
Kähler compactification of Cn and Reeb dynamics

Zhengyi Zhou

AMSS CAS

arXiv:2409.10275, joint with Chi Li

Symplectic Zoominar
2025-1-17

Zhengyi Zhou (AMSS, CAS) Kähler compactification of Cn Symplectic Zoominar 2025-1-17 1 / 22



Compactification of Cn

We say (X , D) is compactification of Cn, if X is a smooth complex space and D a
closed analytic subspace such that X\D ≃ Cn.

Example
1 When n = 1, (X , D) = (P1,P0);
2 When n = 2, (X , D) = (P2,P1), (Q2, Q2 ∩ H), where Q2 is a quadratic

surface in P3 and H is a hyperplane tangent to Q2. Q2 ∩ H is not irreducible.
There are many more.

3 When n = 3, (X , D) = (P3,P3), (Q3, Q3 ∩ H) . . .. Now Q3 ∩ H is the
projective cone over a quadratic curve, which is now irreducible.

We will call (Pn,Pn−1) the standard compactification.
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Hirzebruch’s question

Question (Hirzebruch, 1954)
Classify all compactifications of Cn subject to the condition b2(X ) = 1, or
equivalently, D is irreducible.

1 When n ≤ 2, such a compactification must be standard.
2 When n = 3, we have a complete classification if X is projective (it is closely

related to the classification of Fano manifolds as X must be Fano).

Question
Classification is too hard, but can we characterize the standard compactification?
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Characterizing the standard compactification

Theorem (Brenton-Morrow, 78)
When n = 3 and D is smooth, then then (X , D) is standard.

Conjecture (Brenton-Morrow, 78)
If D is smooth, then (X , D) is standard.

Brenton-Morrow showed that it suffices to prove D ≃ Pn−1.
In the 89 survey of Peternell and Schneider, they proposed to solve the problem in
two steps by first address the projective case. n ≤ 5, van de Ven (62), n ≤ 6,
Fujita (80).

Theorem (Li-Z. 24)
The conjecture is true if X is Kähler.

Remark
Peternell posted a short proof for the n-even case shortly after our post.
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Orbifold compactification

We can consider the orbifold analogue where X is a smooth orbifold and D is a
smooth suborbifold.

Example
(X , D) = (P(1, w1, . . . , wn),P(w1, . . . , wn)) for wi ∈ N+.

Conjecture
The weighted projective space pairs are the only compactification of Cn if both
X , D are both smooth orbifolds.

Remark
D being a suborbifold is crucial, otherwise (Q3, Q3 ∩ H ≃ P(1, 1, 2)) is also a
compactification.

But why orbifolds?
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Asymptotically conical metric

Definition
(M2n−1, g , α) is called Sasaki if the cone (R+ × M, dr2 + r2g , r2dα + 2rdr ∧ α) is
Kähler. We use (C, g0, J0) to denote this Kähler cone.

Definition
A complete Kähler manifold (W , g , J) is called asymptotically conical (AC) with
the asymptotical cone (C, g0, J0) if there exists a compact subset K ⊂ W and a
diffeomorphism Φ : {r > 1} → W \ K such that Φ∗g → g0 and Φ∗J → J0 as
r → ∞.
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A detour-contact manifolds and their symplectic fillings

Definition
(M2n−1, ξ) is called a contact manifold, if ξ ⊂ TM and there exists α ∈ Ω1(M)
such that

1 ξ = ker α;
2 α ∧ (dα)n−1 ̸= 0.

The Reeb vector field Rα is characterized by α(Rα) = 1 and ιRαdα = 0.

Contact manifolds are natural boundaries of symplectic manifolds.

Definition
(W , λ) is a Liouville cobordism from (M−, ξ−) to (M+, ξ+) if

1 λ ∈ Ω1(W ) and dλ is a symplectic form;
2 ∂W = M− ⊔ M+, λ|M± are contact forms for ξ±.
3 The Liouville vector field defined by ιX dλ = λ points outward/inward along

M+/−.
A Liouville cobordism from ∅ to M is a Liouville filling of M.
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Orbifold compactification of asymptotically conical metrics

In the Sasaki case, ξ is the complex tangency and α = −r−1dCr , which is called a
conic contact form.

