Kähler compactification of \mathbb{C}^n and Reeb dynamics

Zhengyi Zhou

AMSS CAS

arXiv:2409.10275, joint with Chi Li

Symplectic Zoominar 2025-1-17

Example

• When n = 1, $(X, D) = (\mathbb{P}^1, \mathbb{P}^0)$;

Example

- When n = 1, $(X, D) = (\mathbb{P}^1, \mathbb{P}^0)$;
- **2** When n = 2, $(X, D) = (\mathbb{P}^2, \mathbb{P}^1)$,

Example

- When n = 1, $(X, D) = (\mathbb{P}^1, \mathbb{P}^0)$;
- When n = 2, (X, D) = (ℙ², ℙ¹), (Q₂, Q₂ ∩ H), where Q₂ is a quadratic surface in ℙ³ and H is a hyperplane tangent to Q₂. Q₂ ∩ H is not irreducible. There are many more.
- When n = 3, $(X, D) = (\mathbb{P}^3, \mathbb{P}^3), (Q_3, Q_3 \cap H) \dots$ Now $Q_3 \cap H$ is the projective cone over a quadratic curve, which is now irreducible.

Example

- When n = 1, $(X, D) = (\mathbb{P}^1, \mathbb{P}^0)$;
- When n = 2, (X, D) = (P², P¹), (Q₂, Q₂ ∩ H), where Q₂ is a quadratic surface in P³ and H is a hyperplane tangent to Q₂. Q₂ ∩ H is not irreducible. There are many more.
- When n = 3, $(X, D) = (\mathbb{P}^3, \mathbb{P}^3), (Q_3, Q_3 \cap H) \dots$ Now $Q_3 \cap H$ is the projective cone over a quadratic curve, which is now irreducible.

We will call $(\mathbb{P}^n, \mathbb{P}^{n-1})$ the standard compactification.

Classify all compactifications of \mathbb{C}^n subject to the condition $b_2(X) = 1$, or equivalently, D is irreducible.

< □ > < 同 >

Classify all compactifications of \mathbb{C}^n subject to the condition $b_2(X) = 1$, or equivalently, D is irreducible.

() When $n \leq 2$, such a compactification must be standard.

Classify all compactifications of \mathbb{C}^n subject to the condition $b_2(X) = 1$, or equivalently, D is irreducible.

- **(**) When $n \leq 2$, such a compactification must be standard.
- When n = 3, we have a complete classification if X is projective (it is closely related to the classification of Fano manifolds as X must be Fano).

Image: Image:

Classify all compactifications of \mathbb{C}^n subject to the condition $b_2(X) = 1$, or equivalently, D is irreducible.

- **(**) When $n \leq 2$, such a compactification must be standard.
- When n = 3, we have a complete classification if X is projective (it is closely related to the classification of Fano manifolds as X must be Fano).

Question

Classification is too hard, but can we characterize the standard compactification?

Image: A matrix

Theorem (Brenton-Morrow, 78)

When n = 3 and D is smooth, then then (X, D) is standard.

Theorem (Brenton-Morrow, 78)

When n = 3 and D is smooth, then then (X, D) is standard.

Conjecture (Brenton-Morrow, 78)

If D is smooth, then (X, D) is standard.

Brenton-Morrow showed that it suffices to prove $D \simeq \mathbb{P}^{n-1}$.

Theorem (Brenton-Morrow, 78)

When n = 3 and D is smooth, then then (X, D) is standard.

Conjecture (Brenton-Morrow, 78)

If D is smooth, then (X, D) is standard.

Brenton-Morrow showed that it suffices to prove $D \simeq \mathbb{P}^{n-1}$.

In the 89 survey of Peternell and Schneider, they proposed to solve the problem in two steps by first address the projective case. $n \le 5$, van de Ven (62), $n \le 6$, Fujita (80).

Theorem (Brenton-Morrow, 78)

When n = 3 and D is smooth, then then (X, D) is standard.

Conjecture (Brenton-Morrow, 78)

If D is smooth, then (X, D) is standard.

Brenton-Morrow showed that it suffices to prove $D \simeq \mathbb{P}^{n-1}$.

