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Abstract

Let p1, p2, p3 be three distinct points in the plane, and, for i = 1, 2, 3, let Ci be a
family of n unit circles that pass through pi. We address a conjecture made by Székely,
and show that the number of points incident to a circle of each family is O(n11/6),
improving an earlier bound for this problem due to Elekes, Simonovits, and Szabó [4].
The problem is a special instance of a more general problem studied by Elekes and
Szabó [5] (and by Elekes and Rónyai [3]).

Keywords. Combinatorial geometry, incidences.

1 Introduction

In this paper we re-examine the following problem. Let p1, p2, p3 be three distinct points
in the plane, and, for i = 1, 2, 3, let Ci be a family of n unit circles that pass through pi.
The goal is to obtain an upper bound on the number of triple points, which are points that
are incident to a circle of each family. See Figures 1 and 2(a) for an illustration. Recently,
Elekes et al. [4] have shown that the number of such points is O(n2−η), for some constant
parameter η > 0 (that they did not make concrete); by this they settled a conjecture of
Székely (see [2, Conjecture 3.41]), stipulating that this number should be o(n2).

Using a different technique, which appears to be simpler than the one in [4], we improve
the earlier bound, showing that the number of triple points is O(n11/6).

The specific problem studied in this paper can be viewed as a special instance of a
more general setup, which has been studied by Elekes and Rónyai [3] and by Elekes and
Szabó [5] (see also [2]). From a high-level point of view the setup is as follows. We have
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Figure 1: Two triple points u1 and u2.

three sets A, B, C, each of n real numbers, and we have a trivariate real polynomial F
of some constant degree d. Let Z(F ) denote the subset of A × B × C where F vanishes.
The goal is to show that, unless F and A, B, C have some very special structure, |Z(F )|
is subquadratic. (For a simple example where |Z(F )| is quadratic in n, consider the case
where F (x, y, z) = x+ y − z, and where A = B = C = {1, 2, . . . , n}.)

Positive and significant results for this general problem have been obtained by Elekes
and Rónyai [3] and by Elekes and Szabó [5], who showed that, unless F has a very restricted
form, |Z(F )| is indeed subquadratic in n. For example, in the case where F is of the form
z − f(x, y), if |Z(F )| is quadratic in n, then f must be of one of the forms p(q(x) + r(y))
or p(q(x) · r(y)), for suitable univariate polynomials p, q, r (see [3] and [2]). We have
recently studied in [9] this specific problem (where F (x, y, z) = z − f(x, y)) and obtained
improved bounds for |Z(F )|, when f does not have these special forms; see below. Related
representations, somewhat more complicated to state, for a polynomial F with |Z(F )| =
Θ(n2), have also been obtained for the general case (see [5] and [2]).

The high-level approach used in this paper is similar to those used in several recent
works that study problems in combinatorial geometry that are special instances of this
general framework (see Sharir, Sheffer, and Solymosi [12] and Sharir and Solymosi [11]).
However, the actual implementations of this approach in our paper, as well as in the other
works just mentioned, are very problem-specific and exploit the special geometric structure
of the relevant problem.

We will later detail the connection of our problem to the setup in [3, 5]. Roughly
speaking, for each Ci, its circles have one degree of freedom, and we parameterize them
by a suitable single real parameter. Then, with a proper choice of these parameters, the
condition that three circles, one from each family, have a common point can be expressed by
an equation of the form F (x, y, z) = 0, where F is a real trivariate polynomial, and x, y, z
are the parameters representing the three relevant circles.

In both cases, the specific problem studied in this paper (and the specific problems
studied in [11, 12]), and the general one in [3, 5], the approach is to double count the
number Q of quadruples (a, p, b, q), such that, in our specific context, a, b represent two
circles in C1, p, q represent two circles in C2, and there exists z, representing a circle through
p3, such that F (a, p, z) = 0 and F (b, q, z) = 0. (In the general case, the quadruples to be
considered are (a, p, b, q) such that a, b ∈ A, p, q ∈ B, and there exists c ∈ C such that
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F (a, p, z) = F (b, q, z) = 0.) A lower bound for Q, in terms of |Z(f)|, is easy to obtain
(see below for details), and an upper bound is obtained by regarding each such quadruple
(a, p, b, q) as an incidence between the point (p, q), in a suitable parametric plane, and a
curve γa,b which is the locus of all points (p, q) that satisfy with a, b the above conditions.
The comparison between the lower and upper bounds yields the asserted upper bound on
|Z(F )|.

The main issue that arises in bounding the number of incidences is the possibility that
many curves γa,b overlap each other, in which case the standard techniques for analyzing
point-curve incidences fail. A major part of the analysis in this paper is to show that the
amount of overlap is bounded. In this case the standard incidence techniques do apply, and
yield a sharp upper bound that leads to the aforementioned bound on |Z(F )|; see below for
details.

In the general problem, the goal is to show that when there is a larger amount of overlap
between the curves, the polynomial F must have a special form, as the ones mentioned above
and established in [3], and to establish a subquadratic upper bound on |Z(F )| when this
is not the case. As mentioned, this indeed has recently been shown in a companion paper
[9] for the special case where F (x, y, z) = z − f(x, y), for any constant-degree bivariate
polynomial f , with the same subquadratic bound O(n11/6) as the one established in this
paper. This argument has not yet been worked out for the case of a general trivariate
polynomial F , except for the general (and weaker1) analysis in [5]. In our problem, though,
this part is not needed, and the argument that the overlap is bounded is an ad-hoc argument
that exploits the geometric and algebraic structure of the problem.

2 Unit circles spanned by points on three unit circles

We begin by observing the following equivalent and, in our opinion, more convenient for-
mulation of the problem. Let C1, C2, C3 be three unit circles in R2, and, for each i = 1, 2, 3,
let Si be a set of n points lying on Ci. The goal is to obtain a subquadratic upper bound on
the number of unit circles, spanned by triples of points in S1 × S2 × S3. (The equivalence
between this formulation and the one in [4], as stated in the introduction, is indeed trivial:
For each i, Si is the set of centers of the circles of Ci, and the centers of the resulting
“trichromatic” unit circles in the new formulation are the triple points in the previous one.)
See Figures 2(a) and 2(b) for an illustration of this connection between the two setups. In
what follows we use the new formulation.

We note that the condition that three points p, q, r ∈ R2 span a unit circle can be
expressed as a polynomial equation in their coordinates. That is, there exists a 6-variate
real polynomial F of degree 6, such that F (p1, p2, q1, q2, r1, r2) = 0 when p = (p1, p2), q =
(q1, q2), r = (r1, r2) span a unit circle. We delegate the explicit construction of F , which
we believe might be of some interest, to Appendix A, and remark that our analysis will not
make use of the explicit form of F .

For each i = 1, 2, 3, each point p ∈ Si can be parameterized by (an appropriate algebraic
representation of) the orientation vp ∈ S1 of p with respect to the center ci of Ci (note that
the centers ci are the points pi in the original formulation); denote the set of these n

1For example, in the subquadratic bound obtained in [5], the exponent depends on the degree of F .
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Figure 2: (a) A concurrent triple of unit circles and the corresponding triple point u. (b)
The triple point u is mapped in the new setup to the unit circle C centered at u. The circles
C1, C2, C3 are centered at p1, p2, p3, respectively, and the hollow points on C are the centers
of the three original circles.

orientations as Θi. In what follows we will interchangeably use both notations, referring to
a point p ∈ Si, for i = 1, 2, 3, either by its corresponding parameter vp ∈ Θi, when we want
to stress the algebraic nature of the problem, or as p itself, when geometry is concerned.

