Regularity and persistence in non-Weinstein Liouville geometry via hyperbolic dynamics

Surena Hozoori (shozoori@ur.rochester.edu)

University of Rochester

Symplectic Zoominar

Surena Hozoori (shozoori@ur.rochester.edu)

Assumptions:

- W: compact oriented connected 4-manifold.
- Everything smooth unless stated otherwise.

Definition

A 1-form α on W is a Liouville form if

 $d\alpha \wedge d\alpha > 0.$

A dynamical perspective is provided by

Definition

There exists a unique vector field Y, called the Liouville vector field, satisfying

 $\iota_{\mathbf{Y}}\mathbf{d}\alpha = \alpha.$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

• Stoke's theorem:

$$0 < \int_{W} d\alpha \wedge d\alpha = \int_{\partial W} \alpha \wedge d\alpha \Longrightarrow \frac{\partial W}{\neq \emptyset}.$$

`~

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ④ ● ●

- Boundary condition?
- Cartan's formula $\Longrightarrow \mathcal{L}_Y d\alpha = d\alpha$.

Definition

The pair (W, α) is called a Liouville domain, if Y is positively transverse to ∂W .

• Geometric interpretation:

$$Y \pitchfork \partial W$$
 positively $\iff \alpha \wedge d\alpha|_{\partial W} = \frac{1}{2}\iota_Y(d\alpha \wedge d\alpha) > 0.$

 $\iff \alpha|_{\partial W}$: positive contact form.

• When Y is gradient-like, i.e. there exists $f : W \to \mathbb{R}$ such that

 $Y \cdot f \geq \epsilon(|Y|^2 + |df|^2),$

Morse theory \longrightarrow Symplectic handle decomposition

- \implies topological type of $W: \leq 2 \implies \partial W:$ connected.
- In this case,

 $Skel(Y) := \{ \text{points not flowing out under the flow of } Y \}$

is CW-complex with 0,1,2 cells.

- Any Liouville domain with such Liouville flow (up to homotopy) is called Weinstein.
- Example: (1) (D⁴_(x1,y1,x2,y2), Σ²_{i=1} ½(x_i dy_i y_i dx_i)).
 (2) (T^{*}₁ S, α_{can}).
 (3) Attaching symplectic handles. (4) Stein manifolds.

• Non-Weinstein Liouville geometry is far less understood!

Question

Are there examples of non-Weinstein Liouville geometry?

• (McDuff 91) (Geiges 95) (Mitsumatsu 95)

Theorem (Mitsumatsu 95)

If M is a 3-manifold admitting an Anosov flow, there exists a Liouville form α such that

$$([-1,1] \times M, \alpha)$$

is a (necessarily non-Weinstein) Liouville domain.

<□→□→ < 三→ < 三→

1

- Quick introduction to Anosov flows.
- Mitsumatsu's construction and the Liouville geometry of Anosov flows

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- Dynamical rigidity and consequences
- Geometric rigidity and consequences
- Skeleton C¹-persistence (a characterization)

Part II: Introduction to Anosov flows

- *M*: closed oriented connected 3-manifold.
- X: a vector field on M. X^t : the flow generated by X

Definition

The flow X^t is Anosov, if there exists a continuous splitting $TM = E^s \oplus E^u \oplus \langle X \rangle$, such that the splitting is invariant under X^t and

$$||X_*^t(v)|| \ge e^{Ct}||v||$$
 for any $v \in E^u$,

$$||X^t_*(u)|| \leq e^{-Ct}||u||$$
 for any $u \in E^s$,

where C > 0, and ||.|| is induced from some Riemannian metric on TM.

The line bundle $E^{s}(E^{u})$ is called the strong stable (unstable) line bundle.

Part II: Introduction to Anosov flows

• Suspension flows

- Consider an area preserving hyperbolic diffeomorphism
 f : T² ≃ R²/Z² → T².
- e.g. $f = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \in SL(2, \mathbb{Z})$ with real eigenvalues.
- Let $M := \mathbb{T}^2 \times [0,1]/(x,1) \sim (f(x),0).$
- $X_f^t(x,s) = (x,s+t)$ is an Anosov flow.

• Geodesic flows

• Σ : hyperbolic surface. The geodesic flow on the unit tangent space $UT\Sigma$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ - 豆.

