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A brief history of the universe

• György Elekes passed away in Septemer 2008
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A brief history of the universe

• More that 10 years ago, he was thinking of

Erdős’s distinct distances problem:

Estimate the smallest possible number of distinct distances de-

termined by any set of s points in the plane

Show that this is always at least Ω(s/
√
log s)

(Cannot be improved: The integer grid yields only these many

distances)

A 1946 classic

A hard nut; Slow steady progress
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A brief history of the universe, Cont’d

• Elekes found a nice transformation of the distinct distances

problem to an incidence problem between points and curves

(actually, lines) in 3D

• Formulated a couple of deep conjectures on the new setup

(If proven, they yield the almost tight lower bound Ω(s/ log s))

• Sent the stuff to me
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A brief history of the universe, Cont’d

• And we all went to sleep (Elekes in more ways than one)

• I woke up by an earthquake (the first one, 3 months after

Elekes’s death):

arXiv:0812.1043 (Dec 2008)

Title: Algebraic Methods in Discrete Analogs of the Kakeya

Problem

Authors: Larry Guth, Nets Hawk Katz
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History of the universe unfolds

• New algebraic machinery applied to an incidence problem in

3D (the joints problem, posed by me and others back in 1992)

• And solving it completely, after two decades of frustration

• We (H. Kaplan, E. Shustin, me) started to work on it,

simplifying, extending, generalizing

• And then I tried to apply it to Elekes’s transformed problem
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History of the universe continues to unfold

• Discovered more geometric properties of the transformation

• Applied “successfully” the new algebraic machinery

• Bounds that are even better than those in the joints problem

• But not strong enough to have a real impact on distinct

distances

• Presented the paper at SOCG (2010)
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The end is near

• And then the earth shook again:

arXiv:1011.4105 (Nov 2010)

Title: On the Erdős distinct distances problem in the

plane

Authors: Larry Guth, Nets Hawk Katz

• They picked up the lead of the “Elekes–Sharir program” (That

is, Elekes’s transformation and conjectures) and managed to

solve them completely
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A new era is dawning

• This yielded the nearly tight bound Ω(s/ log s) for the distinct

distances problem, after 65 years of frustration

• A new methodology that many

(Kaplan, Matoušek, me, Solymosi, Tao, Zahl, . . ., ???)

are trying to apply to other problems

• New proofs of old results (simpler, different)
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And new results:

• Unit distances in three dimensions

[Zahl], [Kaplan-Matoušek-Sharir]

• Point-circle incidences in three dimensions

[in progress]

• Complex Szemerédi-Trotter incidence bound and related bounds

[Solymosi-Tao]

• Range searching with semi-algebraic ranges

[An algorithmic application; in progress]
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Old-new Machinery from Algebraic Geometry

• Low-degree polynomial vanishing on a given set of points

• Polynomial ham sandwich cuts

• Polynomial partitioning

• Miscellany (Thom-Milnor, Bézout, Harnack, Warren, and co.)

• And just plain good old stuff from the time when men were

men, women were women, and algebraic geometry was algebraic

geometry (circa end of 19th century)
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It is all about incidences between points and lines (or

curves, or surfaces) in three or higher dimensions

Beat the Szemerédi-Trotter incidence bound in the plane
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Szemerédi-Trotter:

Incidences between points and lines in the plane

P : Set of m distinct points in the plane

L: Set of n distinct lines

I(P,L) = Number of incidences between P and L

= |{(p, ℓ) ∈ P × L | p ∈ ℓ}|

I(m,n) = max {I(P, L) | |P | = m, |L| = n}

[Szemerédi–Trotter, 1983]: I(m,n) = Θ(m2/3n2/3 +m+ n)
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Do better in “truly 3-dimensional” scenarios

Miraculously, and without realizing it, this is what Elekes

managed to do
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It started with Joints (in 3-space)

