Systolic inequalities for $\mathbb{S}^1\text{-}\text{invariant}$ contact forms in dimension three

Simon Vialaret (Université Paris-Saclay / Ruhr-Universität Bochum)

December 19, 2024

Systole: $sys(\alpha) = shortest period of a closed Reeb orbit.$

Systole: $sys(\alpha) = shortest period of a closed Reeb orbit.$

A class ${\mathcal C}$ of contact forms on M^{2n+1} satisfies a systolic inequality when

$$\forall \alpha \in \mathcal{C}, \mathsf{sys}(\alpha)^{n+1} \leq C_{\mathcal{C}}\mathsf{Vol}(\alpha)$$

Systole: $sys(\alpha) = shortest period of a closed Reeb orbit.$

A class ${\mathcal C}$ of contact forms on M^{2n+1} satisfies a systolic inequality when

$$\forall \alpha \in \mathcal{C}, \mathsf{sys}(\alpha)^{n+1} \leq C_{\mathcal{C}}\mathsf{Vol}(\alpha)$$

Motivations:

Systolic inequalities in metric geometry

Systole: $sys(\alpha) = shortest period of a closed Reeb orbit.$

A class ${\mathcal C}$ of contact forms on M^{2n+1} satisfies a systolic inequality when

$$\forall \alpha \in \mathcal{C}, \mathsf{sys}(\alpha)^{n+1} \leq C_{\mathcal{C}}\mathsf{Vol}(\alpha)$$

Motivations:

Systolic inequalities in metric geometry Relation with symplectic capacities of convex domains

State of the art

No global systolic inequalities:

Theorem (Abbondandolo, Bramham, Hryniewicz, Salomão / Sağlam)

Let (M, ξ) a contact manifold, and $\epsilon > 0$. There exists a contact form α on M with ker $\alpha = \xi$, $Vol(\alpha) < \epsilon$ and $sys(\alpha) \ge 1$.

State of the art

No global systolic inequalities:

Theorem (Abbondandolo, Bramham, Hryniewicz, Salomão / Sağlam)

Let (M, ξ) a contact manifold, and $\epsilon > 0$. There exists a contact form α on M with ker $\alpha = \xi$, $Vol(\alpha) < \epsilon$ and $sys(\alpha) \ge 1$.

A local inequality around Zoll contact forms:

Zoll contact forms: all Reeb orbits are periodic, with same minimal period

No global systolic inequalities:

Theorem (Abbondandolo, Bramham, Hryniewicz, Salomão / Sağlam)

Let (M, ξ) a contact manifold, and $\epsilon > 0$. There exists a contact form α on M with ker $\alpha = \xi$, $Vol(\alpha) < \epsilon$ and $sys(\alpha) \ge 1$.

A local inequality around Zoll contact forms:

Zoll contact forms: all Reeb orbits are periodic, with same minimal period

Theorem (Álvarez–Paiva, Balacheff / Abbondandolo, Benedetti) A contact form is a local maximizer of $\alpha \mapsto \frac{\operatorname{sys}(\alpha)^{n+1}}{\operatorname{Vol}(\alpha)}$ if and only if it is Zoll.

Framework:

 M(g, e) = unique S¹-principal bundle with Euler number e ∈ Z over an oriented surface with genus g.

Framework:

- M(g, e) = unique S¹-principal bundle with Euler number e ∈ Z over an oriented surface with genus g.
- α is *invariant* is $\mathcal{L}_X \alpha = 0$, where X generates the \mathbb{S}^1 -action.

Framework:

- M(g, e) = unique S¹-principal bundle with Euler number e ∈ Z over an oriented surface with genus g.
- α is *invariant* is $\mathcal{L}_X \alpha = 0$, where X generates the \mathbb{S}^1 -action.
- $\Omega(g, e) = \{ \alpha \text{ positive, invariant on } M(g, e) \}$

Framework:

- M(g, e) = unique S¹-principal bundle with Euler number e ∈ Z over an oriented surface with genus g.
- α is *invariant* is $\mathcal{L}_X \alpha = 0$, where X generates the \mathbb{S}^1 -action.
- $\Omega(g, e) = \{ \alpha \text{ positive, invariant on } M(g, e) \}$
- $\bullet\,$ Lutz classifies $\mathbb{S}^1\mbox{-invariant}$ contact structures in dimension three:

 $\Omega(g, e)$ has infinitely many components, with a combinatorial description.