We call a triple (v1, v2, v3), with vi ∈ Θi, i = 1, 2, 3, a unit triple if the three corre-
sponding points p1 ∈ S1, p2 ∈ S2, p3 ∈ S3 span a unit circle. We use the standard algebraic
representation of the vi’s, where we replace vi by ti = tan vi

2 , and the corresponding point

on Ci then becomes ci +
(

1−t2i
1+t2i

, 2ti
1+t2i

)
. With these representations, the property of being

a unit triple can be expressed by a polynomial equation f(v1, v2, v3) = 0, obtained by the
appropriate substitutions into the equation of F (see (7) in Appendix A). Clearly, f has
constant (and small) degree. This illustrates how our problem is indeed a special instance
of the general problem mentioned in the introduction. In what follows we will refer to the
vi’s as orientations, also when substituting them in f (the actual substitution should be of
the corresponding parameters tan vi

2 ). This slightly incorrect treatment is made to simplify
the presentation, and has no real consequences in the analysis.

We next argue that, without loss of generality (with a possible re-indexing of the input
circles and points), we may assume that the points of S1 all lie in the portion of C1 that
lies outside the closed disk circumscribed by C2 (this property will become handy for the
forthcoming analysis). To see this, let D1, D2, D3 denote the three (closed) unit disks
circumscribed by C1, C2, C3, respectively, and consider the intersection region K = D1 ∩
D2 ∩ D3. Assume first that K has a nonempty interior. As is well known, the boundary
∂K of K is of the form c1 ∪ c2 ∪ c3, where ci is a single (possibly empty) connected arc of
Ci, for i = 1, 2, 3. More generally, in the intersection K of any finite number of unit disks,
each disk contributes at most one connected arc to ∂K. Let C be a unit circle in the plane,
which is not one of C1, C2, C3, and let D denote the disk bounded by C. Then, as just
mentioned, C contributes a single connected arc c to ∂(K ∩ D). It follows that C avoids
the relative interior of at least one of the arcs c1, c2, c3, namely the arc not containing any
endpoint of c. (If one of those arcs is empty, C trivially misses that arc.)
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It follows that, for every triple (p1, p2, p3) ∈ S1 × S2 × S3 spanning a unit circle C, at
least one of the points p1, p2, p3 avoids K, because neither of these points can lie in the
interior of K, and they lie on C, which meets ∂K in at most two points. So, for one of the
indices i0 ∈ {1, 2, 3}, and for at least a third of these triples (p1, p2, p3), the point pi0 ∈ Si0
avoids K; without loss of generality assume i0 = 1. By discarding the other points of S1,
we obtain a reduced configuration in which the points of S1 lie outside K and the number
of unit triples is at least one third of its original value. That is, each point in (the reduced)
S1 lies either outside D2 or outside D3. One of these subsets of S1 participates in at least
half the (remaining) unit triples. To recap, by removing the points of the other subset,
and by re-indexing if needed, we may assume that all the points of S1 lie outside the disk
D2, and that the number of unit triples is at least one sixth of the original number. This
reasoning also applies when K is empty or is a singleton (with an empty interior), and in
fact becomes much simpler in these cases.

We therefore continue the analysis under the assumption that the points of S1 all lie
outside D2.

Let M denote the number of unit circles spanned by S1 × S2 × S3. Our strategy is
to double count the quantity Q (mentioned in the introduction) that we are now going to
define. For each v3 ∈ Θ3, let Pv3 denote the set of pairs (v1, v2) ∈ Θ1 × Θ2 such that
(v1, v2, v3) is a unit triple, so f(v1, v2, v3) = 0. Note that we have M ≤∑v3∈Θ3

|Pv3 | ≤ 8M .
Indeed, there are at most eight triples in S1 × S2 × S3 that span the same unit circle C (C
intersects each of C1, C2, C3 in at most two points, and each triple of points, one from each
pair, spans C), and clearly, by definition, at least one of these triples is counted in M .

We now define
Q :=

∑
v3∈Θ3

|Pv3 |2.

The quantity Q may be interpreted as the number of ordered pairs of unit triples of the form
((v1, v2, v3), (v′1, v

′
2, v3)), with a common third component v3. Using the Cauchy-Schwarz

inequality, we have

M ≤
∑
v3∈Θ3

|Pv3 | ≤
( ∑
v3∈Θ3

|Pv3 |2
)1/2

n1/2 = Q1/2n1/2. (1)

The curves γa,b. To obtain an upper bound for Q, we use the following approach. Fix
two points a, b ∈ S1, with orientations va, vb ∈ Θ1, respectively, and define γa,b to be the
algebraic curve given by the polynomial equation

R(vx, vy) := Resv3(f(va, vx, v3), f(vb, vy, v3)) = 0,

where Resv3(f(va, vx, v3), f(vb, vy, v3)) is the resultant of the two polynomials f(va, vx, v3),
f(vb, vy, v3) with respect to v3 (which is thus a real bivariate polynomial in vx, vy, indepen-
dent of v3). By the properties of the resultant, the curve γa,b contains all points (vx, vy),
with corresponding points x, y ∈ C2, for which there exists v3 (not necessarily in Θ3) such
that

f(va, vx, v3) = 0, (2)

f(vb, vy, v3) = 0;
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for more details see, e.g., Cox et al. [1]. However, it might contain points (vx, vy) where
there is no real point z ∈ C3 that spans unit circles with both pairs (a, x), (b, y). In general,
the curve R(vx, vy) = 0 is partitioned into a constant number of connected arcs of two
kinds: real arcs, over which (2) has a real solution v3, and non-real arcs, over which there
are no such real solutions. We refer to the endpoints of these arcs as transition points. We
will analyze and handle these points later on.2

Let Π denote the set Θ2 × Θ2, represented as a set of points in the above parametric
plane, let Γ′ denote the (multi-)set of the curves γa,b, and let I ′ = I ′(Π,Γ′) denote the
number of incidences between the curves of Γ′ and the points of Π.

Note that, for any fixed v3 ∈ Θ3 and for any ordered pair of pairs (va, vc), (vb, vd) in
Pv3 , we have (vc, vd) ∈ γa,b and (vd, vc) ∈ γb,a. It follows that the number I ′ of point-curve
incidences is at least 1

4

∑
v3∈Θ3

|Pv3 |2. Indeed, there can be at most four values of v3 that
give rise to the same incidence (any of the pairs (va, vc), (vb, vd), say (va, vc), defines at most
two unit circles that pass through the two corresponding points, and each of these circles
can intersect C3 in at most two points), and only those values among them that belong to
Θ3 are reflected in the above sum; also, the fact that each pair of pairs in Pv3 generate two
incidences is “neutralized” by the fact that the same two incidences are generated for each
of the two orderings of the pairs. That is, we have Q ≤ 4I ′, so it suffices to obtain an upper
bound for I ′.

The number of incidences between curves of Γ′ that are of the form γa,a, with a ∈ S1,
and the points of Π, is O(n2). Indeed, let a ∈ S1 and consider the curve γa,a. For c ∈ S2,
there exist at most two unit circles that pass through a and c, and these circles form at
most four intersection points z with C3. Then for each such intersection point z, there exist
at most two unit circles that pass through a and z, which form at most four intersection
points d with C2. Thus there are at most 16 values d for which (vc, vd) ∈ γa,a,. It follows
that, for each a ∈ S1, the curve γa,a is incident to O(n) points of Π, and hence the total
number of incidences that curves of this form contribute is O(n2).