In the 89 survey of Peternell and Schneider, they proposed to solve the problem in two steps by first address the projective case. $n \le 5$, van de Ven (62), $n \le 6$, Fujita (80).

Theorem (Li-Z. 24)

The conjecture is true if X is Kähler.

Remark

Peternell posted a short proof for the n-even case shortly after our post.

Zhengyi Zhou (AMSS, CAS)

Orbifold compactification

We can consider the orbifold analogue where X is a smooth orbifold and D is a smooth suborbifold.

Example

 $(X,D) = (\mathbb{P}(1, w_1, \dots, w_n), \mathbb{P}(w_1, \dots, w_n))$ for $w_i \in \mathbb{N}_+$.

Orbifold compactification

We can consider the orbifold analogue where X is a smooth orbifold and D is a smooth suborbifold.

Example

$$(X,D)=(\mathbb{P}(1,w_1,\ldots,w_n),\mathbb{P}(w_1,\ldots,w_n))$$
 for $w_i\in\mathbb{N}_+.$

Conjecture

The weighted projective space pairs are the only compactification of \mathbb{C}^n if both X, D are both smooth orbifolds.

Remark

D being a suborbifold is crucial, otherwise $(Q_3, Q_3 \cap H \simeq \mathbb{P}(1, 1, 2))$ is also a compactification.

< □ > < 同 >

Orbifold compactification

We can consider the orbifold analogue where X is a smooth orbifold and D is a smooth suborbifold.

Example

$$(X,D)=(\mathbb{P}(1,w_1,\ldots,w_n),\mathbb{P}(w_1,\ldots,w_n))$$
 for $w_i\in\mathbb{N}_+.$

Conjecture

The weighted projective space pairs are the only compactification of \mathbb{C}^n if both X, D are both smooth orbifolds.

Remark

D being a suborbifold is crucial, otherwise $(Q_3, Q_3 \cap H \simeq \mathbb{P}(1, 1, 2))$ is also a compactification.

Definition

 (M^{2n-1}, g, α) is called Sasaki if the cone $(R_+ \times M, dr^2 + r^2g, r^2d\alpha + 2rdr \wedge \alpha)$ is Kähler. We use (\mathcal{C}, g_0, J_0) to denote this Kähler cone.

< < >>

Definition

 (M^{2n-1}, g, α) is called Sasaki if the cone $(R_+ \times M, dr^2 + r^2g, r^2d\alpha + 2rdr \wedge \alpha)$ is Kähler. We use (\mathcal{C}, g_0, J_0) to denote this Kähler cone.

Definition

A complete Kähler manifold (W, g, J) is called asymptotically conical (AC) with the asymptotical cone (\mathcal{C}, g_0, J_0) if there exists a compact subset $K \subset W$ and a diffeomorphism $\Phi : \{r > 1\} \to W \setminus K$ such that $\Phi^*g \to g_0$ and $\Phi^*J \to J_0$ as $r \to \infty$.

A detour-contact manifolds and their symplectic fillings

Definition

 (M^{2n-1},ξ) is called a contact manifold, if $\xi \subset TM$ and there exists $\alpha \in \Omega^1(M)$ such that

- $\xi = \ker \alpha;$
- $\ \ \, {\bf 2} \ \, \alpha \wedge (\mathrm{d}\alpha)^{n-1} \neq {\bf 0}.$

The Reeb vector field R_{α} is characterized by $\alpha(R_{\alpha}) = 1$ and $\iota_{R_{\alpha}} d\alpha = 0$.

A detour-contact manifolds and their symplectic fillings

Definition

 (M^{2n-1},ξ) is called a contact manifold, if $\xi \subset TM$ and there exists $\alpha \in \Omega^1(M)$ such that

•
$$\xi = \ker \alpha;$$

$$a \wedge (\mathrm{d}\alpha)^{n-1} \neq 0.$$

The Reeb vector field R_{α} is characterized by $\alpha(R_{\alpha}) = 1$ and $\iota_{R_{\alpha}} d\alpha = 0$.

Contact manifolds are natural boundaries of symplectic manifolds.

