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Operations on mod p quantum cohomology

Fix p > 2 prime and let k = F,. Then H*(X;K) carries an additional structure:
the Steenrod operations.
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Operations on mod p quantum cohomology

Fix p > 2 prime and let k = F,. Then H*(X;K) carries an additional structure:
the Steenrod operations. These are assembled into the total Steenrod power map

St H*(X;K) — Hz,,(X?: k) = HZ ,,(X; k) = H*(X;K)[t, 6],

where t, 6 are Z/p-equivariant parameters with [t| = 2, |6] = 1.
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Operations on mod p quantum cohomology

Fix p > 2 prime and let k = F,. Then H*(X;K) carries an additional structure:
the Steenrod operations. These are assembled into the total Steenrod power map

St H*(X;K) — Hz,,(X?: k) = HZ ,,(X; k) = H*(X;K)[t, 6],
where t, 6 are Z/p-equivariant parameters with [t| = 2, |6] = 1.

Let (X,w) be a non-negatively monotone symplectic manifold. Analogously to the
construction of quantum product on QH*(X; R), Fukaya ('97) defined a
quantum deformation of the Steenrod operations:

QSt: QH"(X;K) — QH*(X;K)[t, 4],

for QH*(X;K) := H*(X;K)[¢* : A € HY=°(X;2)].
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Quantum Steenrod operations and properties
It is more convenient to consider this as a set of operators Q% for b € H*(X;K):

Q% : QH™(X;K)[t, 6] — QH* (X; K)[t, 0] (1)

defined from counts of parametrized P! with Z/p-symmetry, i.e. t,0 are identified
with the equivariant parameters for discrete loop rotation.
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It is more convenient to consider this as a set of operators Q% for b € H*(X;K):

Q% : QH™(X;K)[t, 6] — QH* (X; K)[t, 0] (1)

defined from counts of parametrized P! with Z/p-symmetry, i.e. t,0 are identified
with the equivariant parameters for discrete loop rotation.

o Q%y(1) = Qst(b),
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Quantum Steenrod operations and properties
It is more convenient to consider this as a set of operators Q% for b € H*(X;K):

Q% : QH™(X;K)[t, 6] — QH* (X; K)[t, 0] (1)

defined from counts of parametrized P! with Z/p-symmetry, i.e. t,0 are identified
with the equivariant parameters for discrete loop rotation.

o Q%y(1) = Qst(b),

——
o Q2b|t,020(_) =bx---*kbx (—),
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Quantum Steenrod operations and properties
It is more convenient to consider this as a set of operators Q% for b € H*(X;K):

Q% : QH™(X;K)[t, 6] — QH* (X; K)[t, 0] (1)

defined from counts of parametrized P! with Z/p-symmetry, i.e. t,0 are identified
with the equivariant parameters for discrete loop rotation.

o Q%y(1) = Qst(b), QEplqa—0(=) = St(b) — (=),

/_L p(p—1) bl
) Q2b|t,020(_) :b**b* (—), QEbOQEb/ = (—1) 2 I ” IQEb*b/.
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Covariant constancy

A key property of Q¥ is their compatibility with the quantum connection. These
are operators indexed by a € H?(X;Z) given by

Vo =10, +a*: QH"(X;K)[t,0] — QH*(X;K)[t, 0]
where 9,(¢?) = (a- A)¢?,
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Covariant constancy

A key property of Q¥ is their compatibility with the quantum connection. These
are operators indexed by a € H?(X;Z) given by

Vo =10, +a*: QH"(X;K)[t,0] — QH*(X;K)[t, 0]

where 9, (q?) = (a - A)g?, fitting into

QH*(X;K)[t,6] — = QH*(X:K)[t,6]

Jro=0 =

QH*(X;k) ——— QH*(X;K)
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Covariant constancy

A key property of Q¥ is their compatibility with the quantum connection. These
are operators indexed by a € H?(X;Z) given by

Vo =10, +a*: QH"(X;K)[t,0] — QH*(X;K)[t, 0]

where 9, (q?) = (a - A)g?, fitting into

QH*(X;K)[t,6] — = QH*(X:K)[t,6]

Jro=0 =

QH*(X;k) ——— QH*(X;K)

Theorem (Seidel-Wilkins '22)

Quantum Steenrod operations are covariantly constant, i.e.

[Va, QZ(,] =0.
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Covariant constancy

A key property of Q¥ is their compatibility with the quantum connection. These
are operators indexed by a € H?(X;Z) given by

Vo =10, +a*: QH"(X;K)[t,0] — QH*(X;K)[t, 0]
where 9,(¢?) = (a - A)g?, fitting into

QH*(X;K)[t,6] — = QH*(X:K)[t,6]

Jro=0 =

QH*(X;k) ——— QH*(X;K)

Theorem (Seidel-Wilkins '22)

Quantum Steenrod operations are covariantly constant, i.e.

[Va, QZ(,] =0.

