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Part I: Liouville geometry and Weinstein dichotomy

Assumptions:
W : compact oriented connected 4-manifold.
Everything smooth unless stated otherwise.

Definition
A 1-form – on W is a Liouville form if

d– · d– > 0.

A dynamical perspective is provided by

Definition
There exists a unique vector field Y , called the Liouville vector field, satisfying

ÿY d– = –.
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Boundary condition

Stoke’s theorem:

0 <

⁄

W
d– · d– =

⁄

ˆW
– · d– =∆ ˆW ”= ÿ.

Boundary condition?
Cartan’s formula =∆ LY d– = d–.

Definition
The pair (W , –) is called a Liouville domain, if Y is positively transverse to
ˆW .

Geometric interpretation:

Y t ˆW positively ≈∆ – · d–|ˆW = 1
2 ÿY (d– · d–) > 0.

≈∆ –|ˆW : positive contact form.
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Weinstein dichotomy

When Y is gradient-like, i.e. there exists f : W æ R such that

Y · f Ø ‘(|Y |2 + |df |2),

Morse theory ≠æ Symplectic handle decomposition
=∆ topological type of W : Æ 2 =∆ ˆW : connected.
In this case,

Skel(Y ) := {points not flowing out under the flow of Y }

is CW-complex with 0,1,2 cells.
Any Liouville domain with such Liouville flow (up to homotopy) is called
Weinstein.
Example: (1) (D4

(x1,y1,x2,y2)
, �2

i=1

1

2
(xidyi ≠ yidxi)).

(2) (T ú
1 S, –can).

(3) Attaching symplectic handles. (4) Stein manifolds.
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Non-Weinstein examples

Non-Weinstein Liouville geometry is far less understood!

Question
Are there examples of non-Weinstein Liouville geometry?

(McDu� 91) (Geiges 95) (Mitsumatsu 95)

Theorem (Mitsumatsu 95)
If M is a 3-manifold admitting an Anosov flow, there exists a Liouville form –
such that

([≠1, 1] ◊ M, –)

is a (necessarily non-Weinstein) Liouville domain.
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Outline

Quick introduction to Anosov flows.
Mitsumatsu’s construction and the Liouville geometry of Anosov flows
Dynamical rigidity and consequences
Geometric rigidity and consequences
Skeleton C1-persistence (a characterization)
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Part II: Introduction to Anosov flows

M: closed oriented connected 3-manifold.
X : a vector field on M. X t : the flow generated by X

Definition

The flow X t is Anosov, if there exists a continuous splitting
TM = E s ü E u ü ÈXÍ, such that the splitting is invariant under X t and

||X t
ú(v)|| Ø eCt ||v || for any v œ E u,

||X t
ú(u)|| Æ e≠Ct ||u|| for any u œ E s ,

where C > 0, and ||.|| is induced from some Riemannian metric on TM.

The line bundle E s(E u) is called the strong stable (unstable) line bundle.
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Part II: Introduction to Anosov flows

Suspension flows
Consider an area preserving hyperbolic di�eomorphism
f : T2 ƒ R2/Z2 æ T2.

e.g. f =
5

2 1
1 1

6
œ SL(2,Z) with real eigenvalues.

Let M := T2 ◊ [0, 1]/(x , 1) ≥ (f (x), 0).
X t

f (x , s) = (x , s + t) is an Anosov flow.





















Geodesic flows
�: hyperbolic surface. The geodesic flow on the unit tangent space UT�.
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Part II: Introduction to Anosov flows

The foliation theory has been the main tool in the study of Anosov flows.
The plane fields E wu := E u ü ÈXÍ and E ws := E s ü ÈXÍ, called the weak
unstable/stable bundles, are tangent to foliations.
Local picture:

A priori only Hölder continuous.
(Hirsch-Pugh-Shub 70) weak bundles are C1+.
(Hasselblatt 93) Lower bounds for regularity of weak bundles in terms of
the expansion data (bunching constants).

Convention:
From now on, we are assuming E s (and E u) are orientable.
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Towards a contact/symplectic theory of Anosov 3-flows

A local model based on contact geometry has higher regularity, is truly
local and reflects the stability features of Anosov flows!

Definition
We call a 1-form – a positive (negative) contact form on M, if
– · d– > 0 (< 0).

Examples:
The 1-form –std = dz ≠ y dx is a (positive) contact structure on R3 1.

[Darboux]: All contact structures locally look the same.

1
Picture from Wkipedia: Standard contact structure on R3
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Part III: Mitsumatsu’s construction and the Liouville geometry of Anosov

flows

Proposition (Mitsumatsu, Eliashberg-Thurston 95)
Suppose X generates an Anosov 3-flow. Then, X µ ›≠ t ›+, where ›± is a
positive/negative contact structure.

We call (›≠, ›+) a (supporting) bi-contact structure.
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Part III: Mitsumatsu’s construction and the Liouville geometry of Anosov

flows

This bi-contact condition has dynamical interpretation!

Definition

X is projectively Anosov, if it preserves a continuous splitting
TM/ÈXÍ = E ü F , such that (C > 0)

||X t
ú(v)||/||X t

ú(u)|| Ø eCt ||v ||/||u||

for any v œ F and u œ E .

Mitsumatsu, Eliashberg-Thurston 95

X projectively Anosov ≈∆ X µ ›≠ t ›+.

Surena Hozoori (shozoori@ur.rochester.edu)

F e

DD



Part III: Symplectic geometry of Anosov flows and Mitsumatsu’s

construction

Consider – = (1 ≠ s)–≠ + (1 + s)–+ on W = [≠1, 1]s ◊ M.