Definition

- (\mathcal{W},λ) is a Liouville cobordism from (M_{-},ξ_{-}) to (M_{+},ξ_{+}) if
 - $\lambda \in \Omega^1(W)$ and $d\lambda$ is a symplectic form;
 - $\ \, {\bf @} \ \, \partial W = M_- \sqcup M_+, \, \lambda|_{M_\pm} \ \, {\rm are \ \, contact \ \, forms \ \, for \ \, } \xi_\pm.$
 - The Liouville vector field defined by ι_Xdλ = λ points outward/inward along M_{+/-}.
- A Liouville cobordism from \emptyset to M is a Liouville filling of M.

In the Sasaki case, ξ is the complex tangency and $\alpha = -r^{-1}d^{\mathbb{C}}r$, which is called a conic contact form.

In the Sasaki case, ξ is the complex tangency and $\alpha = -r^{-1} d^{\mathbb{C}} r$, which is called a conic contact form. The Reeb vector field is a holomorphic Killing vector field, which generates a $(\mathbb{C}^*)^m$ action on the Kähler cone.

In the Sasaki case, ξ is the complex tangency and $\alpha = -r^{-1} d^{\mathbb{C}} r$, which is called a conic contact form. The Reeb vector field is a holomorphic Killing vector field, which generates a $(\mathbb{C}^*)^m$ action on the Kähler cone.

Theorem (Li 20, Conlon-Hein 24)

Orbifold compactification appears naturally in the compactification of domains with AC metrics. If m = 1, then we add in a divisor $M/\langle R \rangle$. If m > 1, we add in a divisor $M/\langle R' \rangle$, where R' is a rational direction close to R.

Conjecture (Tian 06)

A complete CY metric on \mathbb{C}^n with maximal volume growth must be flat.

Conjecture (Tian 06)

A complete CY metric on \mathbb{C}^n with maximal volume growth must be flat.

The first counterexample is due to Yang Li

Theorem (Li 19)

There exists a complete CY metric on \mathbb{C}^3 with a singular tangent cone $\mathbb{C}^2/\mathbb{Z}_2 \times \mathbb{C}$ at infinity.

Conjecture (Tian 06)

A complete CY metric on \mathbb{C}^n with maximal volume growth must be flat.

The first counterexample is due to Yang Li

Theorem (Li 19)

There exists a complete CY metric on \mathbb{C}^3 with a singular tangent cone $\mathbb{C}^2/\mathbb{Z}_2 \times \mathbb{C}$ at infinity.

Similar examples in higher dimensions were found by Szekelyhidi.

AC metrics automatically have maximal volume growth and Li's example is " AC" but with a singular but codimension 1 link.

AC metrics automatically have maximal volume growth and Li's example is "AC" but with a singular but codimension 1 link.

Conjecture

Any complete AC CY metric on \mathbb{C}^n must be flat.

AC metrics automatically have maximal volume growth and Li's example is "AC" but with a singular but codimension 1 link.

Conjecture

Any complete AC CY metric on \mathbb{C}^n must be flat.

Theorem (Li-Z. 24)

The above conjecture holds if the Shokurov conjecture holds (for Fano cone singularities). In particular, the above conjecture holds in dimension 3.

Image: A matrix

Minimal discrepancy and the Shokurov conjecture

Let X be a normal Q-Gorenstein variety and o be an isolated singularity. Consider a resolution $\pi: \widetilde{X} \to X$ of the singularity o, we have

$${\sf K}=\pi^*{\sf K}_X+\sum{\sf a}_i{\sf E}_i$$

where E_i are exceptional divisors.

Let X be a normal Q-Gorenstein variety and o be an isolated singularity. Consider a resolution $\pi: \widetilde{X} \to X$ of the singularity o, we have

$$K = \pi^* K_X + \sum a_i E_i$$

where E_i are exceptional divisors.

Definition (Minimal discrepancy)

 $\operatorname{md}(o) = \min\{a_i\} \text{ if } \min\{a_i\} \geq -1, \text{ and } -\infty \text{ if } \min\{a_i\} < -1$

Let X be a normal Q-Gorenstein variety and o be an isolated singularity. Consider a resolution $\pi: \widetilde{X} \to X$ of the singularity o, we have

$$K = \pi^* K_X + \sum a_i E_i$$

where E_i are exceptional divisors.