Therefore, letting Γ ⊂ Γ′ be the (multi-)set of the curves γa,b, with a 6= b ∈ S1, and
letting I = I(Π,Γ) denote the number of incidences between the curves of Γ and the points
of Π, we get I ′ ≤ I +O(n2), and thus Q ≤ 4I +O(n2).

We reiterate that I (and I ′) might include many irrelevant incidences, first, because the
corresponding parameter v3 does not belong to Θ3, and second, because v3 is not real (the
incidence occurs on a non-real arc of the relevant curve γa,b). Still, an upper bound on the
(overestimate) I suffices for our purpose.

Hence the problem is reduced to obtaining an upper bound on I. This is an instance
of a fairly standard point-curve incidence problem, which can be tackled using the well
established machinery, such as the incidence bound of Pach and Sharir [8], or, more fun-
damentally, the crossing-lemma technique of Székely [13] (on which the analysis in [8] is
based). However, to apply this machinery, it is essential that the curves of Γ have a con-
stant bound on their multiplicity. More precisely, we need to know that no more than O(1)
curves of Γ can share a common irreducible component. In more detail, while the points of
Π are clearly distinct, there might be potentially many pairs of curves of Γ that coincide or
overlap in a common irreducible component, in which case the aforementioned incidence-

2In both real and non-real arcs, we only consider real values for vξ, vη. Only z can assume non-real values
for points on non-real arcs. In other words, ignoring its geometric interpretation, γa,b is a real curve.
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bounding techniques break down. Fortunately, this can be controlled through the following
key proposition. (Recall that this arises as a key issue when applying this approach to the
general setup of Elekes and Rónyai [3], as manifested in the companion paper [9], and it
will certainly also be a key issue in further attempts to tackle the more general setup of
Elekes and Szabó [5] in a similar manner.)

Proposition 1. There exists a set U of O(n) pairs (a, b), such that, for any irreducible
component γ′, there are at most O(1) pairs (a, b) such that γ′ contains a portion of a real
arc of γa,b, and (a, b) /∈ U .

The proof of the proposition is given in Section 2.2. This allows us to derive an upper
bound on the number of incidences, given in the following proposition.

Proposition 2. Let Γ and Π be as above. Then the number I of incidences between Γ and
Π is O(|Γ|2/3|Π|2/3 + |Γ|+ |Π|).

The proof of the proposition is given in Section 2.3. Since |Π|, |Γ| = O(n2), it follows
that in this case I = O

(
n8/3

)
and thus, recalling that Q ≤ 4I + O(n2), Q = O(n8/3) too,

so we get M = O
(
n11/6

)
.

We thus obtain the following main result of the paper, returning to the original formu-
lation of the problem.

Theorem 3. Let p1, p2, p3 be three distinct points in the plane, and, for i = 1, 2, 3, let Ci
be a family of n unit circles that pass through pi. Then the number of points incident to a
circle of each family is O(n11/6).

2.1 Properties of the curves γa,b

In this section we provide a detailed analysis of the structure and properties of the curves
γa,b, from both algebraic and geometric perspectives.

Explicit construction of the third point of a unit triple. We slightly change the
notation temporarily, and let a = (a1, a2) be a point on C1, and x = (x1, x2) be a point on
C2. We derive below an explicit expression for a point z = (z1, z2) on C3 such that (a, x, z)
span a unit circle. This procedure will provide the basis, and will be used repeatedly in the
forthcoming analysis. We note that the procedure consists of two similar substeps. Later
on, we will formally break it into these substeps, and use them as the primitive building
blocks for the analysis.

Let C be a unit circle that passes through a and x. The center w of C is the point

w = (w1, w2) =

(
a1 + x1

2
,
a2 + x2

2

)
± s

(
−x2 − a2

2
,
x1 − a1

2

)
, (3)

where s =

√
1− ‖x−a‖24

‖x−a‖
2

=

√
4

‖x− a‖2 − 1; see Figure 3(a). There can be zero, one, or two

real solutions for w. Although w is written in terms of its two coordinates, it really has
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a

x

w

C

‖x−a‖
2

1

C−0

C0

(a)

a
x

C−0

C0

w

C

(b)

Figure 3: (a) Computing the center w of a unit circle C passing through a and x. Here x
varies along C0 and w exists when x lies in C−0 (the highlighted arc). (b) The exceptional
situation in Lemma 4, where C is tangent to C0 at x.

only one degree of freedom, as a function of x, as it has to lie on the fixed unit circle Ca
centered at a.

Let c3 = (q1, q2) be the center of C3. Then, similar to (3), the point z is given by

z = (z1, z2) =

(
w1 + q1

2
,
w2 + q2

2

)
± r

(
−q2 − w2

2
,
q1 − w1

2

)
, (4)

where r =

√
4

‖w − c3‖2
− 1; again, for a given w, there can be zero, one, or two real

solutions for z. Thus, the number of real values of the combined expression for z, obtained
by substituting (3) into (4), is between 0 and 4.

Symmetric constructions give explicit expressions for the first or second point of a unit
triple in terms of the two other points.

Remark. When a and x are given, the equation F (a, x, z) = 0, as given in (7) in Ap-
pendix A, is of degree 4 in the coordinates of z. The combination of (3) and (4) is in
fact an explicit solution of this equation by radicals (with the standard, one-dimensional
representations of the points involved).

The primitive steps of the procedure. Note that the two substeps of the above proce-
dure, the one that computes w (in (3)) and the one that computes z (in (4)), are essentially
identical. Each of them starts with a fixed point a and a point x that lies on some given
(unit) circle C0, and constructs the center w of a unit circle that passes through a and x.
(The fact that x lies on C0 is not needed in the procedure itself, but will be important when
we consider the functional dependence of w on x.)

Denote the output of the subprocedure as ϕa,C0(x). A couple of remarks are in order.
First, similar to what has just been remarked, the roles of a and x in defining w are
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x
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b
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(a)

C1

C2

C3

a

x

z

b

w′

y

(b)

Figure 4: (a) Steps (i) and (ii) of the construction. (b) Steps (iii) and (iv) of the construction.

essentially identical. The above notation is supposed to signify that a is considered as a
fixed parameter and x as a variable (along its circle C0). Second, ϕ is in general 2-valued,
unless ‖a − x‖ = 2 (it has complex values when ‖a − x‖ > 2). In what follows, we will
always trace a single (real) branch of such a ϕ (over which ‖a − x‖ < 2), but stop when
‖a− x‖ becomes 2.

Explicit construction of points on a curve γa,b. Let γa,b be one of our curves. The
preceding construction immediately leads to the following 4-step procedure for constructing
points on γa,b. Specifically, given a, b ∈ C1 and a point x ∈ C2, we compute point(s) y ∈ C2

such that (vx, vy) ∈ γa,b, as follows.

(i) We start with a and x, and construct the point(s) w = ϕa,C2(x), each of which is the
center of a unit circle passing through a and x. See Figure 4(a). We fix one of these
points w. (We terminate the procedure, with failure, when there are no real solutions;
this also applies to each of the following steps.)

(ii) We then construct the point(s) z = ϕc3,Ca(w) ∈ C3, where Ca is the unit circle centered
at a. By construction, we have F (a, x, z) = 0; again, there are (at most) two choices
for z and we fix one of them. See Figure 4(a).

