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Introduction
°

Talk overview

The h-cobordism space H(M) and partition space Par(M).

Type 1 maps: How to move a fold to define maps
o H(M) — Leg(C) (space of Legendrians).
Type 2 maps: How to move a conormal to define maps
V:H(M) — Leg(C).

o Generating functions detect non-triviality of some type 1 maps.

@ Gen. hyper surfaces detect non-triviality of some type 2 maps.
(if time permits).
e Why they are not the same! (if time permits).

Theorem (Eliashberg, K)

In many cases both maps are non-trivial on homotopy groups, and
independently so.
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h-cobordisms

Definition of h-cobordism space and partitions

Let M be a compact manifold potentially with 9 and corners.

Define the partition space Par(M) to consist of smooth functions
(C* topology) f : M x D* — D! with D* = [~1,1] such that

o f(x,t) =t close to (M x D?).

o f has 0 as a regular value.
We consider {f < 0} a cobordism from M to {f = 0}. We consider
the projection to D! the basepoint in Par(M).

{f <0}
—{f=0}

Dl
We define the subspace H(M) C Par(M) to be those cobordisms
where {f <0} is an h-cobordism from M to {f = 0}.
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1) fold moving
e

Type 1 (moving a fold): Definition

Let A C C be a Legendrian in a contact manifold. Let F C A be a
co-oriented codimension 1 smooth submanifold (possibly with 0..).

Locally in C around a tubular neighborhood of F x D' C A we may
identify A C C with

FxD'c JMFxDY)  Front: F x < 2= 27

t
So the front projection looks like a standard fold over F x {0}

double covering F x (0,1]. We define Par(F) o, Leg(C) by

OF(f) = {z = £2V/F(x, £) }

inside the neighborhood and extended constantly by A outside of
the neighborhood. Embedded because Reeb chord length is %\/?3.
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1) fold moving
oe

Type 1: Example of Whitney sphere

Consider the Whitney unknot: A C JY(R™) = R2"*1. |ts front
projection is given by:

{z =+2,/1- ||x|123} R

With fold F = S"~1. The image of ®f : H(S""!) — Leg(R") on
f € H(S"1) thus has front projection

fs {z — 2R 1 ||x||2)3} (F(R,8) = ¢ for t < 1)

i corresponds to @
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2) conormal moving
®00

Type 2 (moving a conormal): Definition

For a smooth manifold X the unit co-sphere $*X 2, X is a contact
manifold. Let A C C be a Legendrian and let ¢ : S*(M x D) — C
be a codim 0 contact embedding such that:

o Animc = c(Sy,, 1M x {0})
Here 53 Y is the directed conormal of Y C X when Y'is a
cooriented codim 1 submanifold.

Now we define the map Par(M) AN Leg(C) by
Vu(f) = c(Spxprif = 0})

inside the image of ¢ extended by A elsewhere.
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2) conormal moving

oeo

Type 2: Example: Zero-section

Consider @ C @ x R (Q closed) and its oriented conormal
Soxr@ C Leg(S*(Q x R)). This defines a type 2 map

Vo H(Q) = Leg(S*(Q x R)).

Note that the projection of each produced Legendrian W(f) to
Q@ x R is in fact embedded as it is {f =0} C Q x R.
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2) conormal moving
ooce

Combined type 1 and type 2 example

Consider that J'R” C S*(R" x R). Any Legendrian A C J'R" is
mapped to a Legendrian whose projection to R” x R is the front
projection of A.

It follows that Af = ®gn1(f) C JIR" C S*(R" x R) from the first
example has a small disc at the top

<=

that agrees with the standard Whitney sphere. Hence we can apply
a map of type 2 with M = D" on each Af getting a combined map

G 1#Vpn : H(S" 1) x H(D") — Leg(S*(Q x R)).
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Detection
©00000000

Type 1: Lift to generating functions

A generating function (family) is a smooth G : Q x R — R s.t.
o The set X = {dGg« = 0} is transversely cut out.

It generates an immersed Legendrian ¢ — J1(Q) whose front is

(x,v) = (x, G(x, v)).

It is called quadratic at infinity if
e F(x,v)=q(v) at infinity where g is a n.d.q.f.

It is called linear at infinity if
e F(x,v) = —v; at infinity.

Idea: Controlled “parametrized Morse theory” aka Cerf theory.
Example: The Whitney sphere A C J'R” is generated by

G(x,v) = 3>+ (IIx]* = 1)v.

which is “linear” at infinity (k = 1).
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Detection
0®0000000

Type 1: Lift to generating functions

Assume we have a generating function G : @ x R — R, either
quadratic or linear at oo, generating a A C J1Q.

Assume also that our fold F C A (over Q) is such that in some
normal neighborhood of the projection F x D' C Q we have

G((x,t),v) =33+ tv

with (x,t) € F x D' € Q and (x, t,v) close to F C A= ¥¢. This
is what generates the standard fold - so we can again simply define

Gr((x,t),v) = 3v3 + f(x, t)v
depending on f € H(F) (with some bumping off). This lifts ®f to

L H(F) — Leg8(J'Q) (Legendrians with such g.f.)
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Detection
00®000000

Stabilizations of h-cobordisms

A positive stabilization ot : Par(M) — Par(M x D') is defined
using the following process:

Adding v? for v € D!
— | e > (the new variable),
bumping of appropriately.

A specific formula:

(x, v, t) = o(v)(s L (x, st) — t) + t + (x, v, t) v2.

