Quantum Steenrod operations, *p*-curvature, and representation theory

Jae Hee Lee

Stanford

Dec 20 2024

Jae Hee Lee (Stanford)

Quantum Steenrod vs. p-curvature

э

1/12

イロト イヨト イヨト

Operations on mod p quantum cohomology

Fix p > 2 prime and let $\Bbbk = \mathbb{F}_p$. Then $H^*(X; \Bbbk)$ carries an additional structure: the *Steenrod operations*.

2/12

イロト イボト イヨト イヨト

Operations on mod p quantum cohomology

Fix p > 2 prime and let $\Bbbk = \mathbb{F}_p$. Then $H^*(X; \Bbbk)$ carries an additional structure: the *Steenrod operations*. These are assembled into the *total Steenrod power* map

 $\mathrm{St}: H^*(X; \Bbbk) \to H^*_{\mathbb{Z}/p}(X^p; \Bbbk) \to H^*_{\mathbb{Z}/p}(X; \Bbbk) \cong H^*(X; \Bbbk) \llbracket t, \theta \rrbracket,$

where t, θ are \mathbb{Z}/p -equivariant parameters with |t| = 2, $|\theta| = 1$.

2/12

Operations on mod p quantum cohomology

Fix p > 2 prime and let $\Bbbk = \mathbb{F}_p$. Then $H^*(X; \Bbbk)$ carries an additional structure: the *Steenrod operations*. These are assembled into the *total Steenrod power* map

$$\mathrm{St}: H^*(X; \Bbbk) \to H^*_{\mathbb{Z}/p}(X^p; \Bbbk) \to H^*_{\mathbb{Z}/p}(X; \Bbbk) \cong H^*(X; \Bbbk) \llbracket t, \theta \rrbracket,$$

where t, θ are \mathbb{Z}/p -equivariant parameters with |t| = 2, $|\theta| = 1$.

Let (X, ω) be a non-negatively monotone symplectic manifold. Analogously to the construction of quantum product on $QH^*(X; R)$, Fukaya ('97) defined a *quantum deformation* of the Steenrod operations:

 $QSt: QH^*(X; \Bbbk) \to QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket,$

 $\text{for }QH^*(X;\Bbbk):=H^*(X;\Bbbk)[\![q^A:A\in H_2^{\omega\geq 0}(X;\mathbb{Z})]\!].$

2/12

イロト イヨト イヨト イヨト

It is more convenient to consider this as a set of operators $Q\Sigma_b$ for $b \in H^*(X; \Bbbk)$:

$$Q\Sigma_b: QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket \to QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket$$
⁽¹⁾

defined from counts of parametrized \mathbb{P}^1 with \mathbb{Z}/p -symmetry, i.e. t, θ are identified with the equivariant parameters for discrete loop rotation.

3/12

A B A B A B A

It is more convenient to consider this as a set of operators $Q\Sigma_b$ for $b \in H^*(X; \Bbbk)$:

$$Q\Sigma_b: QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket \to QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket$$
⁽¹⁾

defined from counts of parametrized \mathbb{P}^1 with \mathbb{Z}/p -symmetry, i.e. t, θ are identified with the equivariant parameters for discrete loop rotation.

•
$$Q\Sigma_b(1) = Q\mathrm{St}(b)$$
,

A B A B A B A

It is more convenient to consider this as a set of operators $Q\Sigma_b$ for $b \in H^*(X; \Bbbk)$:

$$Q\Sigma_b: QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket \to QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket$$
⁽¹⁾

defined from counts of parametrized \mathbb{P}^1 with \mathbb{Z}/p -symmetry, i.e. t, θ are identified with the equivariant parameters for discrete loop rotation.

•
$$Q\Sigma_b(1) = Q\operatorname{St}(b)$$
, $Q\Sigma_b|_{q^A=0}(-) = \operatorname{St}(b) \smile (-)$,

A B A B A B A

It is more convenient to consider this as a set of operators $Q\Sigma_b$ for $b \in H^*(X; \Bbbk)$:

$$Q\Sigma_b: QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket \to QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket$$
⁽¹⁾

defined from counts of parametrized \mathbb{P}^1 with \mathbb{Z}/p -symmetry, i.e. t, θ are identified with the equivariant parameters for discrete loop rotation.

It is more convenient to consider this as a set of operators $Q\Sigma_b$ for $b \in H^*(X; \Bbbk)$:

$$Q\Sigma_b: QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket \to QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket$$
⁽¹⁾

defined from counts of parametrized \mathbb{P}^1 with \mathbb{Z}/p -symmetry, i.e. t, θ are identified with the equivariant parameters for discrete loop rotation.

