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when

Va € C,sys(a)™! < CeVol(a)

Motivations:
Systolic inequalities in metric geometry

Relation with symplectic capacities of convex domains
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State of the art

No global systolic inequalities:

Theorem (Abbondandolo, Bramham, Hryniewicz, Salom&o /

Saglam)

Let (M, &) a contact manifold, and € > 0. There exists a contact
form o on M with kera = &, Vol(a) < € and sys(a) > 1.

A local inequality around Zoll contact forms:

Zoll contact forms: all Reeb orbits are periodic, with same minimal
period

Theorem (Alvarez—Paiva, Balacheff / Abbondandolo, Benedetti)

. . Lo .
A contact form is a local maximizer of o Sy\igol‘()a) if and only if

it is Zoll.
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Slinvariant contact forms

Framework:

M(g, €) = unique S'-principal bundle with Euler number
e € Z over an oriented surface with genus g .

« is invariant is Lxo = 0, where X generates the S!-action.
Q(g,e) = {« positive, invariant on M(g,e)}

Lutz classifies S'-invariant contact structures in dimension
three:

Q(g, e) has infinitely many components, with a combinatorial
description.



Main results



Main results

Theorem A (V. 2024)

There is a constant C > 0 such that for all g € N, e # 0,

Va € Q(g,e), sys(a)® < CVol(a).

5/8



Main results

Theorem A (V. 2024)

There is a constant C > 0 such that for all g € N, e # 0,

Va € Q(g,e), sys(a)® < CVol(a).

e Similar statement on Seifert bundles

5/8



Main results

Theorem A (V. 2024)

There is a constant C > 0 such that for all g € N, e # 0,

Va € Q(g,e), sys(a)® < CVol(a).

e Similar statement on Seifert bundles

e 7/kZ-invariance is not enough.

5/8



Main results

Theorem A (V. 2024)

There is a constant C > 0 such that for all g € N, e # 0,

Va € Q(g,e), sys(a)® < CVol(a).

e Similar statement on Seifert bundles
e 7/kZ-invariance is not enough.

e On trivial bundles: unclear.

5/8



Main results

Theorem A (V. 2024)
There is a constant C > 0 such that for all g € N, e # 0,

Va € Q(g,e), sys(a)® < CVol(a).

Similar statement on Seifert bundles

Z/ kZ-invariance is not enough.

On trivial bundles: unclear.

We get a sharp inequality under more restrictive assumptions.
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Main results

Further assumptions: tight invariant contact forms and g = 0

Theorem B (V. 2024)

o If e <0oreec{1;2} then

Vo € QUEM(0, o), sys(a)? < %Vol(a)

and equality if and only if « is Zoll.
e if e > 2 then

: 1
Vo € QUM (0,e), sys(a)? < 5VO|(O&)

1 . -
and 3 is optimal.
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Sketch of proof (Theorem A + B)

e Construct a S'-invariant surface of section (not global, finite
union of embedded cylinders)

o For Theorem B: the surface of section is connected, and a
direct argument applies.

e For Theorem A: by contradiction, let o € Q(g, e) with
arbitrarily large systolic ratio

Technical lemma: on each component of the surface of section
of «, the first-return map is C'-close to a uniform rotation.

The only e compatible with that property is 0.



Thank you!!