Consider the graph � := {(sx , x)| ker [(1 ≠ sx )–≠ + (1 + sx )–+] = E ws}.
The Liouville condition of –:

1
2 ÿX ÿˆs (d– · d–) = LX – · Lˆs –

At �:
1
2 ÿX ÿˆs (d– · d–)|� = ... = LX –u · (–+ ≠ –≠),

where –u = iú
� – and (–+ ≠ –≠) is non-vanishing on E s .
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Part III: Symplectic geometry of Anosov flows and Mitsumatsu’s

construction

Consider – = (1 ≠ s)–≠ + (1 + s)–+ on W = [≠1, 1]s ◊ M.

i.e. Liouville condition at � ≈∆ absolute expansion of the norm induced by
–u on E wu.

Conversely (Mitsumatsu 95), expanding –u can be perturbed to contact
forms with the Liouville property.
Such pair (–≠, –+)l is called a (linear) Liouville pair.
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Part III: Symplectic geometry of Anosov flows and Mitsumatsu’s

construction

Theorem (H. 20)
X is Anosov, if and only if,
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Non-singluat partially hyperbolic flows

What if we have only one Liouville condition?

Theorem (H. 24)
X is partially hyperbolic, if and only if,

Examples via DA (derived from Anosov) deformation.

Invariant plane fields are not necessarily C1 anymore.
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Part IV: Dynamical rigidity and consequences

A generalized (non-compact) framework:
Everything is encoded in the interpolation!
On Rs ◊ M, consider the Liouville forms of the type

– = ⁄≠–≠ + ⁄+–+,

where ⁄± : Rs ◊ M æ R>0.
Note – = ⁄≠[–≠ + ⁄+

⁄≠
–+].

Interpolation of plane fields ≈∆ ˆs · ⁄+

⁄≠
> 0.

+ right Œ-condition: Liouville interpolation system (LIS): (–≠, –+)(⁄≠,⁄+)

e.g. exponential model: – = e≠s–≠ + es–+.
The space of such objects is homotopy equivalent to the space of Anosov
flows (Massoni 22, H. 24).
New Floer theoretic invariants by (Cieliebak-Lazarev-Massoni-Moreno 22).

Lemma
E wn := Èˆs , XÍ is tangent to a trivial exact Lagrangian foliation, i.e. –|Ewn

(called weak normal foliation), Y t ˆs and

Y µ E wn.

Surena Hozoori (shozoori@ur.rochester.edu)

D X
D

D Y dos

a
cinilli off



Part IV: Dynamical rigidity and consequences

X : Anosov, (–≠, –+)(⁄≠,⁄+): supporting LIS, Y is the Liouville v.f.

Theorem (H. 24)
(1) Skel(Y ) = {(sx , x) œ Rs ◊ M| ker [⁄≠(sx , x)–≠ + ⁄+(sx , x)–+] = E ws},
implying that Skel(Y ) is Ck if and only if E ws is Ck . In particular, Skel(Y ) is
always C1+.
(2) Y |Skel(Y ) is a synchronization of X (reparametrization unique up to smooth
conjugacy).
(3) Y is normally repelling at Skel(Y ). Therefore, Skel(Y ) is C1-persistent.

Corollary

The Liouville v.f. is unique, up to C1-conjugacy, independent of all choices!
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Application in regularity theory of invariant bundles

Corollary
Dynamical rigidity uses Liouville geometry to translate the regularity of
invariant plane fields to the regularity of graphs (much easier problem)!

Consequences:
Recover Hasselblatt’s bunching constants for Anosov flows (lower bounds
for the regularity of invariant plane fields).
Extend Hasselblatt’s result to the partially hyperbolic case.
Parametric version of Hasselblatt’s lower bounds:
In the Anosov case: the weak invariant plane fields C1-depend on
C2-deformations of an Anosov flow!
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Part V: Geometric rigidity and consequences

Suppose Y and – are Liouville v.f. and form induced from a LIS.
Recall Y µ E wn = Èˆs , XÍ and –.
We can observe

Y = fX + gˆs ≈∆ – = f LX – + gLˆs –.

The Moser technique works better than usual, if we fix X !!
=∆ We can recover the Liouville form strictly under deformation.

Theorem

;
Positive reparametrization class of

partially hyperbolic flows
up to conjugacy

<
1-to-1Ωæ

;
Liouville forms induced from some LIS on R ◊ M

up to strict Liouville equivalence

<
.

Corollary
Fixing (reparametrization class of) X, the Liouville flow is unique up to smooth
conjugacy.
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Part V: Geometric rigidity and consequences

Corollary
Any supporting linear Liouville pair can be strictly embedded into any
supporting exponential pair.
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Part VI: Skeleton persistence (a characterization)

Theorem
Suppose (W 4, –) is Liouville manifold with an oriented C1-persistent
3-dimensional skeleton � and ker – t �. Then,
(1) the Liouville v.f. Y |� is a synchronized Anosov vector field;
(2) (W 4, –) is C1-strictly Liouville equivalent to a Liouville form induced from
a LIS supporting Y |� (Mitsumatsu’s construction).

Corollary

;
Positive reparametrization classes of

Anosov flows
up to conjugacy

<
1-to-1Ωæ

;
Liouville forms on R ◊ M with C1-persistent
3-dimensional skeleton � with ker – t T�

up to strict Liouville equivalence

<
.
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Thank you!

:)
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