A key property of $Q\Sigma_b$ is their compatibility with the *quantum connection*. These are operators indexed by $a \in H^2(X; \mathbb{Z})$ given by

$$\nabla_a = t\partial_a + a * : QH^*(X; \Bbbk) \llbracket t, \theta \rrbracket \to QH^*(X; \Bbbk) \llbracket t, \theta \rrbracket$$

where $\partial_a(q^A) = (a \cdot A)q^A$,

4/12

イロト イポト イヨト イヨト

A key property of $Q\Sigma_b$ is their compatibility with the *quantum connection*. These are operators indexed by $a \in H^2(X; \mathbb{Z})$ given by

$$\nabla_a = t\partial_a + a * : QH^*(X; \Bbbk) \llbracket t, \theta \rrbracket \to QH^*(X; \Bbbk) \llbracket t, \theta \rrbracket$$

where $\partial_a(q^A) = (a \cdot A)q^A$, fitting into

$$\begin{array}{c} QH^*(X;\Bbbk)\llbracket t,\theta \rrbracket \xrightarrow{\nabla_a} QH^*(X;\Bbbk)\llbracket t,\theta \rrbracket \\ & \downarrow t,\theta = 0 \qquad \qquad \qquad \downarrow t,\theta = 0 \\ QH^*(X;\Bbbk) \xrightarrow{a*} QH^*(X;\Bbbk) \end{array}$$

4/12

A key property of $Q\Sigma_b$ is their compatibility with the *quantum connection*. These are operators indexed by $a \in H^2(X; \mathbb{Z})$ given by

$$\nabla_a = t\partial_a + a * : QH^*(X; \Bbbk) \llbracket t, \theta \rrbracket \to QH^*(X; \Bbbk) \llbracket t, \theta \rrbracket$$

where $\partial_a(q^A)=(a\cdot A)q^A,$ fitting into

$$\begin{array}{c} QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket & \stackrel{\nabla_a}{\longrightarrow} QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket \\ & \downarrow^{t, \theta = 0} & \downarrow^{t, \theta = 0} \\ QH^*(X; \Bbbk) & \stackrel{a*}{\longrightarrow} QH^*(X; \Bbbk) \end{array}$$

Theorem (Seidel-Wilkins '22)

Quantum Steenrod operations are covariantly constant, i.e.

$$[\nabla_a, Q\Sigma_b] = 0.$$

イロト イヨト イヨト イヨト

A key property of $Q\Sigma_b$ is their compatibility with the *quantum connection*. These are operators indexed by $a \in H^2(X; \mathbb{Z})$ given by

$$\nabla_a = t\partial_a + a * : QH^*(X; \Bbbk) \llbracket t, \theta \rrbracket \to QH^*(X; \Bbbk) \llbracket t, \theta \rrbracket$$

where $\partial_a(q^A)=(a\cdot A)q^A,$ fitting into

$$\begin{array}{c} QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket & \stackrel{\nabla_a}{\longrightarrow} QH^*(X; \Bbbk)\llbracket t, \theta \rrbracket \\ & \downarrow^{t, \theta = 0} & \downarrow^{t, \theta = 0} \\ QH^*(X; \Bbbk) & \stackrel{a*}{\longrightarrow} QH^*(X; \Bbbk) \end{array}$$

Theorem (Seidel-Wilkins '22)

Quantum Steenrod operations are covariantly constant, i.e.

$$[\nabla_a, Q\Sigma_b] = 0.$$

This is a *differential relation* satisfied by $Q\Sigma_b$.

Jae Hee Lee (Stanford)

Main question

Covariant constancy cannot determine $Q\Sigma_b$: it doesn't tell anything about coefficients of q^{pA} . That is, degrees supporting *p*-fold multiple covered curves are the most interesting part of $Q\Sigma_b$.

5/12

イロト イヨト イヨト

Main question

Covariant constancy cannot determine $Q\Sigma_b$: it doesn't tell anything about coefficients of q^{pA} . That is, degrees supporting *p*-fold multiple covered curves are the most interesting part of $Q\Sigma_b$.

Question

Can one compute $Q\Sigma_b$ in the range that supports *p*-fold multiple covers? More philosophically, what is the **role** of quantum Steenrod operations in genus zero enumerative geometry?

The answer arised through studying a rich class of examples coming from representation theory, known as *symplectic resolutions*.