This is a differential relation satisfied by Q3.
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Main question

Covariant constancy cannot determine QX it doesn't tell anything about
coefficients of ¢P4. That is, degrees supporting p-fold multiple covered curves are
the most interesting part of Q.
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Main question

Covariant constancy cannot determine QX it doesn't tell anything about
coefficients of ¢P4. That is, degrees supporting p-fold multiple covered curves are
the most interesting part of Q.

Question

Can one compute QX in the range that supports p-fold multiple covers?
More philosophically, what is the role of quantum Steenrod operations in genus
zero enumerative geometry?

The answer arised through studying a rich class of examples coming from
representation theory, known as symplectic resolutions.

Jae Hee Lee (Stanford) Quantum Steenrod vs. p-curvature Dec 20 2024 5/12



Main result: QSt = p-curvature

We consider symplectic resolutions as targets X. For now, we just say that these
are smooth non-compact Calabi—Yau manifolds equipped with Hamiltonian
actions of a torus 7.

Example

X =Ty, (Ph) (with its Kahler form), together with two commuting S*-actions,
one induced by rotation of the base P! and one given by rotation of the cotangent
fibers.
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Main result: QSt = p-curvature

We consider symplectic resolutions as targets X. For now, we just say that these
are smooth non-compact Calabi—Yau manifolds equipped with Hamiltonian
actions of a torus 7.

Example

X =Ty, (Ph) (with its Kahler form), together with two commuting S*-actions,
one induced by rotation of the base P! and one given by rotation of the cotangent
fibers.

v

Theorem (L. '23)

Let X be a (conical) symplectic resolution with isolated T-fixed points and
semisimple quantum cohomology. Then forb € H*(X;Z),

Q¥ = (Vy)P ="' Vy. (2)
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Main result: QSt = p-curvature

We consider symplectic resolutions as targets X. For now, we just say that these
are smooth non-compact Calabi—Yau manifolds equipped with Hamiltonian
actions of a torus 7.

Example

X =Ty, (Ph) (with its Kahler form), together with two commuting S*-actions,
one induced by rotation of the base P! and one given by rotation of the cotangent
fibers.

v

Theorem (L. '23)

Let X be a (conical) symplectic resolution with isolated T-fixed points and
semisimple quantum cohomology. Then forb € H*(X;Z),

Q% = (V)P — 771V, (2)

The right hand side is the p-curvature of the quantum connection VbT of X.
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p-curvature

The p-curvature is a fundamental invariant one can define for any connection in
characteristic p. Usual curvature [V, V| — V) measures the failure of V to

preserve the Lie bracket; p-curvature measures the failure of V to preserve pth
powers.

For the quantum connection, this should take the form

By =V — 71y,
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p-curvature

The p-curvature is a fundamental invariant one can define for any connection in

characteristic p. Usual curvature [V, V| — V) measures the failure of V to

preserve the Lie bracket; p-curvature measures the failure of V to preserve pth
powers.

For the quantum connection, this should take the form
By =V — 71y,
Observe the similarity with the total Steenrod power map on b € H?(X):

St(b) = bP — tP~1b.
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p-curvature

The p-curvature is a fundamental invariant one can define for any connection in
characteristic p. Usual curvature [V, V| — V) measures the failure of V to
preserve the Lie bracket; p-curvature measures the failure of V to preserve pth
powers.

For the quantum connection, this should take the form

By =V — 71y,
Observe the similarity with the total Steenrod power map on b € H?(X):
St(b) = bP — tP~1b.

This observation shows that p-curvature also satisfies the properties of QX;:
P

—
® Fylgazo(=) =5St(0) — (=), Fileo=o(=) =bx---xbx ().
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Proof strategy

Result follows from these observations and a new compatibility relation:

Theorem (L. '24)

Operations QY and F}| commute with the shift operators

S(o) : QH7(X; K)[t, 0] — QHT(X;K)[¢, 6]
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Proof strategy

Result follows from these observations and a new compatibility relation:

Theorem (L. '24)

Operations QY and F}| commute with the shift operators

S(o) : QH7(X; K)[t, 0] — QHT(X;K)[¢, 6]

The final theorem QYT = Fl' can be read in two ways:
(i) computation of quantum Steenrod operations in all degrees,
(i) moduli description of p-curvature.
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QSt = p-curvature as general philosophy

The result leads to the conjecture that quantum Steenrod = p-curvature is a more
general phenomenon, which is subject of current investigation:

Theorem (Seidel-Pomerleano, forthcoming)
For X closed monotone, Q% (x) = F,(x)- J
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QSt = p-curvature as general philosophy

The result leads to the conjecture that quantum Steenrod = p-curvature is a more
general phenomenon, which is subject of current investigation:

Theorem (Seidel-Pomerleano, forthcoming)

For X closed monotone, Q% (x) = F,(x)-

Theorem (Chen '24)

For X closed monotone, the unramified exponential type conjecture holds for the
quantum t-connection. (Uses Q% (x) — F¢,(x) is nilpotent [Seidel].)
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QSt = p-curvature as general philosophy

The result leads to the conjecture that quantum Steenrod = p-curvature is a more
general phenomenon, which is subject of current investigation:

Theorem (Seidel-Pomerleano, forthcoming)

For X closed monotone, Q% (x) = F,(x)-

Theorem (Chen '24)

For X closed monotone, the unramified exponential type conjecture holds for the
quantum t-connection. (Uses Q% (x) — F¢,(x) is nilpotent [Seidel].)