Definition (Minimal discrepancy)

 $\operatorname{md}(o) = \min\{a_i\} \text{ if } \min\{a_i\} \geq -1, \text{ and } -\infty \text{ if } \min\{a_i\} < -1$

Conjecture (Shokurov 02)

 $\operatorname{md}(o) \leq \dim_{\mathbb{C}} X - 1$ and when the equality holds, o is a smooth point.

It is true for up to dimension 3 and some special cases, e.g. complete intersection.

Given an isolated singularity o, the link M is the intersection of X with a small sphere centered around o. From now on, we use X and \tilde{X} to denote the neighborhood bounded by M.

Given an isolated singularity o, the link M is the intersection of X with a small sphere centered around o. From now on, we use X and \tilde{X} to denote the neighborhood bounded by M.

M is naturally a contact manifold, whose contact structure ξ is the CR structure, i.e. the maximal complex subspace of *TM*.

Given an isolated singularity o, the link M is the intersection of X with a small sphere centered around o. From now on, we use X and \tilde{X} to denote the neighborhood bounded by M.

M is naturally a contact manifold, whose contact structure ξ is the CR structure, i.e. the maximal complex subspace of *TM*.

 \mathbb{Q} -Gorenstein implies that $c_1^{\mathbb{Q}}(\xi) = 0$. Then we may view $c_1^{\mathbb{Q}}(\widetilde{X})$ as in $H^2(\widetilde{X}, M; \mathbb{Q})$, then we can write

$$c_1^{\mathbb{Q}}(\widetilde{X}) = \sum -a_i LD(E_i).$$

Then $md(o) = min\{a_i\}$ if $min\{a_i\} \ge -1$, and $-\infty$ if $min\{a_i\} < -1$.

Let D be a Fano manifold and $-K_X = rL$ for $r > 0 \in \mathbb{Q}$. We consider

$$X = \operatorname{Spec} \oplus_{m=0}^{\infty} H^0(D, L^m)$$

i.e. X is obtained by contracting the zero section in L^{-1} . Then md(o) = r - 1.

Let D be a Fano manifold and $-K_X = rL$ for $r > 0 \in \mathbb{Q}$. We consider

$$X = \operatorname{Spec} \oplus_{m=0}^{\infty} H^0(D, L^m)$$

i.e. X is obtained by contracting the zero section in L^{-1} . Then md(o) = r - 1.

Definition

We say (X, o) is a Fano cone singularity if D is a Fano orbifold and L is ample, and $X = \text{Spec} \oplus_{m=0}^{\infty} H^0(D, L^m)$.

Let D be a Fano manifold and $-K_X = rL$ for $r > 0 \in \mathbb{Q}$. We consider

$$X = \operatorname{Spec} \oplus_{m=0}^{\infty} H^0(D, L^m)$$

i.e. X is obtained by contracting the zero section in L^{-1} . Then md(o) = r - 1.

Definition

We say (X, o) is a Fano cone singularity if D is a Fano orbifold and L is ample, and $X = \text{Spec} \oplus_{m=0}^{\infty} H^0(D, L^m)$.

The maximal index r is called the Fano index. In Brenton-Morrow's conjecture, because of the Kobayashi-Ochai Theorem, it suffices to prove the Fano index of D (the smooth divisor) is n.

Theorem (Li-Z. 24)

Let $o \in X$ be an isolated Fano cone singularity of dimension n. For any quasi-regular conic contact form η on the contact link M, we have the following formula for the minimal discrepancy:

$$2 \operatorname{md}(o) = \inf_{\gamma} \operatorname{ISFT}_{\eta}(\gamma) > -2.$$

Here γ on the right ranges over all closed Reeb orbits of η . If moreover M admits a Liouville filling W such that $c_1^{\mathbb{Q}}(W) = 0$, then we have

$$2\mathrm{md}(o) = \inf\{d \mid SH_d^{+,S^1}(W;\mathbb{Q}) \neq 0\} + n - 3$$

where $SH^{+,S^1}_*(W; \mathbb{Q})$ denotes the \mathbb{Q} -coefficient S^1 -equivariant positive symplectic homology of the Liouville filling W.