(iii) We now construct the center(s) w′ = ϕb,C3(z) of the unit circle(s) passing through b
and z. See Figure 4(b). Fix w′ to be one of these centers.

(iv) Finally, we obtain the desired point(s) y = ϕc2,Cb(w
′) ∈ C2, where Cb is the unit circle

centered at b. See Figure 4(b).

(Note that the circles appearing in the four applications of the ϕ-functions, namely, C2, Ca,
C3, and Cb, are indeed fixed, regarding a and b themselves as fixed.)

The following lemma shows that the functions ϕ are well-behaved, in the sense made
precise below, unless certain degenerate situations arise. In the lemma, the derivative of
w = ϕa,C0(x) should have the expected interpretation. Concretely, let vx (resp., vw) denote

9



the orientation of x (resp., of w) with respect to the center of C0 (resp., a). Interpret
w = ϕa,C0(x) as the corresponding functional relationship between vx and vw, which, with
a slight abuse of notation, we also write as vw = ϕa,C0(vx). Then ϕ′a,C0

(x) is simply the
corresponding derivative of ϕa,C0(vx) at the respective orientation vx.

Lemma 4. Let a be a fixed point, C0 a fixed (unit) circle, and assume a /∈ C0. Put
C−0 := {x ∈ C0 | ‖a − x‖ < 2}. Assume we are given a parameterization of C−0 , x(t) =
(x1(t), x2(t)), for t ∈ I ⊆ S1, such that each of the functions x1(t), x2(t) is an analytic
function on I. Then each branch of the function ϕa,C0(x) is continuous and analytic, and
has non-zero derivative, at each point x ∈ C−0 for which the unit circle centered at ϕa,C0(x)
is not tangent to C0 at x.

Proof. See Figure 3(a) for the general layout, and Figure 3(b) for the exceptional situation.
First note that our assumption, combined with the explicit expression (3), implies that ϕa,C0

is analytic on I. Fix a point x ∈ C−0 and put w = ϕa,C0(x). Let vx and vw denote the
corresponding orientations, let x′ be the point with vx′ = vx + ∆vx, for a small increment
∆vx, and put w′ = ϕa,C0(x′) and ∆vw = vw′−vw. Clearly, since ϕa,C0(x) is continuous over
I, ∆vw is also small when ∆vx is small.

Put ∆x = x′ − x and ∆w = w′ − w (note that these are vector displacements, whereas
∆vx, ∆vw are scalars, and we have ‖∆x‖ < |∆vx|, ‖∆w‖ < |∆vw|). We have

1 = ‖w′ − x′‖2 = ‖w + ∆w − x−∆x‖2

= ‖w − x‖2 + 2(w − x) · (∆w −∆x) + o(|∆vx|+ |∆vw|)
= 1 + 2(w − x) · (∆w −∆x) + o(|∆vx|+ |∆vw|).

Let τx and τw denote the unit tangent vectors to C0 at x and to Ca at w, respectively. We
then have

‖∆x− (∆vx)τx‖ = o(|∆vx|)
‖∆w − (∆vw)τw‖ = o(|∆vw|).

We thus have
(w − x) · ((∆vw)τw − (∆vx)τx) = o(|∆vx|+ |∆vw|).

That is,
((w − x) · τw)∆vw = ((w − x) · τx)∆vx + o(|∆vx|+ |∆vw|).

w−x cannot be orthogonal to τw. Indeed, this is possible only when either a coincides with
x, which has been ruled out in the lemma, or when ‖a − x‖ = 2, which is also excluded.
Moreover, by assumption, w− x is not orthogonal to τx (that is, the unit circle centered at
w is not tangent to C0; see Figure 3(b)). Hence both coefficients of ∆vw, ∆vx are non-zero,
so we have

∆vw
∆vx

=
(w − x) · τx
(w − x) · τw

+ o

(
1 +
|∆vw|
|∆vx|

)
,

so in the limit we get

ϕ′a,C0
(x) =

(w − x) · τx
(w − x) · τw

, (5)

which is well defined and nonzero, as asserted in the lemma. 2
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Note that either the numerator or the denominator of (5) can become 0 as x varies
along C0: The numerator becomes 0 when w is at distance 2 from the center of C0 (the
exceptional case depicted in Figure 3(b)), and the denominator becomes 0 when x is at
distance 2 from a (the endpoints of C−0 , if they exist). Note that both situations are ruled
out in the lemma. These kinds of degeneracy will play a central role in what follows.

Let a, b be a pair of points on C1 (outside the disk D2), and let (vx, vy) be a point
on γa,b, for a respective pair of points x, y ∈ C2. Consider the 4-step procedure that
produces y from x, as described above, and write the outputs of its steps as w = ϕa,C2(x),
z = ϕc3,Ca(w), w′ = ϕb,C3(z), and y = ϕc2,Cb(w

′). In each step we pick an appropriate
branch of the relevant function, and assume that the degeneracies ruled out in Lemma 4
(and summarized in the preceding paragraph) do not arise (in suitable neighborhoods of
the four respective points) in any of these four steps. With these notation, assumptions,
and conventions, we obtain the composite function

vy = Φa,b(vx) := ϕc2,Cb◦ϕb,C3◦ϕc3,Ca◦ϕa,C2(vx),

which is well defined and analytic in a suitable neighborhood N of x, its graph over N is a
portion of γa,b, and (vx, vy) is not a local x-extremum or y-extremum of that portion. The
non-extremality properties are consequences of the chain rule, combined with a four-way
application of (5) in the proof of Lemma 4. (See below for a more explicit repetition of this
argument.)

2.2 Proof of Proposition 1

Let γ′ be an irreducible component of potentially many curves γa,b. The strategy is to
identify (few) points along γ′, from which we can reconstruct all the values of a and b in
only a constant number of ways.

Fix a generic point q0 = (vx0 , vy0) on γ′ that is non-singular and non-extremal for γ′,
and which does not lie on any other irreducible component of any other curve. Let Ξ(q0)
denote the subset of all pairs (a, b) so that γa,b contains γ′, and q0 lies on a real arc of
γa,b ∩ γ′. The preceding discussion implies that, for each such curve γa,b, there is a unique
way to define the corresponding function Φa,b in a suitable neighborhood of q0 (which may
depend on a and b), and the graph of each of these functions near q0 (in the intersection of
all these neighborhoods) is γ′ itself.

Now trace γ′, along with all these functions, from q0 in, say, increasing vx-direction,
and stop at the first point (vξ, vη) at which one of the assumptions made in Lemma 4 is
violated, for some pair (a, b) ∈ Ξ(q0), for one of the corresponding functions w = ϕa,C2(ξ),
z = ϕc3,Ca(w), w′ = ϕb,C3(z), or η = ϕc2,Cb(w

′). The definition of the curves γa,b, and the
property that all the points of S1 lie outside the disk D2, are easily seen to imply that γ′

does indeed contain such a point (vξ, vη). As we will shortly argue, there are no transition
points of any curve γa,b, for (a, b) ∈ Ξ(q0), between q0 and (vξ, vη), so (vξ, vη) still belongs
to the same real subarcs of all the curves with pairs in Ξ(q0) (possibly being a delimiting
point of some of these arcs).

