S^1 -equivariant relative symplectic cohomology and relative symplectic capacities

Jonghyeon Ahn

University of Illinois, Urbana-Champaign

2 Definition and basic properties

3 Relative symplectic capacities

2 Definition and basic properties

3 Relative symplectic capacities

• The Novikov field Λ is defined by

$$\Lambda = \left\{ \sum_{i=0}^{\infty} c_i T^{\lambda_i} \mid c_i \in \mathbb{Q}, \lambda_i \in \mathbb{R} \text{ and } \lim_{i \to \infty} \lambda_i = \infty \right\}$$

where T is a formal variable.

• There is a valuation map $\mathit{val}:\Lambda\to\mathbb{R}\cup\{\infty\}$ given by

$$val(x) = \begin{cases} \min\{\lambda_i \mid c_i \neq 0\} & \text{if } x = \sum_{i=0}^{\infty} c_i T^{\lambda_i} \neq 0 \\ \infty & \text{if } x = 0. \end{cases}$$

• For any $r \in \mathbb{R}$, define $\Lambda_{\geq r} = val^{-1}([r,\infty])$. In particular, we call

$$\Lambda_{\geq 0} = \left\{ \sum_{i=0}^{\infty} c_i T^{\lambda_i} \in \Lambda \mid \lambda_i \geq 0 \right\}$$

the Novikov ring.

- A compact symplectic manifold (K, ω) is said to have contact type boundary if there exists a Liouville vector field X defined on a neighborhood of ∂K satisfying L_Xω = ω and X is transverse to ∂K.
- Let $\lambda = \iota_X \omega$. Then $\alpha = \lambda|_{\partial K}$ is a canonical contact form on ∂K .
- The symplectic completion \widehat{K} of K is the symplectic manifold $\widehat{K} = (K \amalg (\partial K \times [0, \infty))) / \sim$ with its symplectic form

$$\widehat{\omega} = egin{cases} \omega & ext{on } {\cal K} \ d(e^
holpha) & ext{on } \partial {\cal K} imes [0,\infty). \end{cases}$$

where ρ is a coordinate on $[0,\infty)$. The equivalence relation \sim is given by the diffeomorphism $\partial K \times [0,\infty) \to U$, $(p,\rho) \mapsto \phi_{\rho}^{X}(p)$ where ϕ_{ρ}^{X} is the flow of the Liouville vector field X and U is a neighborhood of ∂K in K.

2 Definition and basic properties

3 Relative symplectic capacities

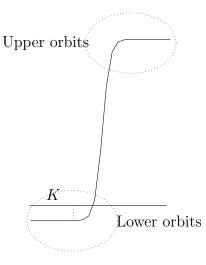
Let (M, ω) be a closed symplectic manifold and let $K \subset M$ be a compact domain with contact type boundary. A **contact type** *K*-admissible **Hamiltonian function** is a smooth function $H : S^1 \times M \to \mathbb{R}$ satisfying the following conditions.

- *H* is negative and C²-small on S¹ × K. Moreover, H > −e on S¹ × K where e > 0 is the half of minimal period of Reeb orbits of ∂K.
- There exists $\eta \ge 0$ such that $H(t, p, \rho)$ is C^2 -close to $h_1(e^{\rho})$ on $S^1 \times (\partial K \times [0, \frac{1}{3}\eta])$ for some convex and increasing function h_1 .

Definition (continued)

- $H(t, p, \rho) = \beta e^{\rho} + \beta'$ on $\partial K \times [\frac{1}{3}\eta, \frac{2}{3}\eta]$ where $\beta \notin \text{Spec}(\partial K, \alpha)$ and $\beta' \in \mathbb{R}$.
- $H(t, p, \rho)$ is C^2 -close to $h_2(e^{\rho})$ on $S^1 \times (\partial K \times [\frac{2}{3}\eta, \eta])$ for some concave and increasing function h_2 .
- *H* is C^2 -close to a constant function on $S^1 \times (M K \cup (\partial K \times [0, \eta])).$

We denote the set of all contact type K-admissible Hamiltonian functions by $\mathcal{H}_{K}^{\text{Cont}}$.



