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Preliminaries

The Novikov field Λ is defined by

Λ =

{ ∞∑
i=0

ciT
λi | ci ∈ Q, λi ∈ R and lim

i→∞
λi =∞

}
where T is a formal variable.

There is a valuation map val : Λ→ R ∪ {∞} given by

val(x) =

min{λi | ci ̸= 0} if x =
∞∑
i=0

ciT
λi ̸= 0

∞ if x = 0.

For any r ∈ R, define Λ≥r = val−1([r ,∞]). In particular, we call

Λ≥0 =

{ ∞∑
i=0

ciT
λi ∈ Λ | λi ≥ 0

}
the Novikov ring.
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Preliminaries

A compact symplectic manifold (K , ω) is said to have contact type
boundary if there exists a Liouville vector field X defined on a
neighborhood of ∂K satisfying LXω = ω and X is transverse to ∂K .

Let λ = ιXω. Then α = λ|∂K is a canonical contact form on ∂K .

The symplectic completion K̂ of K is the symplectic manifold
K̂ = (K ⨿ (∂K × [0,∞)))/ ∼ with its symplectic form

ω̂ =

{
ω on K

d(eρα) on ∂K × [0,∞).

where ρ is a coordinate on [0,∞). The equivalence relation ∼ is
given by the diffeomorphism ∂K × [0,∞)→ U, (p, ρ) 7→ ϕXρ (p)

where ϕXρ is the flow of the Liouville vector field X and U is a
neighborhood of ∂K in K .
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Definition

Definition

Let (M, ω) be a closed symplectic manifold and let K ⊂ M be a compact
domain with contact type boundary. A contact type K -admissible
Hamiltonian function is a smooth function H : S1 ×M → R satisfying
the following conditions.

H is negative and C 2-small on S1 ×K . Moreover, H > −ϵ on S1 ×K
where ϵ > 0 is the half of minimal period of Reeb orbits of ∂K .

There exists η ≥ 0 such that H(t, p, ρ) is C 2-close to h1(e
ρ) on

S1 ×
(
∂K × [0, 13η]

)
for some convex and increasing function h1.
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Definition

Definition (continued)

H(t, p, ρ) = βeρ + β′ on ∂K × [13η,
2
3η] where β /∈ Spec(∂K , α) and

β′ ∈ R.
H(t, p, ρ) is C 2-close to h2(e

ρ) on S1 ×
(
∂K × [23η, η]

)
for some

concave and increasing function h2.

H is C 2-close to a constant function on
S1 × (M − K ∪ (∂K × [0, η])).

We denote the set of all contact type K -admissible Hamiltonian functions
by HCont

K .
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Definition

K

Lower orbits

Upper orbits
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Definition

Let CF S1
(H) = Λ≥0[u]⊗Λ≥0

CF (H) be the S1-equivariant Floer
complex of H where u is a formal variable of degree 2. The
S1-equivariant Floer differential dS1

of CF S1
(H) has the form

dS1
(uk ⊗ x) =

k∑
i=0

uk−i ⊗ ψi (x).

Choose a cofinal sequence {Hn} of HCont
K , that is,

H1 ≤ H2 ≤ H3 ≤ · · · and lim
n→∞

Hn(t, x) =

{
0 if x ∈ K

∞ if x ∈ M − K .

SHS1

M (K ) = H

(
lim−→
n→∞

CF S1
(Hn)

)
?
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Definition

Let A be a module over Λ≥0. Then the completion Â of A is defined by

Â = lim←−
r→0

A⊗ Λ≥0/Λ≥r .

Definition

Let (M, ω) be a closed symplectic manifold and let K ⊂ M be a compact
domain with contact type boundary. Then the S1-equivariant relative
symplectic cohomology SHS1

M (K ) of K in M is defined by

SHS1

M (K ) = H

(
l̂im−→
n→∞

CF S1
(Hn)

)
.

By completing the complex, we can ignore the upper orbits.
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Property

Question. Does SHS1

M (K ) really depend on K?

Example (Varolgunes)

Let (S2, ω) be the 2-dimensional sphere equipped with an area form ω
with total area 1. Let D∆ ⊂ S2 be a smooth disk of area ∆.

SHS1
(D∆; Λ) = 0 regardless of the size of D∆.

SHS1

S2 (D∆; Λ) =

{
0 if ∆ < 1

2

Λ[u]⊕ Λ[u] if ∆ ≥ 1
2

where u is a formal variable

of degree 2.
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Property

Theorem (Varolgunes)

Let (M, ω) be a closed symplectic manifold and let K ⊂ M be a compact
subset. If K is displaceable, then SHM(K ; Λ) = 0.

Theorem

Let (M, ω) be a closed symplectic manifold and let K ⊂ M be a compact
domain with contact type boundary. Then there exists a spectral sequence
Ep,q
r (M,K ) converging to SHS1

M (K ) such that its second page is given by

Ep,q
2 (M,K ) ∼= Hp(BS1; Λ≥0)⊗ SHq

M(K ).

Corollary

Let (M, ω) be a closed symplectic manifold and let K ⊂ M be a compact
domain with contact type boundary. If K is displaceable, then
SHS1

M (K ; Λ) = 0.
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Relative symplectic capacity

From this point on, we assume that (M, ω) is symplectically
aspherical, that is, ω|π2(M) = 0 and c1(TM)|π2(M) = 0.