Conley-Zehnder index

In our case, $c_1^{\mathbb{Q}}(\xi) = 0$, we can trivialize det $_{\mathbb{C}} \oplus^N \xi$. Hence we can define

$$\mu_{CZ}^{\mathbb{Q}}(\gamma) = \frac{1}{N} \mu_{CZ}(\oplus^{N} \rho(t))$$

where $\rho(t)$ is the linearized flow.

Conley-Zehnder index

In our case, $c_1^{\mathbb{Q}}(\xi) = 0$, we can trivialize det $_{\mathbb{C}} \oplus^N \xi$. Hence we can define

$$\mu_{CZ}^{\mathbb{Q}}(\gamma) = \frac{1}{N} \mu_{CZ}(\oplus^{N} \rho(t))$$

where $\rho(t)$ is the linearized flow.

Let W be a symplectic filling of (M,ξ) , we can view $c_1^{\mathbb{Q}}(W)$ as in $H^2(W, M; \mathbb{Q})$. Let u be disk in W with boundary γ , then we have

$$\mu_{CZ}^{\mathbb{Q}}(\gamma) = \mu_{CZ}^{u} - 2\langle c_1^{\mathbb{Q}}(W), [u] \rangle.$$

Conley-Zehnder index

In our case, $c_1^{\mathbb{Q}}(\xi) = 0$, we can trivialize det $_{\mathbb{C}} \oplus^N \xi$. Hence we can define

$$\mu_{CZ}^{\mathbb{Q}}(\gamma) = \frac{1}{N} \mu_{CZ}(\oplus^{N} \rho(t))$$

where $\rho(t)$ is the linearized flow.

Let W be a symplectic filling of (M,ξ) , we can view $c_1^{\mathbb{Q}}(W)$ as in $H^2(W, M; \mathbb{Q})$. Let u be disk in W with boundary γ , then we have

$$\mu_{CZ}^{\mathbb{Q}}(\gamma) = \mu_{CZ}^{u} - 2\langle c_1^{\mathbb{Q}}(W), [u] \rangle.$$

 $\mu_{LCZ}^{\mathbb{Q}}$: lower semi-continuous extension of $\mu_{CZ}^{\mathbb{Q}}$.

$$\mathrm{ISFT}(\gamma) := \mu_{LCZ}(\gamma) + n - 3.$$

Why should they be related?

Theorem (McLean 16)

If $md(o) \ge 0$, then

$$2 \operatorname{md}(o) = \sup_{\alpha} \inf_{\gamma} \operatorname{ISFT}(\gamma)$$

э

イロト イヨト イヨト

Theorem (McLean 16)

If $md(o) \ge 0$, then

$$2 \operatorname{md}(o) = \sup_{\alpha} \inf_{\gamma} \operatorname{lSFT}(\gamma)$$

 $ISFT(\gamma)$ measures the dimension of the moduli space of holomorphic planes asymptotic to γ that does not intersect the exceptional divisors.

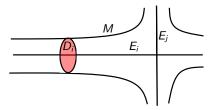
Image: Image:

Theorem (McLean 16)

If $md(o) \ge 0$, then

$$2 \operatorname{md}(o) = \sup_{\alpha} \inf_{\gamma} \operatorname{lSFT}(\gamma)$$

 $ISFT(\gamma)$ measures the dimension of the moduli space of holomorphic planes asymptotic to γ that does not intersect the exceptional divisors.



The moduli space of the above disk is 0, the difference in dimensions is precisely $2\langle c_1(\widetilde{X}), D_i \rangle$, which is $2a_i$

Algebraic side

 $L^{-1} \rightarrow D$ is almost a resolution, except D has quotient singularities. Locally, L^{-1} is modeled on

$$\mathbb{C} \times \mathbb{C}^{n-1} / \frac{1}{m} (1, b_2, \dots, b_n), 0 \le b_i < m$$
$$\mathrm{md} = \min_{\substack{p, g \neq \mathrm{id}}} \left\{ r, \frac{rw_1(g)}{m} + \sum_{i=2}^n \frac{w_i(g)}{m} \right\}$$

where g acts by $\frac{1}{m}(w_1(g),\ldots,w_n(g))$.