The Reeb vector field is a holomorphic Killing vector field,
which generates a (C∗)m action on the Kähler cone.

Theorem (Li 20, Conlon-Hein 24)
Orbifold compactification appears naturally in the compactification of domains
with AC metrics. If m = 1, then we add in a divisor M/⟨R⟩. If m > 1, we add in a
divisor M/⟨R ′⟩, where R ′ is a rational direction close to R.
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A conjecture of Tian

Conjecture (Tian 06)
A complete CY metric on Cn with maximal volume growth must be flat.

The first counterexample is due to Yang Li

Theorem (Li 19)
There exists a complete CY metric on C3 with a singular tangent cone C2/Z2 × C
at infinity.

Similar examples in higher dimensions were found by Szekelyhidi.
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A conjecture of Tian

AC metrics automatically have maximal volume growth and Li’s example is “ AC”
but with a singular but codimension 1 link.

Conjecture
Any complete AC CY metric on Cn must be flat.

Theorem (Li-Z. 24)
The above conjecture holds if the Shokurov conjecture holds (for Fano cone
singularities). In particular, the above conjecture holds in dimension 3.
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Minimal discrepancy and the Shokurov conjecture

Let X be a normal Q-Gorenstein variety and o be an isolated singularity. Consider
a resolution π : X̃ → X of the singularity o, we have

K = π∗KX +
∑

aiEi

where Ei are exceptional divisors.

Definition (Minimal discrepancy)
md(o) = min{ai} if min{ai} ≥ −1, and −∞ if min{ai} < −1

Conjecture (Shokurov 02)
md(o) ≤ dimC X − 1 and when the equality holds, o is a smooth point.

It is true for up to dimension 3 and some special cases, e.g. complete intersection.
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Minimal discrepancy for topologists

Given an isolated singularity o, the link M is the intersection of X with a small
sphere centered around o. From now on, we use X and X̃ to denote the
neighborhood bounded by M.

M is naturally a contact manifold, whose contact structure ξ is the CR structure,
i.e. the maximal complex subspace of TM.

Q-Gorenstein implies that cQ
1 (ξ) = 0. Then we may view cQ

1 (X̃ ) as in
H2(X̃ , M;Q), then we can write

cQ
1 (X̃ ) =

∑
−aiLD(Ei).

Then md(o) = min{ai} if min{ai} ≥ −1, and −∞ if min{ai} < −1.
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A simple example

Let D be a Fano manifold and −KX = rL for r > 0 ∈ Q. We consider

X = Spec ⊕∞
m=0 H0(D, Lm)

i.e. X is obtained by contracting the zero section in L−1. Then md(o) = r − 1.

Definition
We say (X , o) is a Fano cone singularity if D is a Fano orbifold and L is ample,
and X = Spec ⊕∞

m=0 H0(D, Lm).

The maximal index r is called the Fano index. In Brenton-Morrow’s conjecture,
because of the Kobayashi-Ochai Theorem, it suffices to prove the Fano index of D
(the smooth divisor) is n.
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The main technical result

Theorem (Li-Z. 24)
Let o ∈ X be an isolated Fano cone singularity of dimension n. For any
quasi-regular conic contact form η on the contact link M, we have the following
formula for the minimal discrepancy:

2md(o) = inf
γ

lSFTη(γ) > −2.

Here γ on the right ranges over all closed Reeb orbits of η. If moreover M admits
a Liouville filling W such that cQ

1 (W ) = 0, then we have

2md(o) = inf{d | SH+,S1

d (W ;Q) ̸= 0} + n − 3

where SH+,S1

∗ (W ;Q) denotes the Q-coefficient S1-equivariant positive symplectic
homology of the Liouville filling W .
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Conley-Zehnder index

In our case, cQ
1 (ξ) = 0, we can trivialize detC ⊕Nξ. Hence we can define

µQ
CZ (γ) = 1

N µCZ (⊕Nρ(t))

where ρ(t) is the linearized flow.