Part II: Introduction to Anosov flows

- The foliation theory has been the main tool in the study of Anosov flows.
- The plane fields $E^{wu} := E^u \oplus \langle X \rangle$ and $E^{ws} := E^s \oplus \langle X \rangle$, called the weak unstable/stable bundles, are tangent to foliations.
- Local picture:

- A priori only Hölder continuous.
- 2 (=> classical examples • (Hirsch-Pugh-Shub 70) weak bundles are C^{1+} .
- (Hasselblatt 93) Lower bounds for regularity of weak bundles in terms of the expansion data (bunching constants).

 $\bigcap \land \bigcap$

From now on, we are assuming E^s (and E^u) are orientable.

Towards a contact/symplectic theory of Anosov 3-flows

• A local model based on contact geometry has higher regularity, is truly local and reflects the stability features of Anosov flows!

Definition

We call a 1-form α a positive (negative) contact form on M, if $\alpha \wedge d\alpha > 0$ (< 0).

Examples:

• The 1-form $\alpha_{std} = dz - y \, dx$ is a (positive) contact structure on \mathbb{R}^{3} ¹.

Ŧ

 $\mathcal{A} \mathcal{A} \mathcal{A}$

• [Darboux]: All contact structures locally look the same.

¹Picture from Wkipedia: Standard contact structure on \mathbb{R}^3

Surena Hozoori (shozoori@ur.rochester.edu)

Proposition (Mitsumatsu, Eliashberg-Thurston 95)

Suppose X generates an Anosov 3-flow. Then, $X \subset \xi_{-} \pitchfork \xi_{+}$, where ξ_{\pm} is a positive/negative contact structure.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ - 豆.

We call (ξ_{-}, ξ_{+}) a (supporting) bi-contact structure.

Part III: Mitsumatsu's construction and the Liouville geometry of Anosov flows

-7E

<ロ > (四) (四) (回) (u) (

 $\mathcal{A} \subset \mathcal{A}$

• This bi-contact condition has dynamical interpretation!

Definition

X is projectively Anosov, if it preserves a continuous splitting $\overline{TM/\langle X \rangle} = E \oplus F$, such that (C > 0) $\overline{||X_*^t(v)||/||X_*^t(u)|| \ge e^{Ct}||v||/||u||}$

for any $v \in F$ and $u \in E$.

Mitsumatsu, Eliashberg-Thurston 95

X projectively Anosov $\iff X \subset \xi_- \pitchfork \xi_+$.

Part III: Symplectic geometry of Anosov flows and Mitsumatsu's construction

• Consider
$$\alpha = (1 - s)\alpha_{-} + (1 + s)\alpha_{+}$$
 on $\mathcal{W} = [-1, 1]_{s} \times M$.
 $\xi_{-} = \ker \alpha_{-}$
 $\xi_{+} = \ker \alpha_{+}$
interpolation
through
 E^{Ws}
 $[-1, 1]_{s} \times M$
 $[-1, 1]_{s} \times M$

• Consider the graph
$$\Lambda := \{(s_x, x) | \ker [(1 - s_x)\alpha_- + (1 + s_x)\alpha_+] = E^{ws} \}.$$

• The Liouville condition of α :

• At
$$\Lambda$$
:

$$\frac{1}{2}\iota_{X}\iota_{\partial_{s}}(d\alpha \wedge d\alpha) = \mathcal{L}_{X}\alpha \wedge \mathcal{L}_{\partial_{s}}\alpha$$
where $\alpha_{u} = i_{\Lambda}^{*}\alpha$ and $(\alpha_{+} - \alpha_{-})$ is non-vanishing on E^{s} .
Surena Hozoori (shozoori@ur.rochester.edu)

Part III: Symplectic geometry of Anosov flows and Mitsumatsu's construction

• Consider $\alpha = (1 - s)\alpha_{-} + (1 + s)\alpha_{+}$ on $W = [-1, 1]_{s} \times M$.

i.e. Liouville condition at $\Lambda \iff$ absolute expansion of the norm induced by α_u on E^{wu} .

• Conversely (Mitsumatsu 95), expanding α_u can be perturbed to contact forms with the Liouville property.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ シ ♀ ♀

• Such pair $(\alpha_-, \alpha_+)_l$ is called a (linear) Liouville pair.

▲□▶▲圖▶▲필▶▲필▶ - 필.

Non-singluat partially hyperbolic flows

• What if we have only one Liouville condition?

Theorem (H. 24)

X is partially hyperbolic, if and only if,

SQ (~

• Examples via DA (derived from Anosov) deformation.

Invariant plane fields are not necessarily C^1 anymore.