Applying explicitly the chain rule, we have, for an arbitrary point (vx, vy) on the rela-
tively open portion (γ′)− of γ′ between q0 and (vξ, vη), with corresponding points x, y ∈ C2,

Φ′a,b(x) = ϕ′c2,Cb(w
′)ϕ′b,C3

(z)ϕ′c3,Ca(w)ϕ′a,C2
(x),
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where w, z, and w′ are as defined above. By (5), this is a product of four fractions, and the
above assumption about (vξ, vη) means that the numerator or denominator of at least one
of these fractions is zero at ξ, but they all remain nonzero before reaching ξ.

For technical reasons that will become clearer later on, we trace γ′ from q0 in both
increasing and decreasing vx-direction.

Call (a, b) an ultra-degenerate pair if (at least) one numerator and one denominator
vanish simultaneously at ξ. We will shortly show that ultra-degenerate pairs are sparse,
and handle them all via a global argument that does not depend on γ′. For the time being,
we ignore all such pairs. (The exceptional set U in the lemma will be the set of these
ultra-degenerate pairs.)

In other words, excluding ultra-degenerate pairs, Φ′a,b(vx), which is equal to the slope
of the tangent at the corresponding point on γ′ (assuming that point to be non-singular),
becomes zero or tends to ∞ at vξ, so γ′ has a (one-sided) horizontal or vertical tangent at
(vξ, vη). That is, (vξ, vη) is a local (one-sided) x- or y-extremum of γ′, in the above weak
sense.

It is important to note that the curve vy = Φa,b(vx) does indeed trace γ′ between q0 =
(vx0 ,Φa,b(vx0)) and (vξ, vη). Indeed, let h(t, s) = 0 be the (irreducible) polynomial equation
defining γ′. Let t1 ∈ (vx0 , vξ) be such that the graph of Φa,b, restricted to the subinterval
[vx0 , t1], is an arc of γ′, but this does not hold for [vx0 , t

+
1 ], for any t+1 > t1, arbitrarily close

to t1. We thus have, h(t,Φa,b(t)) = 0, for every t ∈ [vx0 , t1]. By Lemma 4, the function
Φa,b(t) is analytic in some sufficiently small neighborhood N of t1 inside (vx0 , vξ). Thus,
letting H(t) = h(t,Φa,b(t)), and since h is a polynomial, we have that H is analytic and
H(t) = 0, for every t ∈ [vx0 , t1] ∩ N . In particular, the derivatives of H at t = t1, of any
order, are all zero (because H is identically zero in a one-sided neighborhood of t1). Thus,
since H is analytic, the Taylor series of H at t1 is identically zero, which means that H
is identically zero in some suitable neighborhood N ′ ⊂ N of t1 (this time on both sides of
t1). In other words, the graph of Φa,b continues to coincide with γ′ on the other side of
(t1,Φa,b(t1)) too, contradicting our assumption on t1.

We note that the preceding argument also holds when the tracing of γ′ encounters a
singular point (vx, vy) of γ′ (before reaching (vξ, vη)). Even if two branches of γ′ meet
tangentially at (vx, vy), the graph of Φa,b remains well defined, and follows a unique branch
of γ′, on either side of (vx, vy).

Transition points. We next argue that at a transition point we must have one of the
degeneracies ruled out in Lemma 4, for one of the four ϕ-functions. Specifically, let (vξ, vη)
be a point on γ′ which is a transition point along a containing curve γa,b. Each of the four
functions ϕa,C2 , ϕc3,Ca , ϕb,C3 , ϕc2,Cb , whose composition yields Φa,b, involves a square root
(with a fixed sign). As long as none of these roots vanish, the functions continue to be
defined (as real functions) and produce real values, so the two unit circles that are spanned
by the corresponding triples (a, ξ, z), (b, η, z), for a suitable point z ∈ C3, are such that z
is real and the circles are real too, and this continues to hold in a suitable neighborhood of
(ξ, η). Since this does not occur at a transition point, one of the square roots has to vanish
at (ξ, η), and when this occurs one of the degenerate conditions in the lemma occurs for
the corresponding function (where the denominator of one of the fractions in (5) vanishes).
This establishes the promised claim.
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Recap. The preceding analysis leads to the following overall treatment of γ′. We partition
γ′ into maximal connected subarcs, each delimited by points with horizontal or vertical
tangency (and does not contain any such point in its relative interior). Since γ′ has constant
degree, there are only O(1) subarcs of this kind. For each of the containing curves γa,b, each
such subarc γ′′ is fully contained either in a real arc of γa,b or in a non-real arc of γa,b, and
at least one subarc γ′′ is contained in a real arc of γa,b.

In the next step of the analysis, we show that, for each of the O(1) locally extremal points
(vξ, vη) ∈ γ′, there are only O(1) pairs (a, b), for which (vξ, vη) is a (possibly delimiting)
point of a real arc of γa,b. Altogether, we conclude that γ′ can be an irreducible component
of only O(1) curves γa,b (with the additional requirements that γ′ overlaps at least one real
arc of γa,b and that the pair (a, b) is not ultra-degenerate).

The possible geometric scenarios near a locally extremal point of γ′. Let (vξ, vη)
be a locally x-extremal point of γ′ (locally y-extremal points will be handled in a fully
symmetric manner; see below), and let ξ, η be the points in C2 with orientations vξ, vη,
respectively. Let a, b ∈ C1 be a fixed pair for which at least one of the subarcs of γ′

delimited by (vξ, vη) is a (portion of a) real arc of γa,b, and assume that (a, b) is not an
ultra-degenerate pair. Here we do not know a and b, and our goal is to reconstruct them
from vξ, vη. This is done as follows.

We first note that, as argued earlier, the x-extremality of (vξ, vη) means that Φ′a,b(vξ) =
∞ for every such pair (a, b). That is, one of the denominators in the four expressions, as in
(5), vanishes. We thus have the following four respective situations.

Case (i) ‖a− ξ‖ = 2. In this case we can reconstruct a in at most two possible ways, as
an intersection point of C1 with the circle of radius 2 centered at ξ; see Figure 5(a). We
can then retrieve the corresponding point z ∈ C3 in two possible ways, as an intersection
point of C3 with the (unique) unit circle that passes through a and ξ. Since η is also given,
we can compute b, as one of the intersection points of C1 with one of the at most two unit
circles that pass through z and η. Altogether, there are (at most) two ways to choose a, two
for z, and four for b, so in the present case we can reconstruct (a, b) in at most 16 possible
ways.

Case (ii) ‖c3 − w‖ = 2. In this case, there is a unit circle that passes through a and ξ
and is tangent to C3 at z; see Figure 5(b). Hence z is a tangency point of C3 with one of
the at most two unit circles that are incident to ξ and tangent to C3. This allows us to
reconstruct a, as an intersection point of C1 with one of these two unit circles. We then
retrieve b from z and η as in the preceding case. Altogether, there are (at most) two ways
to choose z, two for a, and four for b, so here too we can reconstruct (a, b) in at most 16
possible ways.

Case (iii) ‖b − z‖ = 2. This is geometrically more challenging to analyze, because the
points z, b, at distance 2 apart, are both unknown. See Figure 6(a). We handle this case by
observing that the lengths of the edges of the quadrilateral R = c1bzc3 are fixed—they are
1,2,1 and |c1c3|, respectively, but this does not determine R, because it can flex (with one
degree of freedom) about its fixed edge c1c3. As R flexes, the midpoint w′ of bz traces an
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Figure 5: (a) The situation in Case (i) of the reconstruction (aξ is a diameter of C). (b)
The situation in Case (ii) (C is tangent to C3 at z).

algebraic curve τ of some constant degree d. Note that the unit circle that passes through
b, η and z, has its center w′ (which is the midpoint of bz) on τ . Since the point η is known,
we can find w′, by computing the intersection points of τ with the unit circle Cη centered
at η, and then retrieve b, as the intersection point of C1 with the unit circle centered at w′.
We claim that, in general, there are at most 2d intersection points of τ with Cη, and hence
at most a constant number of ways to reconstruct b. Indeed, if this were not the case, then,
by Bézout’s theorem (see, e.g., [1]), τ would have to contain Cη as one of its components.
This situation is controlled by the following simple claim.

