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Operations on mod p quantum cohomology

Fix p > 2 prime and let k = Fp. Then H∗(X; k) carries an additional structure:
the Steenrod operations.

These are assembled into the total Steenrod power map

St : H∗(X; k) → H∗
Z/p(X

p; k) → H∗
Z/p(X; k) ∼= H∗(X; k)[[t, θ]],

where t, θ are Z/p-equivariant parameters with |t| = 2, |θ| = 1.

Let (X,ω) be a non-negatively monotone symplectic manifold. Analogously to the
construction of quantum product on QH∗(X;R), Fukaya (’97) defined a
quantum deformation of the Steenrod operations:

QSt : QH∗(X; k) → QH∗(X; k)[[t, θ]],

for QH∗(X; k) := H∗(X; k)[[qA : A ∈ Hω≥0
2 (X;Z)]].
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Quantum Steenrod operations and properties
It is more convenient to consider this as a set of operators QΣb for b ∈ H∗(X; k):

QΣb : QH∗(X; k)[[t, θ]] → QH∗(X; k)[[t, θ]] (1)

defined from counts of parametrized P1 with Z/p-symmetry, i.e. t, θ are identified
with the equivariant parameters for discrete loop rotation.

QΣb(1) = QSt(b), QΣb|qA=0(−) = St(b) ⌣ (−),

QΣb|t,θ=0(−) =

p︷ ︸︸ ︷
b ∗ · · · ∗ b ∗ (−), QΣb ◦QΣb′ = (−1)

p(p−1)
2 |b||b′|QΣb∗b′ .
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Covariant constancy

A key property of QΣb is their compatibility with the quantum connection. These
are operators indexed by a ∈ H2(X;Z) given by

∇a = t∂a + a ∗ : QH∗(X; k)[[t, θ]] → QH∗(X; k)[[t, θ]]

where ∂a(q
A) = (a ·A)qA,

fitting into

QH∗(X; k)[[t, θ]] QH∗(X; k)[[t, θ]]

QH∗(X; k) QH∗(X; k)

∇a

t,θ=0 t,θ=0

a∗

.

Theorem (Seidel–Wilkins ’22)

Quantum Steenrod operations are covariantly constant, i.e.

[∇a, QΣb] = 0.

This is a differential relation satisfied by QΣb.
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Main question

Covariant constancy cannot determine QΣb: it doesn’t tell anything about
coefficients of qpA. That is, degrees supporting p-fold multiple covered curves are
the most interesting part of QΣb.

Question
Can one compute QΣb in the range that supports p-fold multiple covers?
More philosophically, what is the role of quantum Steenrod operations in genus
zero enumerative geometry?

The answer arised through studying a rich class of examples coming from
representation theory, known as symplectic resolutions.
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Main result: QSt = p-curvature

We consider symplectic resolutions as targets X. For now, we just say that these
are smooth non-compact Calabi–Yau manifolds equipped with Hamiltonian
actions of a torus T .

Example

X = T ∗
hol(P

1) (with its Kähler form), together with two commuting S1-actions,
one induced by rotation of the base P1 and one given by rotation of the cotangent
fibers.

Theorem (L. ’23)

Let X be a (conical) symplectic resolution with isolated T -fixed points and
semisimple quantum cohomology. Then for b ∈ H2(X;Z),

QΣT
b = (∇T

b )
p − tp−1∇T

b . (2)

The right hand side is the p-curvature of the quantum connection ∇T
b of X.
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p-curvature

The p-curvature is a fundamental invariant one can define for any connection in
characteristic p. Usual curvature [∇b,∇b′ ]−∇[b,b′] measures the failure of ∇ to
preserve the Lie bracket; p-curvature measures the failure of ∇ to preserve pth
powers.
For the quantum connection, this should take the form

Fb := ∇p
b − tp−1∇b.

Observe the similarity with the total Steenrod power map on b ∈ H2(X):

St(b) = bp − tp−1b.

This observation shows that p-curvature also satisfies the properties of QΣb:

Fb|qA=0(−) = St(b) ⌣ (−), Fb|t,θ=0(−) =

p︷ ︸︸ ︷
b ∗ · · · ∗ b ∗ (−).
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Proof strategy

Result follows from these observations and a new compatibility relation:

Theorem (L. ’24)

Operations QΣT
b and FT

b commute with the shift operators

S(σ) : QH∗
T (X; k)[[t, θ]] → QH∗

T (X; k)[[t, θ]].

The final theorem QΣT
b = FT

b can be read in two ways:
(i) computation of quantum Steenrod operations in all degrees,
(ii) moduli description of p-curvature.