イロト イヨト イヨト イヨト

Main result: QSt = p-curvature

We consider *symplectic resolutions* as targets X. For now, we just say that these are smooth non-compact Calabi–Yau manifolds equipped with Hamiltonian actions of a torus T.

Example

 $X = T^*_{hol}(\mathbb{P}^1)$ (with its Kähler form), together with two commuting S^1 -actions, one induced by rotation of the base \mathbb{P}^1 and one given by rotation of the cotangent fibers.

6/12

(日) (同) (日) (日)

Main result: QSt = p-curvature

We consider *symplectic resolutions* as targets X. For now, we just say that these are smooth non-compact Calabi–Yau manifolds equipped with Hamiltonian actions of a torus T.

Example

 $X = T^*_{hol}(\mathbb{P}^1)$ (with its Kähler form), together with two commuting S^1 -actions, one induced by rotation of the base \mathbb{P}^1 and one given by rotation of the cotangent fibers.

Theorem (L. '23)

Let X be a (conical) symplectic resolution with isolated T-fixed points and semisimple quantum cohomology. Then for $b \in H^2(X; \mathbb{Z})$,

$$Q\Sigma_b^T = (\nabla_b^T)^p - t^{p-1} \nabla_b^T.$$
 (2)

Jae Hee Lee (S	tanford)
----------------	----------

6/12

イロン イ団 とく ヨン イヨン

Main result: QSt = p-curvature

We consider *symplectic resolutions* as targets X. For now, we just say that these are smooth non-compact Calabi–Yau manifolds equipped with Hamiltonian actions of a torus T.

Example

 $X = T^*_{hol}(\mathbb{P}^1)$ (with its Kähler form), together with two commuting S^1 -actions, one induced by rotation of the base \mathbb{P}^1 and one given by rotation of the cotangent fibers.

Theorem (L. '23)

Let X be a (conical) symplectic resolution with isolated T-fixed points and semisimple quantum cohomology. Then for $b \in H^2(X; \mathbb{Z})$,

$$Q\Sigma_b^T = (\nabla_b^T)^p - t^{p-1} \nabla_b^T.$$
 (2)

The right hand side is the *p*-curvature of the quantum connection ∇_b^T of X.

<ロ> <四> <四> <四> <三</p>

6/12

p-curvature

The *p*-curvature is a fundamental invariant one can define for any connection in characteristic *p*. Usual curvature $[\nabla_b, \nabla_{b'}] - \nabla_{[b,b']}$ measures the failure of ∇ to preserve the Lie bracket; *p*-curvature measures the failure of ∇ to preserve *p*th powers.

For the quantum connection, this should take the form

$$F_b := \nabla_b^p - t^{p-1} \nabla_b.$$

7/12

(日) (同) (日) (日)

p-curvature

The *p*-curvature is a fundamental invariant one can define for any connection in characteristic *p*. Usual curvature $[\nabla_b, \nabla_{b'}] - \nabla_{[b,b']}$ measures the failure of ∇ to preserve the Lie bracket; *p*-curvature measures the failure of ∇ to preserve *p*th powers.

For the quantum connection, this should take the form

$$F_b := \nabla_b^p - t^{p-1} \nabla_b.$$

Observe the similarity with the total Steenrod power map on $b \in H^2(X)$:

$$\mathrm{St}(b) = b^p - t^{p-1}b.$$

7/12

p-curvature

The *p*-curvature is a fundamental invariant one can define for any connection in characteristic *p*. Usual curvature $[\nabla_b, \nabla_{b'}] - \nabla_{[b,b']}$ measures the failure of ∇ to preserve the Lie bracket; *p*-curvature measures the failure of ∇ to preserve *p*th powers.

For the quantum connection, this should take the form

$$F_b := \nabla_b^p - t^{p-1} \nabla_b.$$

Observe the similarity with the total Steenrod power map on $b \in H^2(X)$:

$$\mathrm{St}(b) = b^p - t^{p-1}b.$$

This observation shows that *p*-curvature also satisfies the properties of $Q\Sigma_b$:

•
$$F_b|_{q^A=0}(-) = \operatorname{St}(b) \smile (-), \quad F_b|_{t,\theta=0}(-) = \underbrace{b*\cdots*b}^p * (-).$$

Proof strategy

Result follows from these observations and a new compatibility relation:

Theorem (L. '24) Operations $Q\Sigma_b^T$ and F_b^T commute with the shift operators $\mathbb{S}(\sigma) : QH_T^*(X; \Bbbk)[t, \theta]] \to QH_T^*(X; \Bbbk)[t, \theta]].$

э

8/12

イロト イヨト イヨト イヨト

Proof strategy

Result follows from these observations and a new compatibility relation:

Theorem (L. '24) Operations $Q\Sigma_b^T$ and F_b^T commute with the shift operators $\mathbb{S}(\sigma): QH_T^*(X; \Bbbk)[t, \theta]] \to QH_T^*(X; \Bbbk)[t, \theta].$

The final theorem $Q\Sigma_b^T = F_b^T$ can be read in two ways: (i) computation of quantum Steenrod operations in all degrees, (ii) moduli description of *p*-curvature.