Theorem A (V. 2024)

There is a constant C > 0 such that for all $g \in \mathbb{N}, e \neq 0$,

 $\forall \alpha \in \Omega(g, e), \quad \operatorname{sys}(\alpha)^2 \leq C \operatorname{Vol}(\alpha).$

Theorem A (V. 2024)

There is a constant C > 0 such that for all $g \in \mathbb{N}, e \neq 0$,

$$\forall \alpha \in \Omega(g, e), \quad \operatorname{sys}(\alpha)^2 \leq C \operatorname{Vol}(\alpha).$$

• Similar statement on Seifert bundles

Theorem A (V. 2024)

There is a constant C > 0 such that for all $g \in \mathbb{N}, e \neq 0$,

$$\forall \alpha \in \Omega(g, e), \quad \operatorname{sys}(\alpha)^2 \leq C \operatorname{Vol}(\alpha).$$

- Similar statement on Seifert bundles
- $\mathbb{Z}/k\mathbb{Z}$ -invariance is not enough.

Theorem A (V. 2024)

There is a constant C > 0 such that for all $g \in \mathbb{N}, e \neq 0$,

$$\forall \alpha \in \Omega(g, e), \quad \operatorname{sys}(\alpha)^2 \leq C \operatorname{Vol}(\alpha).$$

- Similar statement on Seifert bundles
- $\mathbb{Z}/k\mathbb{Z}$ -invariance is not enough.
- On trivial bundles: unclear.

Theorem A (V. 2024)

There is a constant C > 0 such that for all $g \in \mathbb{N}, e \neq 0$,

$$\forall \alpha \in \Omega(g, e), \quad \operatorname{sys}(\alpha)^2 \leq C \operatorname{Vol}(\alpha).$$

- Similar statement on Seifert bundles
- $\mathbb{Z}/k\mathbb{Z}$ -invariance is not enough.
- On trivial bundles: unclear.
- We get a sharp inequality under more restrictive assumptions.

Further assumptions: tight invariant contact forms and g = 0

Further assumptions: tight invariant contact forms and g = 0

Theorem B (V. 2024)

• If e < 0 or $e \in \{1; 2\}$ then

$$\forall \alpha \in \Omega^{\mathsf{tight}}(0, e), \quad \mathsf{sys}(\alpha)^2 \leq \frac{1}{|e|} \mathsf{Vol}(\alpha)$$

and equality if and only if α is Zoll.

Further assumptions: tight invariant contact forms and g = 0

Theorem B (V. 2024)

• If e < 0 or $e \in \{1; 2\}$ then

$$orall lpha \in \Omega^{\mathsf{tight}}(\mathsf{0}, e), \quad \mathsf{sys}(lpha)^2 \leq rac{1}{|e|}\mathsf{Vol}(lpha)$$

and equality if and only if α is Zoll.

• if e > 2 then

$$orall lpha \in \Omega^{\mathsf{tight}}(\mathsf{0}, e), \quad \mathsf{sys}(lpha)^2 < rac{1}{2}\mathsf{Vol}(lpha)$$

and $\frac{1}{2}$ is optimal.

• Construct a S¹-invariant surface of section (not global, finite union of embedded cylinders)

- Construct a S¹-invariant surface of section (not global, finite union of embedded cylinders)
- For Theorem B: the surface of section is connected, and a direct argument applies.

- Construct a S¹-invariant surface of section (not global, finite union of embedded cylinders)
- For Theorem B: the surface of section is connected, and a direct argument applies.
- For Theorem A: by contradiction, let α ∈ Ω(g, e) with arbitrarily large systolic ratio

- Construct a S¹-invariant surface of section (not global, finite union of embedded cylinders)
- For Theorem B: the surface of section is connected, and a direct argument applies.
- For Theorem A: by contradiction, let α ∈ Ω(g, e) with arbitrarily large systolic ratio

Technical lemma: on each component of the surface of section of α , the first-return map is C^1 -close to a uniform rotation.

- Construct a S¹-invariant surface of section (not global, finite union of embedded cylinders)
- For Theorem B: the surface of section is connected, and a direct argument applies.
- For Theorem A: by contradiction, let α ∈ Ω(g, e) with arbitrarily large systolic ratio

Technical lemma: on each component of the surface of section of α , the first-return map is C^1 -close to a uniform rotation.

The only e compatible with that property is 0.

Thank you!!