Algebraic side

 $L^{-1} \rightarrow D$ is almost a resolution, except D has quotient singularities. Locally, L^{-1} is modeled on

$$\mathbb{C} \times \mathbb{C}^{n-1} / \frac{1}{m} (1, b_2, \dots, b_n), 0 \le b_i < m$$
$$\mathrm{md} = \min_{p, g \neq \mathrm{id}} \left\{ r, \frac{rw_1(g)}{m} + \sum_{i=2}^n \frac{w_i(g)}{m} \right\}$$

where g acts by $\frac{1}{m}(w_1(g),\ldots,w_n(g))$.

Symplectic side

- 2r is the Maslov index of the loop of the symplectic matrix from the linearized flow around a principle orbit.
- Output is principle ⇒ discrepancy in framing ⇒ CZ for all Reeb orbits.

Given a Liouville filling W of M, we can construct several Floer homology generated by Reeb orbits on M and cochain complex on W graded by μ_{CZ} .

•
$$SH_*(W), SH_*^+(W)$$
 and $SH_*^{+,S^1}(W);$

• $SH_*^{+,S^1}(W)$'s chain complex is generated by Reeb orbits;

- $SH_*(W)$ is a unital ring and $H^{n-*}(W) \to SH_*(W)$ is a ring map;
- $\textbf{ Sysin exact sequence, } \ldots \to SH^+_*(W) \to SH^{+,S^1}_*(W) \to SH^{+,S^1}_*(W) \to \ldots;$
- Viterbo transfer, $SH_*(W) \to SH_*(V)$ preserves all structures, for Liouville subdomain $V \subset W$.

Given a Liouville filling W of M, we can construct several Floer homology generated by Reeb orbits on M and cochain complex on W graded by μ_{CZ} .

•
$$SH_*(W), SH_*^+(W) \text{ and } SH_*^{+,S^1}(W);$$

• $SH_*^{+,S^1}(W)$'s chain complex is generated by Reeb orbits;

$$: \ldots \to H^{n-*}(W) \to SH_*(W) \to SH^+_*(W) \to \ldots;$$

- $SH_*(W)$ is a unital ring and $H^{n-*}(W) \to SH_*(W)$ is a ring map;
- $\textbf{ Sysin exact sequence, } \ldots \to SH^+_*(W) \to SH^{+,S^1}_*(W) \to SH^{+,S^1}_*(W) \to \ldots;$
- Viterbo transfer, $SH_*(W) \to SH_*(V)$ preserves all structures, for Liouville subdomain $V \subset W$.

Example

$$SH_*(\mathbb{C}^n) = 0$$
 and $SH^{+,S^1}_*(\mathbb{C}^n) = \oplus_{k \in \mathbb{N}} \mathbb{Q}[-2k-1-n].$

A spectral sequence

We have a spectral sequence computing $SH_*^{+,S^1}(W)$ for Fano cone singularities with the first page:

$$E_{p,q}^{1} = \bigoplus_{p=N(\ell+\frac{k}{|G|})} H_{p+q-\mu_{\mathrm{LCZ}}(G,k,\ell)}(D_{G}^{i};\mathbb{Q})$$

where D_G^i is component of the singular strata of D with isotropy group $\supset G$.

A spectral sequence

We have a spectral sequence computing $SH_*^{+,S^1}(W)$ for Fano cone singularities with the first page:

$$E_{p,q}^{1} = \bigoplus_{p=N(\ell+\frac{k}{|\mathcal{C}|})} H_{p+q-\mu_{\mathrm{LCZ}}(\mathcal{G},k,\ell)}(D_{\mathcal{G}}^{i};\mathbb{Q})$$

where D_G^i is component of the singular strata of D with isotropy group $\supset G$.