Let CF^{S¹}(H) = Λ_{≥0}[u] ⊗_{Λ≥0} CF(H) be the S¹-equivariant Floer complex of H where u is a formal variable of degree 2. The S¹-equivariant Floer differential d^{S¹} of CF^{S¹}(H) has the form

$$d^{S^1}(u^k\otimes x)=\sum_{i=0}^k u^{k-i}\otimes \psi_i(x).$$

• Choose a cofinal sequence $\{H_n\}$ of $\mathcal{H}_K^{\text{Cont}}$, that is, $H_1 \leq H_2 \leq H_3 \leq \cdots$ and $\lim_{n \to \infty} H_n(t, x) = \begin{cases} 0 & \text{if } x \in K \\ \infty & \text{if } x \in M - K. \end{cases}$

Let CF^{S¹}(H) = Λ_{≥0}[u] ⊗_{Λ≥0} CF(H) be the S¹-equivariant Floer complex of H where u is a formal variable of degree 2. The S¹-equivariant Floer differential d^{S¹} of CF^{S¹}(H) has the form

$$d^{S^1}(u^k\otimes x)=\sum_{i=0}^k u^{k-i}\otimes \psi_i(x).$$

• Choose a cofinal sequence $\{H_n\}$ of $\mathcal{H}_K^{\text{Cont}}$, that is, $H_1 \leq H_2 \leq H_3 \leq \cdots$ and $\lim_{n \to \infty} H_n(t, x) = \begin{cases} 0 & \text{if } x \in K \\ \infty & \text{if } x \in M - K. \end{cases}$ • $SH_M^{S^1}(K) = H\left(\lim_{n \to \infty} CF^{S^1}(H_n)\right)$?

Let A be a module over $\Lambda_{\geq 0}$. Then the **completion** \widehat{A} of A is defined by

$$\widehat{A} = \varprojlim_{r \to 0} A \otimes \Lambda_{\geq 0} / \Lambda_{\geq r}.$$

Let A be a module over $\Lambda_{\geq 0}$. Then the **completion** \widehat{A} of A is defined by

$$\widehat{A} = \varprojlim_{r \to 0} A \otimes \Lambda_{\geq 0} / \Lambda_{\geq r}.$$

Definition

Let (M, ω) be a closed symplectic manifold and let $K \subset M$ be a compact domain with contact type boundary. Then the S^1 -equivariant relative symplectic cohomology $SH_M^{S^1}(K)$ of K in M is defined by

$$SH_M^{S^1}(K) = H\left(\overbrace{\underset{n\to\infty}{\lim}} CF^{S^1}(H_n)\right).$$

Let A be a module over $\Lambda_{\geq 0}$. Then the **completion** \widehat{A} of A is defined by

$$\widehat{A} = \varprojlim_{r \to 0} A \otimes \Lambda_{\geq 0} / \Lambda_{\geq r}.$$

Definition

Let (M, ω) be a closed symplectic manifold and let $K \subset M$ be a compact domain with contact type boundary. Then the S^1 -equivariant relative symplectic cohomology $SH_M^{S^1}(K)$ of K in M is defined by

$$SH^{S^1}_M(K) = H\left(\widehat{\varinjlim_{n\to\infty}} CF^{S^1}(H_n)\right).$$

By completing the complex, we can ignore the upper orbits.

Question. Does $SH_M^{S^1}(K)$ really depend on K?

Question. Does $SH_M^{S^1}(K)$ really depend on K?

Example (Varolgunes)

Let (S^2, ω) be the 2-dimensional sphere equipped with an area form ω with total area 1. Let $D_{\Delta} \subset S^2$ be a smooth disk of area Δ .

SH^{S¹}(D_Δ; Λ) = 0 regardless of the size of D_Δ.

•
$$SH_{S^2}^{S^1}(D_{\Delta}; \Lambda) = \begin{cases} 0 & \text{if } \Delta < \frac{1}{2} \\ \Lambda[u] \oplus \Lambda[u] & \text{if } \Delta \geq \frac{1}{2} \end{cases}$$
 where *u* is a formal variable of degree 2.

Property

Theorem (Varolgunes)

Let (M, ω) be a closed symplectic manifold and let $K \subset M$ be a compact subset. If K is displaceable, then $SH_M(K; \Lambda) = 0$.

Property

Theorem (Varolgunes)

Let (M, ω) be a closed symplectic manifold and let $K \subset M$ be a compact subset. If K is displaceable, then $SH_M(K; \Lambda) = 0$.