8/12

QSt = p-curvature as general philosophy

The result leads to the conjecture that quantum Steenrod = p-curvature is a more general phenomenon, which is subject of current investigation:

Theorem (Seidel–Pomerleano, forthcoming)

For X closed monotone, $Q\Sigma_{c_1(X)} = F_{c_1(X)}$.

(日) (同) (日) (日)

QSt = p-curvature as general philosophy

The result leads to the conjecture that quantum Steenrod = p-curvature is a more general phenomenon, which is subject of current investigation:

Theorem (Seidel–Pomerleano, forthcoming)

For X closed monotone, $Q\Sigma_{c_1(X)} = F_{c_1(X)}$.

Theorem (Chen '24)

For X closed monotone, the unramified exponential type conjecture holds for the quantum t-connection. (Uses $Q\Sigma_{c_1(X)} - F_{c_1(X)}$ is nilpotent [Seidel].)

イロト イポト イヨト イヨト

QSt = p-curvature as general philosophy

The result leads to the conjecture that quantum Steenrod = p-curvature is a more general phenomenon, which is subject of current investigation:

Theorem (Seidel–Pomerleano, forthcoming)

For X closed monotone, $Q\Sigma_{c_1(X)} = F_{c_1(X)}$.

Theorem (Chen '24)

For X closed monotone, the unramified exponential type conjecture holds for the quantum t-connection. (Uses $Q\Sigma_{c_1(X)} - F_{c_1(X)}$ is nilpotent [Seidel].)

Theorem (Rezchikov, forthcoming)

For $X \subseteq \mathbb{P}^n$ a CY hypersurface, $Q\Sigma_H = F_H$ for $H \in H^2(X)$.

General case is related to the conjectural *Frobenius structure* on the *p*-adic quantum connection.

イロト イヨト イヨト イヨト

э

Symplectic resolutions and gauge theory

Let us further discuss the T-equivariant quantum Steenrod operations of symplectic resolutions, and their role in representation theory.

Definition

A symplectic resolution is a smooth holomorphic symplectic manifold (X, Ω) such that the affinization map $X \to \text{Spec } H^0(X, \mathcal{O}_X)$ is a resolution of singularities (proper and birational).

10/12

(日) (同) (日) (日)

Symplectic resolutions and gauge theory

Let us further discuss the T-equivariant quantum Steenrod operations of symplectic resolutions, and their role in representation theory.

Definition

A symplectic resolution is a smooth holomorphic symplectic manifold (X, Ω) such that the affinization map $X \to \text{Spec } H^0(X, \mathcal{O}_X)$ is a resolution of singularities (proper and birational).

Example

Recall $T^*_{hol}(\mathbb{P}^1)$; this is a blowup of the affine quadric cone (an A_1 -singularity)

$$T^* \mathbb{P}^1 \to \{ x^2 + yz = 0 \} \subseteq \mathbb{C}^3 \cong \mathfrak{sl}_2^*.$$

These are often advertised as "Lie algebras of the 21st century."

3D mirror symmetry

A huge source of such symplectic resolutions come from gauge theory: fix a reductive group G and a complex G-representation N. From this data we can construct two different symplectic resolutions (or affinizations thereof):

11/12

イロト イボト イヨト イヨト

3D mirror symmetry

A huge source of such symplectic resolutions come from gauge theory: fix a reductive group G and a complex G-representation N. From this data we can construct two different symplectic resolutions (or affinizations thereof):

Example

The hyperKähler reduction $X_{\mathcal{H}} = T^* N / / G$ is the *Higgs branch*.

11/12

3D mirror symmetry

A huge source of such symplectic resolutions come from gauge theory: fix a reductive group G and a complex G-representation N. From this data we can construct two different symplectic resolutions (or affinizations thereof):

Example

The hyperKähler reduction $X_{\mathcal{H}} = T^* N / / G$ is the *Higgs branch*.