We say that ∂K is index-bounded if, for each ℓ ∈ Z, the set of
periods of contractible Reeb orbits of (∂K , α) of Conley-Zehnder
index ℓ is bounded.

Additionally, we add the index-boundedness of ∂K to our assumption
list.

Let SHS1,>L
M (K ) be the action filtration of SHS1

M (K ) generated by
Hamiltonian orbits with action greater than L.

Let SHS1,−
M (K ) be the cohomology generated by nonconstant

Hamiltonian orbits and SHS1,−,>L
M (K ) be its action filtration.
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Relative symplectic capacity

Definition

Let (M, ω) be a symplectic manifold and let K ⊂ M be a subset. A
relative symplectic capacity c assigns to each triple (M,K , ω) a number
c(M,K , ω) ∈ [0,∞] satisfying

(Monotonicity) if there exists a symplectic embedding
ϕ : (M, ω) ↪→ (M ′, ω′) such that int(ϕ(K )) ⊂ K ′, then
c(M,K , ω) ≤ c(M ′,K ′, ω′), and

(Conformality) if r > 0, then c(M,K , rω) = rc(M,K , ω).

We will usually drop the symplectic form ω in c(M,K , ω) if it is clear from
the context.
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Relative symplectic capacity

Floer, Hofer and Wysocki introduced the symplectic (co)homology
capacity, denoted by cSH(K ), using symplectic cohomology.

Gutt and Hutchings introduced the Gutt-Hutchings capacity, denoted
by cGHk (K ), for each k = 1, 2, 3, · · · using S1-equivariant symplectic
cohomology.

Question. Can we define a relative version of cSH and cGHk ?

Theorem

There exists a relative Gutt-Hutchings capacity cGHk (M,K ) for each
k = 1, 2, 3, · · · .
There exists a relative symplectic (co)homology capacity cSH(M,K ).

17 / 23



Relative symplectic capacity

Floer, Hofer and Wysocki introduced the symplectic (co)homology
capacity, denoted by cSH(K ), using symplectic cohomology.

Gutt and Hutchings introduced the Gutt-Hutchings capacity, denoted
by cGHk (K ), for each k = 1, 2, 3, · · · using S1-equivariant symplectic
cohomology.

Question. Can we define a relative version of cSH and cGHk ?

Theorem

There exists a relative Gutt-Hutchings capacity cGHk (M,K ) for each
k = 1, 2, 3, · · · .
There exists a relative symplectic (co)homology capacity cSH(M,K ).

17 / 23



Relative symplectic capacity

Floer, Hofer and Wysocki introduced the symplectic (co)homology
capacity, denoted by cSH(K ), using symplectic cohomology.

Gutt and Hutchings introduced the Gutt-Hutchings capacity, denoted
by cGHk (K ), for each k = 1, 2, 3, · · · using S1-equivariant symplectic
cohomology.

Question. Can we define a relative version of cSH and cGHk ?

Theorem

There exists a relative Gutt-Hutchings capacity cGHk (M,K ) for each
k = 1, 2, 3, · · · .
There exists a relative symplectic (co)homology capacity cSH(M,K ).

17 / 23



Relative symplectic capacity

To define cSH(M,K ), we need the following exact triangle.

H(K, ∂K; Λ) SH>L
M (K; Λ)

SH−,>L
M (K; Λ)

jL

Definition

Define the relative symplectic (co)homology capacity cSH(M,K ) by

cSH(M,K ) = − sup
{
L < 0 | jL(1K ) = 0

}
where 1K is the unit of H(K , ∂K ; Λ).
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Relative symplectic capacity

To define cGH1 (M,K ), we need the S1-equivariant version of the previous
exact triangle.

H(K, ∂K; Λ)⊗H(BS1; Λ) SHS1,>L
M (K; Λ)

SHS1,−,>L
M (K; Λ)

jS
1,L

Definition

Define the first relative Gutt-Hutchings capacity cGH1 (M,K ) by

cGH1 (M,K ) = − sup
{
L < 0 | jS1,L(1K ⊗ 1) = 0

}
.
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Relative symplectic capacity

Gutt and Ramos proved that cGHk (K ) = cEHk (K ) on every star-shaped
domain K ⊂ R2n where cEHk (K ) is the k-th Ekeland-Hofer capacity.

Abbondandolo and Kang proved that cSH(K ) = cEH1 (K ) on every
convex domain K ⊂ R2n.

Question. Is cGH1 (M,K ) = cSH(M,K )?

Answer. Sometimes. Generally, cGH1 (M,K ) ≤ cSH(M,K ). To prove the
other inequality, we need some convexity assumption.
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Relative symplectic capacity

Definition

Let (Σ, ξ, α) be a contact manifold of dimension 2n − 1 where ξ is a
contact structure and α is a contact form. Assume that the first Chern
class c1(ξ) vanishes. A contact form α is called dynamically convex if
every contractible periodic Reeb orbit γ of α satisfies CZ (γ) ≥ n + 1.

Theorem

If the canonical contact form α on ∂K is dynamically convex, then

cGH1 (M,K ) = cSH(M,K ).
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Relative symplectic capacity

We saw that (S1-equivariant) relative symplectic cohomology can read the
displaceability of a subset.

Question. Can relative symplectic capacity detect the displaceability?

Theorem

If cSH(M,K ) =∞, then K is heavy and hence not displaceable.
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Thank you!
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