Symplectic 700000000

Breed on arXiv: 2410. 11478

The precise essemption is not be importent, it just  
allows for 
$$2H_2$$
-typingtion Four chonology to ensite  
Note, thischi-Portulli show this bound is  
strictly shonger thus non-free honology bounds.  
Now, which if we want to clisten the  
Hamiltonian solopic hypothesis?  
Consider the quantum Cup product action  
on Layrangian Free conomology:  
HF(Loilt; 7X]\_2) BH\*(Lo; 7X]\_2)  
 $\beta \otimes d$   
Courts psuedohidonophic Strips to incidence relater  
on the boundary of the strip

Spue of Viorabby Co-product:  

$$X \rightarrow XvX$$
.  
Thurnern (Prins 1994):  
 $R_{ff} \simeq S^{p}$  or  $R_{fp}$  is a  $\overline{(c_{g} + H \ space - 1)}$   
 $R_{ff} \simeq S^{p}$  or  $R_{fp}$  is a  $\overline{(c_{g} + H \ space - 1)}$   
 $R_{ff} \simeq S^{p}$  or  $R_{fp}$  is a  $\overline{(c_{g} + H \ space - 1)}$   
 $R_{ff} \simeq S^{p}$  or  $R_{fp}$  is a  $\overline{(c_{g} + H \ space - 1)}$   
 $R_{ff} \simeq S^{p}$  or  $R_{fp}$  is a  $\overline{(c_{g} + H \ space - 1)}$   
 $R_{ff} \simeq S^{p}$  or  $R_{fp}$  is  $S \simeq \overline{(c_{g} + H \ space - 1)}$   
 $R_{ff} \simeq S^{p}$  or  $R_{fp}$  is  $S \simeq \overline{(c_{g} + H \ space - 1)}$   
 $R_{ff} \simeq S^{p}$  or  $R_{fp}$  is  $S \simeq \overline{(c_{g} + H \ space - 1)}$   
 $R_{ff} \simeq S^{p}$  or  $R_{fp}$  is  $S \simeq \overline{(c_{g} + H \ space - 1)}$   
 $R_{ff} \simeq S^{p}$  is  $j$ -th Steened square, via shares  
 $R_{f} \sim S^{p}$  is  $j$ -th Steened square, via shares  
 $R_{f} \sim S^{p}$  is  $j$ -th Steened square, via shares  
 $R_{f} \sim S^{p}$  is  $j$ -th Steened square, via shares  
 $R_{f} \sim S^{p}$  is  $j$ -th Steened square, via shares  
 $R_{f} \sim S^{p}$  is  $j$ -th Steened square, via shares  
 $R_{f} \sim S^{p}$  is  $j$ -th Steened square, via shares  
 $R_{f} \sim S^{p}$  is  $j$ -th Steened square, via shares  
 $R_{f} \sim S^{p}$  is  $S \simeq R_{f} \sim S^{p}$  is  $S \simeq R_{f} \sim S^{p}$ .  
Here  $R_{f} \sim R_{f} \sim S^{p} \sim S^{p} \sim S^{p}$  is  $S \sim R_{f} \sim S^{p} \sim S^{p}$ 

The prain Notivistors of the previous treament to the  
tallowing result.  
Theorem (B.):  
Theorem (B.):  
Theorem (B.):  
Suppose A3, 
$$\exists \leq r_{1,s} \leq r \ll 1$$
,  $r_{1,s} \geq (n-1)/2$ ,  $\notin$   
 $i \equiv \xi \approx_{3} \leq r HF*(L_{n+1,i} R/2) \leq i$ .  
Note, simultary the construction of the co

Classically, I an embedding 
$$G^{2} \rightarrow R^{2} \rightarrow S^{7}$$
.  
Now, plumb together two TPS T's along j disjoint  $G^{2}s$ .  
The results is a symplectic H-manifold of up (ho, l, ),  
Liz  $\leq S^{7}$ , st.  
Clausely.  
The  $G^{2}$  Lo  $L_{1} = G^{2} \sqcup \cdots \amalg G^{2}$   
Thus is wind gives the Souther by  $S = T_{1}^{A}$ .  
Thus is wind gives the Souther by  $S = T_{1}^{A}$ .  
Thus is wind gives the Souther by  $S = T_{1}^{A}$ .