Part IV: Dynamical rigidity and consequences

where $\lambda_{\pm} : \mathbb{R}_s \times M \xrightarrow{} \mathbb{R}_{>0}$ Note $\alpha = \lambda_{\pm} \alpha_{\pm} + \alpha_{\pm}$

• Note $\alpha = \lambda_{-}$

- A generalized (non-compact) framework:
- Everything is encoded in the interpolation!
- On $\mathbb{R}_s \times M$, consider the Liouville forms of the type

$$\alpha = \lambda_{-}\alpha_{-} + \lambda_{+}\alpha_{+},$$

- Interpolation of plane fields $\iff \partial_s \cdot \frac{\lambda_+}{\lambda_-} > 0. \qquad (f) \partial_s$
- + right ∞ -condition: Liouville interpolation system (LIS): $(\alpha_{-}, \alpha_{+})_{(\lambda_{-}, \lambda_{+})}$
- e.g. exponential model: $\alpha = e^{-s}\alpha_{-} + e^{s}\alpha_{+}$.

Surena Hozoori (shozoori@ur.rochester.edu)

- The space of such objects is homotopy equivalent to the space of Anosov flows (Massoni 22/H. 24)
- New Floer theoretic invariants by (Cieliebak-Lazarev-Massoni-Moreno 22).

Lemma

$$E^{wn} := \langle \partial_s, X \rangle$$
 is tangent to a trivial exact Lagrangian foliation, i.e. $\alpha|_{E^{wn}} = 0$
(called weak normal foliation), $Y \pitchfork \partial_s$ and
 $V \subset E^{wn}$.

Part IV: Dynamical rigidity and consequences

• X: Anosov, $(\alpha_-, \alpha_+)_{(\lambda_-, \lambda_+)}$: supporting LIS, Y is the Liouville v.f.

 $\mathcal{A} \subset \mathcal{A}$

Theorem (H. 24)

(1) $Skel(Y) = \{(s_x, x) \in \mathbb{R}_s \times M | ker [\lambda_-(s_x, x)\alpha_- + \lambda_+(s_x, x)\alpha_+] = E^{ws}\},$ implying that Skel(Y) is C^k if and only if E^{ws} is C^k . In particular, Skel(Y) is always C^{1+} . (2) $Y|_{Skel(Y)}$ is a synchronization of X (reparametrization and ue up to smooth conjugacy). (3) Y is normally repelling at Skel(Y). Therefore, Skel(Y) is C^1 -persistent.

Corollary

The Liouville v.f. is unique, up to C^1 -conjugacy, independent of all choices!

Corollary

Dynamical rigidity uses Liouville geometry to translate the regularity of invariant plane fields to the regularity of graphs (much easier problem)!

Consequences:

 Recover Hasselblatt's bunching constants for Anosov flows (lower bounds for the regularity of invariant plane fields).

- Extend Hasselblatt's result to the partially hyperbolic case.
- Parametric version of Hasselblatt's lower bounds:
- In the Anosov case: the weak invariant plane fields C¹-depend on C²-deformations of an Anosov flow!

Part V: Geometric rigidity and consequences

• Suppose Y and α are Liouville v.f. and form induced from a LIS.

- Recall $Y \subset E^{wn} = \langle \partial_s, X \rangle$ and α .
- We can observe

$$Y = fX + g\partial_s \iff \boxed{\alpha = f\mathcal{L}_X \alpha + g\mathcal{L}_{\partial_s} \alpha}.$$

- The Moser technique works better than usual, if we fix X!!
- \implies We can recover the Liouville form strictly under deformation

Theorem

$$\left\{\begin{array}{c} \text{Positive reparametrization class of} \\ \text{partially hyperbolic flows} \\ \text{up to conjugacy} \end{array}\right\} \xrightarrow{1-to-1} \left\{\begin{array}{c} \text{Liouville forms induced from some LIS on } \mathbb{R} \times M \\ \text{up to strict Liouville equivalence} \end{array}\right\}$$

Corollary

Fixing (reparametrization class of) X, the Liouville flow is unique up to smooth conjugacy.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Corollary

Any supporting linear Liouville pair can be strictly embedded into any supporting exponential pair.

Part VI: Skeleton persistence (a characterization)

C'-pergissence () namel hyp.

Theorem

Suppose (W^4, α) is Liouville manifold with an oriented C^1 -persistent 3-dimensional skeleton Λ and ker $\alpha \pitchfork \Lambda$. Then, (1) the Liouville v.f. $Y|_{\Lambda}$ is a synchronized Anosov vector field; (2) (W^4, α) is C^1 -strictly Liouville equivalent to a Liouville form induced from a LIS supporting $Y|_{\Lambda}$ (Mitsumatsu's construction).

Corollary

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ - 豆.

Thank you! :)