Claim. The curve τ does not contain any unit circle as one of its components, unless C1

and C3 are tangent to each other, in which case τ does indeed contain the unit circle centered
at the point of tangency.

Proof. See Figure 6(a) for the exceptional situation in the claim. Let C be a unit circle,
centered at a point c, such that C ⊆ τ . By the construction of τ , every point p ∈ C is
the midpoint of a segment whose endpoints lie on C1 and C3, respectively. This implies, in
particular, that C is contained in K := conv(C1∪C3), the convex hull of C1∪C3, and since
the three circles C,C1, C3 are of the same radius, it follows that the center c of C lies on
c1c3. Moreover, as is easily checked (cf. Figure 6(a)), in this case c must be the midpoint
of c1c3, and we must have |c1c3| = 2, and then C1 and C3 are tangent to each other at c,
implying that C1, C3, and C must indeed be of the exceptional kind stated in the claim. 2

To complete the analysis, we recall that the only problematic case is when the unit
circle centered at η is contained in τ . By the claim, η must be the midpoint of c1c3, so in
particular C2 is not tangent to C1 (or else it would coincide with C3). Note that in this
special situation, the points of S1, with the possible exception of η, clearly lie outside the
disk circumscribed by C3. We can discard the tangency point η of C1 and C3 from S1, if
needed, losing at most O(n) unit triples spanned by the original sets S1, S2, S3. We now
restart the whole analysis, switching the roles of C2 and C3, and are now guaranteed that
the exceptional situation described in the above claim does not occur.
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Figure 6: (a) The exceptional situation in the claim in Case (iii) (C1 and C3 are tangent at
η). (b) The situation in Case (iv) (C ′ is tangent to C2 at η).

We can then retrieve z, as an intersection point of C3 with a unit circle that passes
through b and η, and, since ξ is also given, compute a, as one of the intersection points of
C1 with one of unit circles that pass through z and ξ.

Case (iv) ‖c2 −w′‖ = 2. In this case, depicted in Figure 6(b), the unit circle that passes
through b, η and z is tangent to C2 at η. Hence b is one of the intersection points of C1

and the unique unit circle (externally) tangent to C2 at η, and then a can be reconstructed
from b, ξ and η, as in the previous cases.

Handling y-extremal points of γ′. The cases where (vξ, vη) is a y-extremal point of γ′

are handled in a fully symmetric manner, as follows. Let γ̂′ denote the “transpose” of γ′,
that is,

γ̂′ = {(vq, vp) | (vp, vq) ∈ γ′}.
Clearly, γ′ is an irreducible component of γa,b if and only if γ̂′ is an irreducible component
of γb,a. Moreover, (vξ, vη) is a locally y-extremal point of γ′ if and only if (vη, vξ) is a
locally x-extremal point of γ̂′. We can therefore apply the preceding analysis, essentially
verbatim, to γ̂′ and the “transposed” containing curves γb,a, and conclude that, from each
locally y-extremal point (vξ, vη) of γ′, there are only O(1) curves γa,b such that γ′ ⊂ γa,b
and (vξ, vη) lies on a real arc of γa,b.

Ultra-degenerate pairs. Let U denote the set of all ultra-degenerate pairs; recall that
a pair (a, b) is said to be ultra-degenerate if there exists a point (ξ, η) at which at least one
numerator and one denominator of the four fractions that define Φ′a,b vanish simultaneously
at ξ. The reason for singling out these pairs is that it is not clear what happens to the slope
of the tangent to γa,b (that is, to γ′) at this point.

Fortunately, the overall size of U , over all possible components γ′, is only O(n). The
somewhat tedious case analysis that establishes this claim is given in Appendix B. Since
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each such curve has only O(n) incidences with the points of S2×S2 (an easy property which
is a special case of the Schwartz–Zippel Lemma [10, 15]), we get a total of O(n2) incidences
that correspond to such pairs. This is a small bound, subsumed by the overall bound on Q
that we derive.

Combining all the steps of the analysis, and excluding the O(n) pairs in U , we finally
conclude that γ′ overlap (a portion of a real arc of) γa,b, for at most a constant number of
pairs (a, b). This completes the proof of Proposition 1. 2

2.3 Proof of Proposition 2

We apply Székely’s technique [13], which is based on the crossing lemma (see also Pach and
Agarwal [7]). As noted, this is also the approach used in [8], but the possible overlap of
curves requires some extra (and more explicit) care in the application of the technique. A
similar argument is given in the companion paper [9], but we repeat it here to make the
paper more self-contained.

Throughout this subsection, we completely ignore curves γa,b for which (a, b) is an ultra-
degenerate pair; as argued in Section 2.2, these curves contribute only O(n2) to the incidence
bound.

We begin by constructing a plane embedding of a multigraph G, whose vertices are the
points of Π, and each of whose edges connects a pair π1 = (ξ1, η1), π2 = (ξ2, η2) of points
that lie on the same curve γa,b and are consecutive along (some connected component of)
γa,b; the edge is drawn along the portion of the curve between the points. One edge for each
such curve (connecting π1 and π2) is generated, even when the curves coincide or overlap.
Thus there might potentially be many edges of G connecting the same pair of points, whose
drawings coincide. Nevertheless, by Proposition 1, this number is at most O(1).

In spite of this control on the number of mutually overlapping (or, rather, coinciding)
edges, we still face the potential problem that the edge multiplicity in G (over all curves,
overlapping or not, that connect the same pair of vertices) may not be bounded (by a
constant). More concretely, we want to avoid edges (π1, π2) whose multiplicity exceeds d2,
where here d = O(1) denotes the degree of the curves of Γ.

To follow this strategy, we pass to a dual parametric plane, in which the roles of Θ1 and
Θ2 are interchanged, so curves γa,b of Γ become dual points (va, vb), and points (vξ, vη) of
Π become dual curves γ∗ξ,η, defined as the locus of all points (vx, vy), each corresponding
to a pair of points x, y ∈ C1, for which there exists v3 (not necessarily in Θ3) such that
(compare with (2))

f(vx, vξ, v3) = 0 (6)

f(vy, vη, v3) = 0;

we denote by Γ∗ and Π∗ the sets of the dual points and of the dual curves, respectively.
Clearly, we have (vξ, vη) ∈ γa,b if and only if (va, vb) ∈ γ∗ξ,η. We recall our assumption that,
for (va, vb) ∈ Γ∗, the corresponding points a and b lie on the portion of C1 which is outside
D2. In view of this, we can ignore irreducible components of curves of Π∗ which contain
only “irrelevant” points (va, vb), that is, only points (va, vb) for which one of a or b lies in
D2.
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Claim. Let π0 = (ξ0, η0) ∈ Π be a vertex of G. Then π0 has at most d3−1 neighbors π ∈ Π
in G, for which the multiplicity of the edge (π0, π) is larger than d2.

