC into to Par_∞(Q) is null homotopic.

This implies that Φ_F is highly non-trivial in stable range.

- A generating hyper surface is a function $G: Q \times \mathbb{R} \times \mathbb{R}^{2k} \to \mathbb{R}$ s.t.
 - The surface $S_G = \{G = 0\}$ is transversely cut out.
 - The set $\Sigma_G = S_G \cap \{ dG_{|\mathbb{R}^{2k}} = 0 \}$ is transversely cut out. Hence its dimension is $n = \dim Q$.

It generates an immersed Legendrian $\Sigma_S \to S^*(\mathbb{Q} \times \mathbb{R})$ given by symplectic reduction of the Legendrian given by the conormal S^*_BS .

Example: if $G : Q \times \mathbb{R}^{2k} \to \mathbb{R}$ is a g.f.q.i. then $(x, s, v) \mapsto s - G(x, v)$ is a g.h.s.q.i. it generates the same as G under the inclusion $J^1Q \subset S^*(Q \times \mathbb{R})$.

It is called quadratic at infinity if

• F(x, s, v) = s - q(v) at infinity where q is the std q.f.

It is called linear at infinity if

•
$$F(x, s, v) = s - v_1$$
 at infinity

Introduction h-cobordisms 1) fold moving 2) conormal moving Detection of they differ on the differ o

Example: any hyper surface in $Q \times \mathbb{R}$ generates its own (directed) conormal. I.e. we have lift $\Psi_Q^S : \mathcal{H}(Q) \to \mathcal{L}eg^S(Q \times \mathbb{R})$.

There is a much easier map $D_2: \mathcal{L}eg^S_\infty(S^*(Q \times \mathbb{R})) \to \mathcal{H}_\infty(Q).$

Again there is a fibration:

$$\mathcal{L}eg^{S}_{\infty}(S^{*}(Q \times \mathbb{R})) o \mathcal{L}eg(S^{*}(Q \times \mathbb{R})).$$

We essentially prove (use) the follow two statements:

- The composition $\mathcal{H}(Q) \xrightarrow{\Psi_Q^S} \mathcal{L}eg_{\infty}^S(J^1Q) \xrightarrow{D_2} \mathcal{H}_{\infty}(Q)$ is the stabilization map.
- The composition from the fiber of the above fibration with *DC* into to $\mathcal{H}_{\infty}(Q)$ is *rationally* null homotopic (70%).

This implies that Ψ_Q is highly non-trivial in stable range.

Consider again the inclusion

$$J^1\mathbb{R}^n\subset S^*(\mathbb{R}^n imes\mathbb{R})\cong J^1S^n.$$

This composition is isotopic to the inclusion $J^1\mathbb{R}^n \subset J^1S^n$. Our detection of type 1 shows that including the example of the Whitney sphere into J^1S^n is often non-trivial.

Hence they are non-trivial in the middle term. Hence the combined map

$$\Phi \# \Psi : \mathcal{H}(S^{n-1}) \times \mathcal{H}(D^n) \to \mathcal{L}eg(S^*(\mathbb{R}^n \times \mathbb{R}))$$

is very non-trivial in the first factor.

However, our detection map for type 2 is actually zero on the part from Φ . (It is graphical over $Q \times \mathbb{R}^{2k}$)

This implies that the non-trivial images of Φ and Ψ are complementary!

Introduction	<i>h</i> -cobordisms	1) fold moving	2) conormal moving	Detection	They differ
O	○	00		000000000	○●
Thanks					

Thank you!