N——
small 0 close to boundary.
p=1forva0 1 =1 when ¢(v) > 0.

The homotopy type of {f < 0} is unchanged. You may think of this
as fattening the cobordism a bit (and making it standard close to
the boundary). E.g. an Annulus turns into a solid torus.
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Detection
[eleleY Yololelele)

Stabilizations

When f is a Morse function we can use Morse theory to give
{f <0}/M a based CW structure with one non-trivial cell per
critical point. Then o (f) has the same critical points with the
same Morse indices and builds the same homotopy type.

However, there is also o~ : Par(M) — Par(M x D), which is called
a negative stabilization. This is defined in the same way but using
—v? instead of v2. However, the homotopy type of {f < 0}
changes for this.

Considering the Morse theory it is relatively easy to see that the new
homotopy type is the reduced suspension of {f < 0}/M (the Morse
indices are all increased by 1). Alt: positive stabilization of {f > 0}.

We define 0 = 0 o 0~ : Par(M) — Par(M x (D')?) and
Hoo(M) C Parg (M) = colim Par(M x (D)%)
k—o0

using these maps.
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Detection
[eleleleY Yolelele)

Stable range and computations

There are in fact many non-trivial homotopy groups in Hoo(M). To
utilize these the two following theorems are most relevant for us.

Theorem (lgusa)
Either stabilization H(M) — H(M x D?) is 9™M=T connected.

Let i : N C M be a codimension 0 submanifold. Let

H(N) — H(M) be the map that extends the function by the
projection to D' (extension by “0"). This commutes with
stabilizations and thus induces maps iy : Hoo(N) = Hoo(M).

Theorem (Waldhausen)

The map i, is k — 2 connected if i is k connected.

We can for any smooth map i : N — M more generally lift to an
embedding / : N = M x D?* and get an induced map

H(N) = Hoo(M). (stable range)
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Detection
000008000

Type 1: The difference function

For a generating function G : Q x R — R we can construct the
difference function:
DG:Q xR xRF - R

by DG(x, v,w) = G(x,v) — G(x,w) (bumped off). Its critical
points are in 1-1 with Reeb orbits. Classically this defines generating
function homology:

GH.(G) = MC,(DG,) (Morse homology)
where ¢ > 0 is very small and g. = gj(g>.}. However, there is much
richer structure in realizing that {¢ < DG < e !} is a cobordism!
Its one end My = {DG = ¢!} does not depend on G (within the
fixed family quadratic/linear), which makes it (almost) possible to
define a map

Leg€(J(Q)) — Par(My).

This is not useful as an invariant of Legendrian isotopies as on needs

to stabilize the generating functions.
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Detection
000000@00

A result for type 1

Stabilizing generating functions is similar and compatible. So we get
a map

D; : Legg (J1Q) — Pareo(Q). ("Q =~ M)
It is known that
Eegfo(J1 Q) — Eeg(J1 Q)

is a Serre fibration. We essentially prove the follow two statements
(in some cases):

d)g
o The composition H(F) —5 Legs (/' Q) D, Paroo(Q) is
(essentially) the map induced by i : F — Q.

@ The composition from the fiber of the above fibration with DC
into to Pars(Q) is null homotopic.

This implies that ®f is highly non-trivial in stable range.
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Detection
000000080

Type 2: Lift to generating hyper surfaces

A generating hyper surface is a function G : @ x R x R?* — R s.t.
@ The surface S¢ = {G = 0} is transversely cut out.

® The set ¥ = Sg N {dGga« = 0} is transversely cut out.
Hence its dimension is n = dim Q.

It generates an immersed Legendrian s — S*(Q x R) given by
symplectic reduction of the Legendrian given by the conormal SgS.

Example: if G : @ x R?* = Ris a g.f.q.i. then (x,s,v) —
s — G(x,v) is a g.h.s.q.i. it generates the same as G under the
inclusion J1Q C S*(Q x R).
It is called quadratic at infinity if
e F(x,s,v) =s— q(v) at infinity where g is the std q.f.
It is called linear at infinity if
e F(x,s,v) =s— v atinfinity.
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Detection
00000000e

A result for type 2

Example: any hyper surface in Q x R generates its own (directed)
conormal. l.e. we have lift \II‘Z) CH(Q) — Leg®(Q x R).

There is a much easier map Dy : Leg3 (S*(Q x R)) — Hoo( Q).

Again there is a fibration:

Leg3 (S*(Q x R)) — Leg(S*(Q x R)).
We essentially prove (use) the follow two statements:
vg
@ The composition H(Q) —% [,egoo(JlQ) Hoo(Q) is the

stabilization map.

@ The composition from the fiber of the above fibration with DC
into to Hoo(Q) is rationally null homotopic (70%).

This implies that W is highly non-trivial in stable range.
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They differ
0

Why they are different!

Consider again the inclusion
JIR" € S*(R" x R) = J1S".

This composition is isotopic to the inclusion J'R" C J1S". Our
detection of type 1 shows that including the example of the Whitney
sphere into J1S" is often non-trivial.

Hence they are non-trivial in the middle term. Hence the combined
map

SHV  H(S" ) x H(D") — Leg(S*(R" x R))
is very non-trivial in the first factor.

However, our detection map for type 2 is actually zero on the part
from ®. (It is graphical over Q x R2)

This implies that the non-trivial images of ® and W are

complementary!
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Thanks

Thank you!
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