Example

Braverman–Finkelberg–Nakajima construction $X_{\mathcal{C}} = H^{G[\![z]\!]}_{\bullet}(\mathcal{R}_{G,N})$ is the *Coulomb branch*.

One formulation of the 3D mirror symmetry program posits that the quantum connection of the Higgs branch can be identified with the *D*-module of twisted traces of the Coulomb branch.

イロト イヨト イヨト イヨト

э

3D mirror symmetry in positive characteristic

We extend the 3D mirror symmetry program to positive characteristic:

Theorem (Bai-L., forthcoming)

Let G be abelian (both $X_{\mathcal{H}}$, $X_{\mathcal{C}}$ are hypertoric varieties) and $\Bbbk = \mathbb{F}_p$. Then there is an isomorphism

 $\mathcal{D}^{\mathrm{tr}}(X_{\mathcal{C}};\Bbbk) \cong QH^*_T(X_{\mathcal{H}};\Bbbk)$

compatible with the action of "Frobenius-constant" quantizations on $\mathcal{D}^{tr}(X_{\mathcal{C}}; \Bbbk)$ and the action of quantum Steenrod operators $Q\Sigma_b^T$ on $QH_T^*(X_{\mathcal{H}}; \Bbbk)$.

12/12

(日) (同) (日) (日)

3D mirror symmetry in positive characteristic

We extend the 3D mirror symmetry program to positive characteristic:

Theorem (Bai-L., forthcoming)

Let G be abelian (both $X_{\mathcal{H}}$, $X_{\mathcal{C}}$ are hypertoric varieties) and $\Bbbk = \mathbb{F}_p$. Then there is an isomorphism

 $\mathcal{D}^{\mathrm{tr}}(X_{\mathcal{C}};\Bbbk) \cong QH_T^*(X_{\mathcal{H}};\Bbbk)$

compatible with the action of "Frobenius-constant" quantizations on $\mathcal{D}^{tr}(X_{\mathcal{C}}; \Bbbk)$ and the action of quantum Steenrod operators $Q\Sigma_b^T$ on $QH_T^*(X_{\mathcal{H}}; \Bbbk)$.

The proof goes through quantum Steenrod = p-curvature on the Higgs side, and identifying the multiplication action of characteristic p quantizations on the Coulomb side with the p-curvature.

Thank you!

Jae Hee Lee	e (Stanford)
-------------	--------------

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Frobenius-constant quantizations

Definition (Bezrukavnikov-Kaledin)

Suppose A is a quantization (i.e. \hbar -deformation) of a Poisson variety X in characteristic p. The data of an algebra map

 $s: \mathcal{O}(X)^{(1)} \to \mathcal{Z}(A)$

such that $s(x) = x^p \pmod{\hbar}$ makes A a Frobenius-constant quantization.

Theorem (Lonergan, '17)

BFN Coulomb branches $X_{\mathcal{C}}$ admit a structure of a Frobenius-constant quantization, where $A_{\mathcal{C}}$ is given by $G[\![z]\!] \rtimes \mathbb{C}^{\times}$ -equivariant BM-homology. The construction of the map s uses Steenrod operations!

D-module of twisted traces

Given Coulomb branch $X_{\mathcal{C}}$ in nice situations (in particular, for hypertoric varieties or Springer resolution), there is a universal deformation $\mathcal{X}_{\mathcal{C}}$ and its quantization $\mathcal{A}_{\mathcal{C}}$. Note that there is a Hamiltonian *T*-action on $\mathcal{X}_{\mathcal{C}}$ which induces a grading on $\mathcal{A}_{\mathcal{C}}$ by the character lattice $X^{\bullet}(T)$.

Definition (Kamnitzer-McBreen-Proudfoot '18, Etingof-Stryker '19)

The $\mathcal{D}\text{-module}$ of twisted traces is

$$\mathcal{D}^{\mathrm{tr}}(X_{\mathcal{C}}) = \mathcal{A}_0[q^{\lambda}]/\langle ab - q^{\lambda}ba : a \in \mathcal{A}_{\lambda}, \ b \in \mathcal{A}_{-\lambda} \rangle, \quad \lambda \in X^{\bullet}(T).$$

Given a Frobenius-constant quantization, $s(x) \in \mathcal{Z}(\mathcal{A}_0)$ for $x \in \mathcal{O}(X)_0$ acts on $\mathcal{D}^{tr}(X_{\mathcal{C}})$ by multiplication.

12/12

< □ > < □ > < □ > < □ > < □ >