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Talk overview

The h-cobordism space H(M) and partition space Par(M).

Type 1 maps: How to move a fold to define maps

Φ : H(M)→ Leg(C ) (space of Legendrians).

Type 2 maps: How to move a conormal to define maps

Ψ : H(M)→ Leg(C ).

Generating functions detect non-triviality of some type 1 maps.

Gen. hyper surfaces detect non-triviality of some type 2 maps.
(if time permits).

Why they are not the same! (if time permits).

Theorem (Eliashberg, K)

In many cases both maps are non-trivial on homotopy groups, and
independently so.
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Definition of h-cobordism space and partitions

Let M be a compact manifold potentially with ∂ and corners.

Define the partition space Par(M) to consist of smooth functions
(C∞ topology) f : M × D1 → D1 with D1 = [−1, 1] such that

f (x , t) = t close to ∂(M × D1).

f has 0 as a regular value.

We consider {f ≤ 0} a cobordism from M to {f = 0}. We consider
the projection to D1 the basepoint in Par(M).

D1

M
{f ≤ 0}
{f = 0}

We define the subspace H(M) ⊂ Par(M) to be those cobordisms
where {f ≤ 0} is an h-cobordism from M to {f = 0}.

3 / 19



Introduction h-cobordisms 1) fold moving 2) conormal moving Detection They differ

Type 1 (moving a fold): Definition

Let Λ ⊂ C be a Legendrian in a contact manifold. Let F ⊂ Λ be a
co-oriented codimension 1 smooth submanifold (possibly with ∂..).

Locally in C around a tubular neighborhood of F × D1 ⊂ Λ we may
identify Λ ⊂ C with

F × D1 ⊂ J1(F × D1) Front: F ×

t

z = ±2
3

√
t

3

So the front projection looks like a standard fold over F × {0}
double covering F × (0, 1]. We define Par(F )

ΦF−−→ Leg(C ) by

ΦF (f ) = {z = ±2
3

√
f (x , t)

3
}

inside the neighborhood and extended constantly by Λ outside of

the neighborhood. Embedded because Reeb chord length is 4
3

√
f

3
.
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Type 1: Example of Whitney sphere

Consider the Whitney unknot: Λ ⊂ J1(Rn) = R2n+1. Its front
projection is given by:{

z = ±2
3

√
1− ‖x‖23

}
With fold F = Sn−1. The image of ΦF : H(Sn−1)→ Leg(Rn) on
f ∈ H(Sn−1) thus has front projection

f 7→
{
z = ±2

3

√
f (x̂ , 1− ‖x‖2)

3
}

(f (x̂ , t) = t for t ≤ −1)

corresponds to
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Type 2 (moving a conormal): Definition

For a smooth manifold X the unit co-sphere S∗X
p−→ X is a contact

manifold. Let Λ ⊂ C be a Legendrian and let c : S∗(M × D1)→ C
be a codim 0 contact embedding such that:

Λ ∩ Im c = c(S∗M×D1M × {0})
Here S∗XY is the directed conormal of Y ⊂ X when Y is a
cooriented codim 1 submanifold.

Now we define the map Par(M)
ΨM−−→ Leg(C ) by

ΨM(f ) = c(S∗M×D1{f = 0})

inside the image of c extended by Λ elsewhere.
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Type 2: Example: Zero-section

Consider Q ⊂ Q × R (Q closed) and its oriented conormal
S∗Q×RQ ⊂ Leg(S∗(Q × R)). This defines a type 2 map

ΨQ : H(Q)→ Leg(S∗(Q × R)).

Note that the projection of each produced Legendrian ΨQ(f ) to
Q × R is in fact embedded as it is {f = 0} ⊂ Q × R.
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Combined type 1 and type 2 example

Consider that J1Rn ⊂ S∗(Rn × R). Any Legendrian Λ ⊂ J1Rn is
mapped to a Legendrian whose projection to Rn × R is the front
projection of Λ.