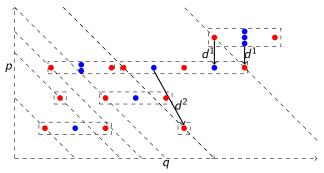


Figure: A schematic picture of the first page of the spectral sequence

The link *M* of *D* is strongly pseudoconvex and bounds a Liouville domain *W* whose homology is the same as Cⁿ.

- The link M of D is strongly pseudoconvex and bounds a Liouville domain W whose homology is the same as Cⁿ.
- **2** AC condition \Rightarrow a Liouville cobordism V from M to (S^{2n-1}, ξ_{std}) .

- The link M of D is strongly pseudoconvex and bounds a Liouville domain W whose homology is the same as Cⁿ.
- **2** AC condition \Rightarrow a Liouville cobordism V from M to (S^{2n-1}, ξ_{std}) .
- Seidel-Smith's theorem \Rightarrow $SH_*(W \cup V) = 0$.

- The link M of D is strongly pseudoconvex and bounds a Liouville domain W whose homology is the same as Cⁿ.
- **2** AC condition \Rightarrow a Liouville cobordism V from M to (S^{2n-1}, ξ_{std}) .
- Seidel-Smith's theorem \Rightarrow $SH_*(W \cup V) = 0$.
- Viterbo's functoriality \Rightarrow $SH_*(W) = 0$.

- The link M of D is strongly pseudoconvex and bounds a Liouville domain W whose homology is the same as Cⁿ.
- **2** AC condition \Rightarrow a Liouville cobordism V from M to (S^{2n-1}, ξ_{std}) .
- Seidel-Smith's theorem \Rightarrow $SH_*(W \cup V) = 0$.
- Viterbo's functoriality \Rightarrow $SH_*(W) = 0$.

• Tautological + Gysin long exact sequences \Rightarrow $SH^{+,S^1}_*(W) = SH^{+,S^1}_*(\mathbb{C}^n)$.

- The link M of D is strongly pseudoconvex and bounds a Liouville domain W whose homology is the same as Cⁿ.
- **2** AC condition \Rightarrow a Liouville cobordism V from M to (S^{2n-1}, ξ_{std}) .
- Seidel-Smith's theorem \Rightarrow $SH_*(W \cup V) = 0$.
- Viterbo's functoriality \Rightarrow $SH_*(W) = 0$.
- Tautological + Gysin long exact sequences \Rightarrow $SH^{+,S^{1}}_{*}(W) = SH^{+,S^{1}}_{*}(\mathbb{C}^{n})$.
- **(**) By our theorem, md = n 1.

• When D is smooth, md = r - 1. Hence the Fano index of D is n and $D \simeq \mathbb{P}^{n-1}$ by Kobayashi-Ochai.

- When D is smooth, md = r 1. Hence the Fano index of D is n and $D \simeq \mathbb{P}^{n-1}$ by Kobayashi-Ochai.
- When D is orbifold, assuming the Shokurov conjecture, the metric cone is Cⁿ with a CY metric and a linear torus action spanned by ∑ w_iz_i∂_{z_i}.

- When D is smooth, md = r 1. Hence the Fano index of D is n and $D \simeq \mathbb{P}^{n-1}$ by Kobayashi-Ochai.
- When D is orbifold, assuming the Shokurov conjecture, the metric cone is Cⁿ with a CY metric and a linear torus action spanned by ∑ w_iz_i∂_{z_i}.
- The Sasaki-Einstein property on the link implies that $w_1 = \ldots = w_n$. Then the metric on the cone is flat.

- When D is smooth, md = r − 1. Hence the Fano index of D is n and $D \simeq \mathbb{P}^{n-1}$ by Kobayashi-Ochai.
- When D is orbifold, assuming the Shokurov conjecture, the metric cone is Cⁿ with a CY metric and a linear torus action spanned by ∑ w_iz_i∂_{z_i}.
- The Sasaki-Einstein property on the link implies that $w_1 = \ldots = w_n$. Then the metric on the cone is flat.
- By Anderson's rigidity theorem, the original CY metric is flat.

Thank you!

2