Jae Hee Lee (Stanford) Quantum Steenrod vs. p-curvature Dec 20 2024 8 / 12



Proof strategy

Result follows from these observations and a new compatibility relation:

Theorem (L. ’24)

Operations QΣT
b and FT

b commute with the shift operators

S(σ) : QH∗
T (X; k)[[t, θ]] → QH∗

T (X; k)[[t, θ]].

The final theorem QΣT
b = FT

b can be read in two ways:
(i) computation of quantum Steenrod operations in all degrees,
(ii) moduli description of p-curvature.

Jae Hee Lee (Stanford) Quantum Steenrod vs. p-curvature Dec 20 2024 8 / 12



QSt = p-curvature as general philosophy

The result leads to the conjecture that quantum Steenrod = p-curvature is a more
general phenomenon, which is subject of current investigation:

Theorem (Seidel–Pomerleano, forthcoming)

For X closed monotone, QΣc1(X) = Fc1(X).

Theorem (Chen ’24)

For X closed monotone, the unramified exponential type conjecture holds for the
quantum t-connection. (Uses QΣc1(X) − Fc1(X) is nilpotent [Seidel].)

Theorem (Rezchikov, forthcoming)

For X ⊆ Pn a CY hypersurface, QΣH = FH for H ∈ H2(X).

General case is related to the conjectural Frobenius structure on the p-adic
quantum connection.
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Symplectic resolutions and gauge theory

Let us further discuss the T -equivariant quantum Steenrod operations of
symplectic resolutions, and their role in representation theory.

Definition

A symplectic resolution is a smooth holomorphic symplectic manifold (X,Ω) such
that the affinization map X → Spec H0(X,OX) is a resolution of singularities
(proper and birational).

Example

Recall T ∗
hol(P

1); this is a blowup of the affine quadric cone (an A1-singularity)

T ∗P1 → {x2 + yz = 0} ⊆ C3 ∼= sl∗2.

These are often advertised as “Lie algebras of the 21st century.”
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3D mirror symmetry

A huge source of such symplectic resolutions come from gauge theory: fix a
reductive group G and a complex G-representation N .
From this data we can construct two different symplectic resolutions (or
affinizations thereof):

Example

The hyperKähler reduction XH = T ∗N////G is the Higgs branch.

Example

Braverman–Finkelberg–Nakajima construction XC = H
G[[z]]
• (RG,N ) is the

Coulomb branch.

One formulation of the 3D mirror symmetry program posits that the quantum
connection of the Higgs branch can be identified with the D-module of twisted
traces of the Coulomb branch.
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3D mirror symmetry in positive characteristic

We extend the 3D mirror symmetry program to positive characteristic:

Theorem (Bai-L., forthcoming)

Let G be abelian (both XH, XC are hypertoric varieties) and k = Fp.
Then there is an isomorphism

Dtr(XC ; k) ∼= QH∗
T (XH; k)

compatible with the action of “Frobenius-constant” quantizations on Dtr(XC ; k)
and the action of quantum Steenrod operators QΣT

b on QH∗
T (XH; k).

The proof goes through quantum Steenrod = p-curvature on the Higgs side, and
identifying the multiplication action of characteristic p quantizations on the
Coulomb side with the p-curvature.
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Thank you!
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Frobenius-constant quantizations

Definition (Bezrukavnikov–Kaledin)

Suppose A is a quantization (i.e. ℏ-deformation) of a Poisson variety X in
characteristic p. The data of an algebra map

s : O(X)(1) → Z(A)

such that s(x) = xp (mod ℏ) makes A a Frobenius-constant quantization.

Theorem (Lonergan, ’17)

BFN Coulomb branches XC admit a structure of a Frobenius-constant
quantization, where AC is given by G[[z]]⋊ C×-equivariant BM-homology. The
construction of the map s uses Steenrod operations!
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D-module of twisted traces

Given Coulomb branch XC in nice situations (in particular, for hypertoric varieties
or Springer resolution), there is a universal deformation XC and its quantization
AC . Note that there is a Hamiltonian T -action on XC which induces a grading on
AC by the character lattice X•(T ).

Definition (Kamnitzer–McBreen–Proudfoot ’18, Etingof–Stryker ’19)

The D-module of twisted traces is

Dtr(XC) = A0[q
λ]/⟨ab− qλba : a ∈ Aλ, b ∈ A−λ⟩, λ ∈ X•(T ).

Given a Frobenius-constant quantization, s(x) ∈ Z(A0) for x ∈ O(X)0 acts on
Dtr(XC) by multiplication.
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