It follows that Λf = ΦSn−1(f ) ⊂ J1Rn ⊂ S∗(Rn × R) from the first
example has a small disc at the top

that agrees with the standard Whitney sphere. Hence we can apply
a map of type 2 with M = Dn on each Λf getting a combined map

ΦSn−1#ΨDn : H(Sn−1)×H(Dn)→ Leg(S∗(Q × R)).
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Type 1: Lift to generating functions

A generating function (family) is a smooth G : Q × Rk → R s.t.

The set ΣG = {dG|Rk = 0} is transversely cut out.

It generates an immersed Legendrian ΣG → J1(Q) whose front is

(x , v) 7→ (x ,G (x , v)).

It is called quadratic at infinity if

F (x , v) = q(v) at infinity where q is a n.d.q.f.

It is called linear at infinity if

F (x , v) = −v1 at infinity.

Idea: Controlled “parametrized Morse theory” aka Cerf theory.
Example: The Whitney sphere Λ ⊂ J1Rn is generated by

G (x , v) = 1
3v

3 + (‖x‖2 − 1)v .

which is “linear” at infinity (k = 1).
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Type 1: Lift to generating functions

Assume we have a generating function G : Q × R→ R, either
quadratic or linear at ∞, generating a Λ ⊂ J1Q.

Assume also that our fold F ⊂ Λ (over Q) is such that in some
normal neighborhood of the projection F × D1 ⊂ Q we have

G ((x , t), v) = 1
3v

3 + tv

with (x , t) ∈ F × D1 ⊂ Q and (x , t, v) close to F ⊂ Λ ∼= ΣG . This
is what generates the standard fold - so we can again simply define

Gf ((x , t), v) = 1
3v

3 + f (x , t)v

depending on f ∈ H(F ) (with some bumping off). This lifts ΦF to

Φg
F : H(F )→ Legg (J1Q) (Legendrians with such g.f.)
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Stabilizations of h-cobordisms

A positive stabilization σ+ : Par(M)→ Par(M × D1) is defined
using the following process:

M f f s 7→
Adding v2 for v ∈ D1

(the new variable),
bumping of appropriately.

A specific formula:

(x , v , t) 7→ ϕ(v)(s−1f (x , st)− t︸ ︷︷ ︸) + t + ψ(x , v , t)︸ ︷︷ ︸ v2.

small 0 close to boundary.
ϕ = 1 for v ≈ 0 ψ = 1 when ϕ(v) > 0.

The homotopy type of {f ≤ 0} is unchanged. You may think of this
as fattening the cobordism a bit (and making it standard close to
the boundary). E.g. an Annulus turns into a solid torus.
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Stabilizations

When f is a Morse function we can use Morse theory to give
{f ≤ 0}/M a based CW structure with one non-trivial cell per
critical point. Then σ+(f ) has the same critical points with the
same Morse indices and builds the same homotopy type.

However, there is also σ− : Par(M)→ Par(M ×D1), which is called
a negative stabilization. This is defined in the same way but using
−v2 instead of v2. However, the homotopy type of {f ≤ 0}
changes for this.

Considering the Morse theory it is relatively easy to see that the new
homotopy type is the reduced suspension of {f ≤ 0}/M (the Morse
indices are all increased by 1). Alt: positive stabilization of {f ≥ 0}.
We define σ = σ+ ◦ σ− : Par(M)→ Par(M × (D1)2) and

H∞(M) ⊂ Par∞(M) = colim
k→∞

Par(M × (D1)2k)

using these maps.
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Stable range and computations

There are in fact many non-trivial homotopy groups in H∞(M). To
utilize these the two following theorems are most relevant for us.

Theorem (Igusa)

Either stabilization H(M)→ H(M × D1) is dimM−7
2 connected.

Let i : N ⊂ M be a codimension 0 submanifold. Let
H(N)→ H(M) be the map that extends the function by the
projection to D1 (extension by “0”). This commutes with
stabilizations and thus induces maps i∗ : H∞(N)→ H∞(M).

