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Systolic inequalities

Systole: sys(α) = shortest period of a closed Reeb orbit.

A class C of contact forms on M2n+1 satisfies a systolic inequality
when

∀α ∈ C, sys(α)n+1 ≤ CCVol(α)

Motivations:
Systolic inequalities in metric geometry

Relation with symplectic capacities of convex domains
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State of the art

No global systolic inequalities:

Theorem (Abbondandolo, Bramham, Hryniewicz, Salomão /
Sağlam)

Let (M, ξ) a contact manifold, and ϵ > 0. There exists a contact
form α on M with kerα = ξ, Vol(α) < ϵ and sys(α) ≥ 1.

A local inequality around Zoll contact forms:

Zoll contact forms: all Reeb orbits are periodic, with same minimal
period

Theorem (Álvarez–Paiva, Balacheff / Abbondandolo, Benedetti)

A contact form is a local maximizer of α 7→ sys(α)n+1

Vol(α) if and only if
it is Zoll.
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S1-invariant contact forms

Framework:

• M(g , e) = unique S1-principal bundle with Euler number
e ∈ Z over an oriented surface with genus g .

• α is invariant is LXα = 0, where X generates the S1-action.

• Ω(g , e) = {α positive, invariant on M(g , e)}

• Lutz classifies S1-invariant contact structures in dimension
three:

Ω(g , e) has infinitely many components, with a combinatorial
description.
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Main results

Theorem A (V. 2024)

There is a constant C > 0 such that for all g ∈ N, e ̸= 0,

∀α ∈ Ω(g , e), sys(α)2 ≤ CVol(α).

• Similar statement on Seifert bundles

• Z/kZ-invariance is not enough.

• On trivial bundles: unclear.

• We get a sharp inequality under more restrictive assumptions.
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Main results

Further assumptions: tight invariant contact forms and g = 0

Theorem B (V. 2024)

• If e < 0 or e ∈ {1; 2} then

∀α ∈ Ωtight(0, e), sys(α)2 ≤ 1
|e|

Vol(α)

and equality if and only if α is Zoll.

• if e > 2 then

∀α ∈ Ωtight(0, e), sys(α)2 <
1
2
Vol(α)

and 1
2 is optimal.
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Sketch of proof (Theorem A + B)

• Construct a S1-invariant surface of section (not global, finite
union of embedded cylinders)

• For Theorem B: the surface of section is connected, and a
direct argument applies.

• For Theorem A: by contradiction, let α ∈ Ω(g , e) with
arbitrarily large systolic ratio

Technical lemma: on each component of the surface of section
of α, the first-return map is C1-close to a uniform rotation.

The only e compatible with that property is 0.
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Thank you!!
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