Theorem (Rezchikov, forthcoming)
For X C P™ a CY hypersurface, Q¥ = Fg for H € H*(X).

General case is related to the conjectural Frobenius structure on the p-adic
quantum connection.
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Symplectic resolutions and gauge theory

Let us further discuss the T-equivariant quantum Steenrod operations of
symplectic resolutions, and their role in representation theory.

Definition

A symplectic resolution is a smooth holomorphic symplectic manifold (X, 2) such
that the affinization map X — Spec H°(X, Ox) is a resolution of singularities
(proper and birational).
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Symplectic resolutions and gauge theory

Let us further discuss the T-equivariant quantum Steenrod operations of
symplectic resolutions, and their role in representation theory.

Definition
A symplectic resolution is a smooth holomorphic symplectic manifold (X, Q) such

that the affinization map X — Spec H°(X, Ox) is a resolution of singularities
(proper and birational).

Example
Recall T;:,(P'); this is a blowup of the affine quadric cone (an A;-singularity)

T*P! — {2 + yz = 0} C C3 =503,

These are often advertised as “Lie algebras of the 21st century.”
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3D mirror symmetry

A huge source of such symplectic resolutions come from gauge theory: fix a
reductive group G and a complex G-representation N.

From this data we can construct two different symplectic resolutions (or
affinizations thereof):
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3D mirror symmetry

A huge source of such symplectic resolutions come from gauge theory: fix a
reductive group G and a complex G-representation N.

From this data we can construct two different symplectic resolutions (or
affinizations thereof):

Example
The hyperKahler reduction X3, = T*N/J/G is the Higgs branch. J
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3D mirror symmetry

A huge source of such symplectic resolutions come from gauge theory: fix a
reductive group G and a complex G-representation N.

From this data we can construct two different symplectic resolutions (or
affinizations thereof):

Example
The hyperKahler reduction X3, = T*N/J/G is the Higgs branch.

Example

Braverman—Finkelberg—Nakajima construction X¢ = H.G[[z]] (Rg ) is the
Coulomb branch.

One formulation of the 3D mirror symmetry program posits that the quantum
connection of the Higgs branch can be identified with the D-module of twisted
traces of the Coulomb branch.
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3D mirror symmetry in positive characteristic

We extend the 3D mirror symmetry program to positive characteristic:

Theorem (Bai-L., forthcoming)

Let G be abelian (both X3;, X¢ are hypertoric varieties) and k = F,,.
Then there is an isomorphism

D" (X¢; k) = QH7 (X K)

compatible with the action of “Frobenius-constant” quantizations on D" (X¢; K)
and the action of quantum Steenrod operators QE{ on QH*(X4;K).
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3D mirror symmetry in positive characteristic

We extend the 3D mirror symmetry program to positive characteristic:

Theorem (Bai-L., forthcoming)

Let G be abelian (both X3;, X¢ are hypertoric varieties) and k = F,,.
Then there is an isomorphism

D" (X¢; k) = QH7 (X K)

compatible with the action of “Frobenius-constant” quantizations on D" (X¢; K)
and the action of quantum Steenrod operators QE{ on QH*(X4;K).

The proof goes through quantum Steenrod = p-curvature on the Higgs side, and
identifying the multiplication action of characteristic p quantizations on the
Coulomb side with the p-curvature.
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Thank you!

Quantum Steenrod



Frobenius-constant quantizations

Definition (Bezrukavnikov—Kaledin)

Suppose A is a quantization (i.e. h-deformation) of a Poisson variety X in
characteristic p. The data of an algebra map

s:0(X)M 5 Z(4)

such that s(z) = 2P (mod %) makes A a Frobenius-constant quantization.

Theorem (Lonergan, '17)

BFN Coulomb branches X admit a structure of a Frobenius-constant
quantization, where Ac is given by G[z] x C*-equivariant BM-homology. The
construction of the map s uses Steenrod operations!
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D-module of twisted traces

Given Coulomb branch X in nice situations (in particular, for hypertoric varieties
or Springer resolution), there is a universal deformation X and its quantization
Ac. Note that there is a Hamiltonian T-action on X which induces a grading on
Ac by the character lattice X*(T).

Definition (Kamnitzer—McBreen—Proudfoot '18, Etingof-Stryker '19)

The D-module of twisted traces is

D(Xe) = Ao[q?]/(ab — ¢*ba:a € Ay, be A_y), A& X*(T).

Given a Frobenius-constant quantization, s(z) € Z(Ap) for z € O(X), acts on
D" (X¢) by multiplication.
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