Theorem

Let (M, ω) be a closed symplectic manifold and let $K \subset M$ be a compact domain with contact type boundary. Then there exists a spectral sequence $E_r^{p,q}(M, K)$ converging to $SH_M^{S^1}(K)$ such that its second page is given by

$$E_2^{p,q}(M,K) \cong H^p(BS^1;\Lambda_{\geq 0}) \otimes SH^q_M(K).$$

Property

Theorem (Varolgunes)

Let (M, ω) be a closed symplectic manifold and let $K \subset M$ be a compact subset. If K is displaceable, then $SH_M(K; \Lambda) = 0$.

Theorem

Let (M, ω) be a closed symplectic manifold and let $K \subset M$ be a compact domain with contact type boundary. Then there exists a spectral sequence $E_r^{p,q}(M, K)$ converging to $SH_M^{S^1}(K)$ such that its second page is given by

$$E_2^{p,q}(M,K)\cong H^p(BS^1;\Lambda_{\geq 0})\otimes SH^q_M(K).$$

Corollary

Let (M, ω) be a closed symplectic manifold and let $K \subset M$ be a compact domain with contact type boundary. If K is displaceable, then $SH_M^{S^1}(K; \Lambda) = 0.$

2 Definition and basic properties

3 Relative symplectic capacities

- From this point on, we assume that (M, ω) is symplectically aspherical, that is, $\omega|_{\pi_2(M)} = 0$ and $c_1(TM)|_{\pi_2(M)} = 0$.
- We say that ∂K is index-bounded if, for each ℓ ∈ Z, the set of periods of contractible Reeb orbits of (∂K, α) of Conley-Zehnder index ℓ is bounded.
- Additionally, we add the index-boundedness of ∂K to our assumption list.
- Let $SH_M^{S^1,>L}(K)$ be the action filtration of $SH_M^{S^1}(K)$ generated by Hamiltonian orbits with action greater than L.
- Let $SH_M^{S^{1,-}}(K)$ be the cohomology generated by nonconstant Hamiltonian orbits and $SH_M^{S^{1,-,>L}}(K)$ be its action filtration.

Let (M, ω) be a symplectic manifold and let $K \subset M$ be a subset. A **relative symplectic capacity** c assigns to each triple (M, K, ω) a number $c(M, K, \omega) \in [0, \infty]$ satisfying

- (Monotonicity) if there exists a symplectic embedding $\phi : (M, \omega) \hookrightarrow (M', \omega')$ such that $int(\phi(K)) \subset K'$, then $c(M, K, \omega) \leq c(M', K', \omega')$, and
- (Conformality) if r > 0, then $c(M, K, r\omega) = rc(M, K, \omega)$.

We will usually drop the symplectic form ω in $c(M, K, \omega)$ if it is clear from the context.

- Floer, Hofer and Wysocki introduced the symplectic (co)homology capacity, denoted by $c^{SH}(K)$, using symplectic cohomology.
- Gutt and Hutchings introduced the Gutt-Hutchings capacity, denoted by $c_k^{GH}(K)$, for each $k = 1, 2, 3, \cdots$ using S¹-equivariant symplectic cohomology.

- Floer, Hofer and Wysocki introduced the symplectic (co)homology capacity, denoted by $c^{SH}(K)$, using symplectic cohomology.
- Gutt and Hutchings introduced the Gutt-Hutchings capacity, denoted by $c_k^{GH}(K)$, for each $k = 1, 2, 3, \cdots$ using S^1 -equivariant symplectic cohomology.

Question. Can we define a relative version of c^{SH} and c_k^{GH} ?

- Floer, Hofer and Wysocki introduced the symplectic (co)homology capacity, denoted by $c^{SH}(K)$, using symplectic cohomology.
- Gutt and Hutchings introduced the Gutt-Hutchings capacity, denoted by $c_k^{GH}(K)$, for each $k = 1, 2, 3, \cdots$ using S^1 -equivariant symplectic cohomology.

Question. Can we define a relative version of c^{SH} and c_k^{GH} ?

Theorem

- There exists a relative Gutt-Hutchings capacity $c_k^{GH}(M, K)$ for each $k = 1, 2, 3, \cdots$.
- There exists a relative symplectic (co)homology capacity $c^{SH}(M, K)$.