Proof. For contradiction, assume there exist πi = (ξi, ηi), i = 1, . . . , d3, such that (π0, πi) is
of multiplicity at least d2 +1. By construction (and using duality), every edge connecting π0

and πi in G corresponds to a dual point of Γ∗ that lies on both dual curves γ∗ξ0,η0 and γ∗ξi,ηi .

Thus, by the assumption on the multiplicity of (π0, πi), for each i = 1, . . . , d3, the curves
γ∗ξ0,η0 and γ∗ξi,ηi have at least d2 +1 points in common, and hence, by Bézout’s theorem (see,
e.g., [1]), the two curves share a common irreducible component. Note that γ∗ξ0,η0 , having
degree d, has at most d irreducible components, and thus, by the pigeonhole principle, there
exists an irreducible component γ∗0 of γ∗ξ0,η0 that is shared by at least d2 curves γ∗ξi,ηi ; by

reindexing, if needed, assume these are γ∗ξi,ηi , i = 1, . . . , d2.

Let κ = O(1) be the multiplicity bound obtained in Proposition 1. Let (vaj , vbj ),
j = 0, . . . , κd, be κd + 1 (distinct) points on γ∗0 , having the property that, for each j =
0, . . . , κd, the points aj , bj lie on the portion of C1 which is outside D2 (but not necessarily
in S1); as already noted, we may assume that γ∗0 contains at least one such point, but then,
by continuity, it contains infinitely many such points. We have (vaj , vbj ) ∈ γ∗ξi,ηi , or, by

duality, (vξi , vηi) ∈ γaj ,bj , for every i = 1, . . . , d2, j = 0, . . . , κd. Similarly, we also have
(vaj , vbj ) ∈ γ∗ξ0,η0 and so (vξ0 , vη0) ∈ γaj ,bj , for j = 0, . . . , κd. Using Bézout’s theorem once

again, we have that γa0,b0 and γaj ,bj , which intersect in at least d2+1 points, share a common
irreducible component, for each j = 1, . . . , κd. Since γa0,b0 is of degree d, and thus has at
most d irreducible components, we conclude that there exists an irreducible component of
γa0,b0 that is shared by κ other curves γaj ,bj . This however contradicts Propositions 1, and
hence the claim follows. 2

Consider a point π1 and one of its bad neighbors3 π2. Let γa,b be one of the curves
along which π1 and π2 are neighbors. Then, rather than connecting π1 to π2 along γa,b,
we continue along the curve from π1 past π2 until we reach a good point for π1, and then
connect π1 to that point (along γa,b). We skip over at most d3−1 points in the process, but
now, having applied this “stretching” to each pair of bad neighbors, each of the modified
edges has multiplicity at most 2d2 (the factor 2 comes from the fact that a new edge e can
be obtained by stretching an original edge from either endpoint of e).

Note that this edge stretching does not always succeed: It will fail when the connected
component γ′ of γa,b along which we connect the points contains fewer than d3 + 1 points
of Π, or when there are fewer than d3 − 1 points of Π between π1, π2, and the “end” of γ′

(recall the constraint in the definition of the curves γa,b). Still, the number of new edges
in G is at least I(Π,Γ) − λ|Γ|, for a suitable constant λ, where the term λ|Γ| accounts for
missing edges on connected components of the curves, for the reasons just discussed. By
what have just been argued, the number of edges lost on any single component is at most
O(d3).

The final ingredient needed for this technique is an upper bound on the number of
crossings between the (new) edges of G. Each such crossing is a crossing between two
curves of Γ. Even though the two curves might overlap in a common irreducible component
(where they have infinitely many intersection points, none of which is a crossing), the

3We make the pessimistic assumption that they are (consecutive) neighbors along all these curves, which
of course does not have to be the case in general.
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number of proper crossings between them is O(d2) = O(1), as follows, for example, from
the Milnor–Thom theorem (see [6, 14]), or from Bézout’s theorem. Finally, because of the
way the drawn edges have been stretched, the edges, even those drawn along the same
original curve γa,b, may now overlap one another, and then a crossing between two curves
may be claimed by more than one pair of (stretched) crossing edges. Nevertheless, since no
edge straddles more than d3 − 1 points, the number of pairs that claim a specific crossing
is still a constant (that depends on d). Hence, we conclude that the total number of edge
crossings in G is O(|Γ|2).

We can now continue by applying the crossing lemma argument, exactly as done by
Székely and in other works (e.g., see [8, 13]), and conclude that

I(Π,Γ) = O
(
|Π|2/3|Γ|2/3 + |Π|+ |Γ|

)
,

with the constant of proportionality depending on d. This completes the proof of Proposi-
tion 2. 2

3 Conclusion

We do not know whether the bound in Theorem 3 is tight in the worst case, and suspect
that it is not. Resolving this question is a major problem for further research, especially
since it arises in all the related specific and general problems in [3, 5, 9, 11, 12].

The specific problem studied in Elekes et al. [4] and in this paper is well motivated in [4],
because it yields a combinatorial distinction between unit circles and lines. That is, there
exist three families of lines passing through three respective points, which determine Θ(n2)
triple points. Nevertheless, this problem is clearly only one special instance of several related
problems, in which we have three sets S1, S2, S3 of points, each contained in some curve,
and we want to bound the number of triples in S1×S2×S3 that satisfy some property (that
can be specified by polynomial equation). As a simple example, consider the case where
each Si is contained in some respective line `i, for i = 1, 2, 3, and the property is that the
triple span a triangle of unit area. In a companion work in progress we show that in this
case the number of triples can be Θ(n2), but the bound is likely to drop when the sets Si
are contained in other curves.
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A Polynomial representation of unit triples

In this appendix we derive the explicit form of the polynomial F (p1, p2, q1, q2, r1, r2) whose
vanishing represents triples p = (p1, p2), q = (q1, q2), r = (r1, r2) that span a unit circle.
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Put

x = ‖p− q‖, X = x2

y = ‖p− r‖, Y = y2

z = ‖q − r‖, Z = z2.

Let S denote the area of the triangle ∆pqr. Then the circumradius R = 1 of this triangle
is given by the formula

1 = R =
xyz

4S
.

The area S can be expressed by Heron’s formula, written as

16S2 = (x+ y + z)(−x+ y + z)(x− y + z)(x+ y − z).

That is, we have (x+y+z)(−x+y+z)(x−y+z)(x+y−z) = x2y2z2. With some algebraic
manipulations, this can be expressed in terms of the squared distances X, Y , Z, as

X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z +XY Z = 0. (7)

The left side of (7) is the desired polynomial F in the coordinates of p, q, r. It is of degree
6 in these six variables. In the analysis, with a slight abuse of notation, we write F (p, q, r)
for F (p1, p2, q1, q2, r1, r2), interpreting each of p, q, r as a 2-variable aggregate.

B Ultra-degenerate pairs

Recall that a pair (a, b) is said to be ultra-degenerate if there exists a point (ξ, η) at which
at least one numerator and one denominator of the four fractions that define Φ′a,b vanish
simultaneously at ξ. The reason for singling out these pairs is that it is not clear what
happens to the slope of the tangent to γa,b at this point.

There are 16 cases of such a simultaneous vanishing of a numerator and a denominator.
The four numerators are (where τu,C denotes the tangent vector to the circle C at the point
u)

(w − ξ) · τξ,C2 , (z − w) · τw,Ca , (w′ − z) · τz,C3 , (η − w′) · τw′,Cb ,
and the four denominators are

(w − ξ) · τw,Ca , (z − w) · τz,C3 , (w′ − z) · τw′,Cb , (η − w′) · τη,C2 .