Theorem (Waldhausen)

The map i∗ is k − 2 connected if i is k connected.

We can for any smooth map i : N → M more generally lift to an
embedding ĩ : N → M × D2k and get an induced map

H(N)→ H∞(M). (stable range)
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Type 1: The difference function

For a generating function G : Q × Rk → R we can construct the
difference function:

DG : Q × Rk × Rk → R
by DG (x , v ,w) = G (x , v)− G (x ,w) (bumped off). Its critical
points are in 1-1 with Reeb orbits. Classically this defines generating
function homology:

GH∗(G ) = MC∗(DGε) (Morse homology)

where ε > 0 is very small and gε = g|{g≥ε}. However, there is much
richer structure in realizing that {ε ≤ DG ≤ ε−1} is a cobordism!
Its one end Mk = {DG = ε−1} does not depend on G (within the
fixed family quadratic/linear), which makes it (almost) possible to
define a map

Legg (J1(Q))→ Par(Mk).

This is not useful as an invariant of Legendrian isotopies as on needs
to stabilize the generating functions.
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A result for type 1

Stabilizing generating functions is similar and compatible. So we get
a map

D1 : Legg
∞(J1Q)→ Par∞(Q). (”Q ' M∞”)

It is known that

Legg
∞(J1Q)→ Leg(J1Q)

is a Serre fibration. We essentially prove the follow two statements
(in some cases):

The composition H(F )
Φg

F−−→ Legg
∞(J1Q)

D1−→ Par∞(Q) is
(essentially) the map induced by i : F → Q.

The composition from the fiber of the above fibration with DC
into to Par∞(Q) is null homotopic.

This implies that ΦF is highly non-trivial in stable range.
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Type 2: Lift to generating hyper surfaces

A generating hyper surface is a function G : Q × R× R2k → R s.t.

The surface SG = {G = 0} is transversely cut out.

The set ΣG = SG ∩ {dG|R2k = 0} is transversely cut out.
Hence its dimension is n = dimQ.

It generates an immersed Legendrian ΣS → S∗(Q× R) given by
symplectic reduction of the Legendrian given by the conormal S∗BS .

Example: if G : Q × R2k → R is a g.f.q.i. then (x , s, v) 7→
s − G (x , v) is a g.h.s.q.i. it generates the same as G under the
inclusion J1Q ⊂ S∗(Q × R).

It is called quadratic at infinity if

F (x , s, v) = s − q(v) at infinity where q is the std q.f.

It is called linear at infinity if

F (x , s, v) = s − v1 at infinity.
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A result for type 2

Example: any hyper surface in Q × R generates its own (directed)
conormal. I.e. we have lift ΨS

Q : H(Q)→ LegS(Q × R).

There is a much easier map D2 : LegS
∞(S∗(Q × R))→ H∞(Q).

Again there is a fibration:

LegS
∞(S∗(Q × R))→ Leg(S∗(Q × R)).

We essentially prove (use) the follow two statements:

The composition H(Q)
ΨS

Q−−→ LegS
∞(J1Q)

D2−→ H∞(Q) is the
stabilization map.

The composition from the fiber of the above fibration with DC
into to H∞(Q) is rationally null homotopic (70%).

This implies that ΨQ is highly non-trivial in stable range.
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Why they are different!

Consider again the inclusion

J1Rn ⊂ S∗(Rn × R) ∼= J1Sn.

This composition is isotopic to the inclusion J1Rn ⊂ J1Sn. Our
detection of type 1 shows that including the example of the Whitney
sphere into J1Sn is often non-trivial.

Hence they are non-trivial in the middle term. Hence the combined
map

Φ#Ψ : H(Sn−1)×H(Dn)→ Leg(S∗(Rn × R))

is very non-trivial in the first factor.

However, our detection map for type 2 is actually zero on the part
from Φ. (It is graphical over Q × R2k)

This implies that the non-trivial images of Φ and Ψ are
complementary!
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Thanks

Thank you!
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