Relative symplectic capacity

To define $c^{SH}(M, K)$, we need the following exact triangle.

$$\begin{array}{ccc} H(K,\partial K;\Lambda) & \stackrel{j^L}{\longrightarrow} SH_M^{>L}(K;\Lambda) \\ & & & \downarrow \\ & & & \\ SH_M^{-,>L}(K;\Lambda) \end{array}$$

Definition

Define the relative symplectic (co)homology capacity $c^{SH}(M, K)$ by

$$c^{SH}(M,K) = -\sup\left\{L < 0 \mid j^L(1_K) = 0
ight\}$$

where 1_K is the unit of $H(K, \partial K; \Lambda)$.

Relative symplectic capacity

To define $c_1^{GH}(M, K)$, we need the S^1 -equivariant version of the previous exact triangle.

$$H(K,\partial K;\Lambda) \otimes H(BS^{1};\Lambda) \xrightarrow{j^{S^{1},L}} SH_{M}^{S^{1},>L}(K;\Lambda)$$

$$\downarrow$$

$$SH_{M}^{S^{1},-,>L}(K;\Lambda)$$

Definition

Define the first relative Gutt-Hutchings capacity $c_1^{GH}(M, K)$ by

$$c_1^{GH}(M,K) = -\sup\left\{L < 0 \mid j^{S^{1,L}}(1_K \otimes 1) = 0
ight\}.$$

- Gutt and Ramos proved that c_k^{GH}(K) = c_k^{EH}(K) on every star-shaped domain K ⊂ ℝ²ⁿ where c_k^{EH}(K) is the k-th Ekeland-Hofer capacity.
- Abbondandolo and Kang proved that c^{SH}(K) = c₁^{EH}(K) on every convex domain K ⊂ ℝ²ⁿ.

- Gutt and Ramos proved that c_k^{GH}(K) = c_k^{EH}(K) on every star-shaped domain K ⊂ ℝ²ⁿ where c_k^{EH}(K) is the k-th Ekeland-Hofer capacity.
- Abbondandolo and Kang proved that c^{SH}(K) = c₁^{EH}(K) on every convex domain K ⊂ ℝ²ⁿ.

Question. Is $c_1^{GH}(M, K) = c^{SH}(M, K)$?

- Gutt and Ramos proved that c_k^{GH}(K) = c_k^{EH}(K) on every star-shaped domain K ⊂ ℝ²ⁿ where c_k^{EH}(K) is the k-th Ekeland-Hofer capacity.
- Abbondandolo and Kang proved that c^{SH}(K) = c₁^{EH}(K) on every convex domain K ⊂ ℝ²ⁿ.

Question. Is $c_1^{GH}(M, K) = c^{SH}(M, K)$?

Answer. Sometimes.

- Gutt and Ramos proved that c_k^{GH}(K) = c_k^{EH}(K) on every star-shaped domain K ⊂ ℝ²ⁿ where c_k^{EH}(K) is the k-th Ekeland-Hofer capacity.
- Abbondandolo and Kang proved that c^{SH}(K) = c₁^{EH}(K) on every convex domain K ⊂ ℝ²ⁿ.

Question. Is
$$c_1^{GH}(M, K) = c^{SH}(M, K)$$
?

Answer. Sometimes. Generally, $c_1^{GH}(M, K) \leq c^{SH}(M, K)$. To prove the other inequality, we need some convexity assumption.

Let (Σ, ξ, α) be a contact manifold of dimension 2n - 1 where ξ is a contact structure and α is a contact form. Assume that the first Chern class $c_1(\xi)$ vanishes. A contact form α is called **dynamically convex** if every contractible periodic Reeb orbit γ of α satisfies $CZ(\gamma) \ge n + 1$.

Let (Σ, ξ, α) be a contact manifold of dimension 2n - 1 where ξ is a contact structure and α is a contact form. Assume that the first Chern class $c_1(\xi)$ vanishes. A contact form α is called **dynamically convex** if every contractible periodic Reeb orbit γ of α satisfies $CZ(\gamma) \ge n + 1$.

Theorem

If the canonical contact form α on ∂K is dynamically convex, then

$$c_1^{GH}(M,K)=c^{SH}(M,K).$$

We saw that $(S^1$ -equivariant) relative symplectic cohomology can read the displaceability of a subset.

We saw that $(S^1$ -equivariant) relative symplectic cohomology can read the displaceability of a subset.

Question. Can relative symplectic capacity detect the displaceability?

We saw that $(S^1$ -equivariant) relative symplectic cohomology can read the displaceability of a subset.

Question. Can relative symplectic capacity detect the displaceability?

Theorem

If $c^{SH}(M, K) = \infty$, then K is heavy and hence not displaceable.

Thank you!