As noted earlier, the vanishing of any of these eight expressions means that a correspond-
ing pair of points lie at distance 2 from each other. Specifically, for the numerators, the
corresponding constraints are, respectively,

‖wc2‖ = 2, ‖az‖ = 2, ‖w′c3‖ = 2, ‖ηb‖ = 2,

and for the denominators, the corresponding constraints are, respectively,

‖aξ‖ = 2, ‖wc3‖ = 2, ‖zb‖ = 2, ‖w′c2‖ = 2.
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Figure 7: (a) The numerator and denominator of the first fraction both vanish (the distance
between the point a and the center c2 is 3). (b) The exceptional situation in case N4D1 (C1

is tangent to C2 at z, and ‖aξ‖ = ‖bη‖ = 2).

Consider first the cases where the numerator and denominator of the same fraction both
vanish. Consider for specificity the first fraction, so we have

(w − ξ) · τξ,C2 = (w − ξ) · τw,Ca = 0, or ‖aξ‖ = ‖wc2‖ = 2.

In this case the four points a, w, ξ and c2 must be collinear, with ‖aξ‖ = ‖wc2‖ = 2. This
is easily seen to imply that ‖ac2‖ = 3. In this case, a is an intersection point of C1 with the
circle of radius 3 centered at c2. Hence there are at most two choices for a, for a total of O(n)
pairs (a, b) that fall into this subcase. A similar argument applies when the numerator and
denominator of any of the three other fractions both vanish: The corresponding constraints
are ‖ac3‖ = 3, ‖bc3‖ = 3, and ‖bc2‖ = 3, and in each of these cases it follows that there are
at most two choices for either a or b, for a total of O(n) pairs of these types. (Note that in
these cases the curves γa,b are singletons; see Figure 7(a).)

Therefore, in what follows, we assume that the vanishing numerator and denominator
belong to distinct fractions. We use the mnemonic notation NtDs to mean that the numer-
ator of the t-th fraction and the denominator of the s-th fraction both vanish, and consider
the following 12 possible cases.

N1D2: Here we have ‖wc3‖ = ‖wc2‖ = 2. In this case, w is an intersection point of the
two circles of radius 2 centered at c2 and at c3. Once w is known, a is an intersection point
of C1 with the unit circle centered at w. Hence there are only O(1) ways to choose a, for a
total of O(n) ultra-degenerate pairs of this type.

N1D3: Here we have ‖wc2‖ = ‖zb‖ = 2. We claim that each b ∈ S1 can be coupled with
only O(1) a’s to form an ultra-degenerate pair of this type. Indeed, given b, we find z, as
an intersection point of C3 and a circle of radius 2 centered at b. Given z, we find w, as an
intersection point of a unit circle centered at z and a circle of radius 2 centered at c2. From
w we can find a, as an intersection point of C1 and a unit circle centered at w. Altogether,
there are only O(1) choices for a, as claimed.

N1D4: Here we have ‖wc2‖ = ‖w′c2‖ = 2. Here each a ∈ S1 can be coupled with only
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O(1) b’s. Indeed, given a, we find w, as an intersection point of the unit circle centered at
a and a circle of radius 2 centered at c2. From w we find z, as in the standard procedure,
and from z we find w′, as an intersection point of the unit circle centered at z and a circle
of radius 2 centered at c2. From w′ we find b, as an intersection point of C1 with the unit
circle centered at w′. Altogether, there are only O(1) choices for b, as claimed.

N2D1: Here we have ‖aξ‖ = ‖az‖ = 2. Since (a, ξ, z) span a unit circle, we must have
ξ = z, which is thus an intersection point of C2 and C3. This allows us to reconstruct a,
essentially as in case N1D2.

N2D3: Here we have ‖az‖ = ‖zb‖ = 2. This case is easy: Given a, we find z, as an
intersection point of C3 and a circle of radius 2 centered at a, and from z we find b, as an
intersection point of C1 and a circle of radius 2 centered at z.

N2D4: Here we have ‖az‖ = ‖w′c2‖ = 2. This case is symmetric to case N1D3, and is
treated in a fully symmetric manner, starting from a and reconstructing b in O(1) ways.

N3D1: Here we have ‖w′c3‖ = ‖aξ‖ = 2. Given a, we find ξ, as an intersection point of C2

and a circle of radius 2 centered at a. From a and ξ we find z, as an intersection point of
C3 and the diametral (unit) circle determined by aξ. From z we find w′, as the point that
lies on the line through c3 and z at distance 1 from z (and 2 from c3). From w′ we find b,
as an intersection point of C1 and the unit circle centered at w′.

N3D2: Here we have ‖w′c3‖ = ‖wc3‖ = 2. This case is treated exactly as case N1D4,
except that here c3 plays the role that was played there by c2.

N3D4: Here we have ‖w′c3‖ = ‖w′c2‖ = 2, so this is a symmetric version of case N1D2,
with an essentially identical reconstruction process.

N4D1: Here we have ‖bη‖ = ‖aξ‖ = 2. Given a, we find ξ, as an intersection point
of C2 with a circle of radius 2 centered at a. We then find z, as an intersection of C3

with the diametral (unit) circle determined by aξ. In complete analogy with the treatment
of case (iii) of the standard reconstruction process (at an extremal point of γ′), we note
that the quadrilateral R = c1bηc2 has edges of fixed lengths, namely, 1, 2, 1, and ‖c1c2‖,
and that it can flex around its fixed edge c1c2. As R flexes, the midpoint of bη traces an
algebraic curve τ of some constant degree, and the intersection(s) of τ with the unit circle
Cz centered at z gives us the center(s) w′ of the unit circle spanned by (b, η, z), from which
b is readily obtained, as in several preceding cases. If Cz and τ do not overlap, the number
of intersection points between them is finite and bounded by a constant, and there are only
O(1) way to reconstruct b.

As in case (iii), the situation where Cz and τ do overlap can happen only when C1

and C2 are tangent to each other, and z is this tangency point (see Figure 7(b)). In this
case it is possible to have a superlinear (in fact, any) number of pairs (a, b), for which
there exists (ξ, η) ∈ C2 × C2, such that ‖aξ‖ = ‖bη‖ = 2, and (a, ξ, z), (b, η, z) are unit
triples. We therefore do not exclude those pairs as ultra-degenerate. Instead, we claim that
any such pair can be reconstructed from γ′, using the reconstruction process described in
Section 2.2. For this, we note that, for (a, b) fixed, there exists at most one point (ξ, η),
such that ‖aξ‖ = ‖bη‖ = 2 (and (a, ξ, z), (b, η, z) are unit triples). Since, in the proof of
Proposition 1, we trace γ′ from the point q0, in both increasing and decreasing vx-direction,
we will not encounter this degeneracy in at least one of these traversals, and reach a locally
x- or y-extremal point (vξ, vη) ∈ γ′, from which (a, b) can be reconstructed (if not excluded
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in one of the other ultra-degenerate cases), in at most a constant number of ways.

N4D2: Here we have ‖bη‖ = ‖wc3‖ = 2. This case is symmetric to case N3D1, and is
treated in an analogous manner, starting from b and reconstructing a in O(1) ways.

N4D3: Here we have ‖bη‖ = ‖bz‖ = 2. This is a symmetric variant of case N2D1, with an
essentially identical treatment.

In summary, we have shown that the overall number of ultra-degenerate pairs is O(n),
as claimed.
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