Let W be a symplectic filling of (M, ξ), we can view cQ
1 (W ) as in H2(W , M;Q).

Let u be disk in W with boundary γ, then we have

µQ
CZ (γ) = µu

CZ − 2⟨cQ
1 (W ), [u]⟩.

µQ
LCZ : lower semi-continuous extension of µQ

CZ .

lSFT(γ) := µLCZ (γ) + n − 3.
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Why should they be related?

Theorem (McLean 16)
If md(o) ≥ 0, then

2md(o) = sup
α

inf
γ

lSFT(γ)

lSFT(γ) measures the dimension of the moduli space of holomorphic planes
asymptotic to γ that does not intersect the exceptional divisors.

Ei
Ej

M
Di

The moduli space of the above disk is 0, the difference in dimensions is precisely
2⟨c1(X̃ ), Di⟩, which is 2ai
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Computing md and lSFT

Algebraic side
L−1 → D is almost a resolution, except D has quotient singularities. Locally, L−1

is modeled on
C × Cn−1/

1
m (1, b2, . . . , bn), 0 ≤ bi < m

md = min
p,g ̸=id

{
r ,

rw1(g)
m +

n∑
i=2

wi(g)
m

}
where g acts by 1

m (w1(g), . . . , wn(g)).

Symplectic side
1 2r is the Maslov index of the loop of the symplectic matrix from the

linearized flow around a principle orbit.
2 Using the framing from the local model, one can compute a CZ index, whose

multiple is principle ⇒ discrepancy in framing ⇒ CZ for all Reeb orbits.
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Symplectic homology and its variants

Given a Liouville filling W of M, we can construct several Floer homology
generated by Reeb orbits on M and cochain complex on W graded by µCZ .

1 SH∗(W ), SH+
∗ (W ) and SH+,S1

∗ (W );
2 SH+,S1

∗ (W )’s chain complex is generated by Reeb orbits;
3 . . . → Hn−∗(W ) → SH∗(W ) → SH+

∗ (W ) → . . .;
4 SH∗(W ) is a unital ring and Hn−∗(W ) → SH∗(W ) is a ring map;
5 Gysin exact sequence, . . . → SH+

∗ (W ) → SH+,S1

∗ (W ) → SH+,S1

∗ (W ) → . . .;
6 Viterbo transfer, SH∗(W ) → SH∗(V ) preserves all structures, for Liouville

subdomain V ⊂ W .

Example
SH∗(Cn) = 0 and SH+,S1

∗ (Cn) = ⊕k∈NQ[−2k − 1 − n].
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A spectral sequence
We have a spectral sequence computing SH+,S1

∗ (W ) for Fano cone singularities
with the first page:

E 1
p,q =

⊕
p=N(ℓ+ k

|G| )

Hp+q−µLCZ(G,k,ℓ)(Di
G ;Q)

where Di
G is component of the singular strata of D with isotropy group ⊃ G .

d1d1

d2

p

q

Figure: A schematic picture of the first page of the spectral sequence
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Proof of the compactification results

1 The link M of D is strongly pseudoconvex and bounds a Liouville domain W
whose homology is the same as Cn.

2 AC condition ⇒ a Liouville cobordism V from M to (S2n−1, ξstd).
3 Seidel-Smith’s theorem ⇒ SH∗(W ∪ V ) = 0.
4 Viterbo’s functoriality ⇒ SH∗(W ) = 0.
5 Tautological + Gysin long exact sequences ⇒ SH+,S1

∗ (W ) = SH+,S1

∗ (Cn).
6 By our theorem, md = n − 1.
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Proof of the compactification results

7 When D is smooth, md = r − 1. Hence the Fano index of D is n and
D ≃ Pn−1 by Kobayashi-Ochai.

8 When D is orbifold, assuming the Shokurov conjecture, the metric cone is Cn

with a CY metric and a linear torus action spanned by
∑

wizi∂zi .
9 The Sasaki-Einstein property on the link implies that w1 = . . . = wn. Then

the metric on the cone is flat.
10 By Anderson’s rigidity theorem, the original CY metric is flat.
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Thank you!
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