L – Set of n lines in R
3

Joint: Point incident to (at least) three non-coplanar lines of L

The Joints Problem [Chazelle et al., 92]. Show:

The number of joints in L is O(n3/2)

Worst-case tight:
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Joints

The maximum number of joints in a set of n lines in 3D is

Θ(n3/2)

[Guth, Katz 08]

And in d dimensions

(Joint = point incident to at least d lines, not all on a hyperplane)

Θ(nd/(d−1))

[Kaplan, Sharir, Shustin 10],

[Quilodrán 10]

(Similar, and very simple proofs)
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And now to something completely different:

Distinct Distances

An [Erdős 46] classic

How many distinct distances are always determined by any set

of s points in the plane?

d(S) = Number of distinct distances determined by a set S

g(s) = min

{

d(S) | |S| = s

}
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Distinct Distances

The
√
s×√

s grid gives g(s) = O(s/
√
log s) [Erdős 46]

Erdős conjectured this to be tight

Inching upwards over the ages, best lower bound was

g(s) = Ω(s0.8641) ≈ Ω

(

s
48−14e
55−16e

)

[Katz, Tardos 04]
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From Distinct Distances to Incidences in 3D

Elekes’s Transformation

S: Ground set of s points in the plane

x = d(S): Number of distinct distances in S

δ1, . . . , δx: The distinct distances

Ei = {(a, b) | dist(a, b) = δi}

19



From Distinct Distances to Incidences in 3D

There is a rotation (rigid motion) mapping a to a′ and b to b′

⇔ dist(a, b) = dist(a′, b′)

a

b

a′

b′

Every quadruple (a, b, a′, b′) in Ei × Ei generates such a rotation
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From Distinct Distances to Incidences in 3D

Multiplicity of a rotation τ :

|τ(S)∩S| = Number of points of S mapped by τ to other points

of S

c

b

c′

b′

a′

a
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From Distinct Distances to Incidences in 3D

Nk: Number of rotations of multiplicity k

N≥k: Number of rotations of multiplicity at least k

∑

k≥2

(

k
2

)

Nk =
∑x

i=1 |Ei|(|Ei| − 1)

Both sides count the 5-tuples (τ, a, b, c, d), with τ(a) = c and

τ(b) = d
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From Distinct Distances to Incidences in 3D

∑

k≥2

(

k
2

)

Nk =
∑x

i=1 |Ei|(|Ei| − 1)

Cauchy-Schwarz for RHS:

∑x
i=1 |Ei|(|Ei| − 1) = Ω

(

1
x (
∑

i |Ei|)2
)

= Ω

(

s4

x

)

And rearranging LHS:
∑

k≥2

(

k
2

)

Nk = N≥2 +
∑

k≥3(k − 1)N≥k

so N≥2 +
∑

k≥3(k − 1)N≥k = Ω

(

s4

x

)
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From Distinct Distances to Incidences in 3D

N≥2 +
∑

k≥3(k − 1)N≥k = Ω

(

s4

x

)

Challenge: Upper bound LHS by ≈ s3

Main Conjecture (Elekes): N≥k = O(s3/k2)

If true ⇒ s4

x = O

(

∑

k
s3

k

)

= O
(

s3 log s
)

Or x = Ω(s/ log s)
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From Distinct Distances to Incidences in 3D

A rotation (rigid motion) has three

degrees of freedom

If not pure translation:

Can always be represented as pure

rotation (around some center)

Represent τ by
(

c, cot θ
2

)

, where

c = center of rotation

θ = angle of rotation

h cot θ
2

c

θ

a

b

h
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From Distinct Distances to Incidences in 3D

Rotation 7→ Point in 3D

ℓa,b: Locus of rotations that map a to b

ℓa,b 7→ Line in 3D

(An observation of Guth and Katz that we

missed:

Elekes thought they were helices

I thought they were parabolas)

h cot θ
2

c

θ

a

b

h
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The New Setup

n = s2 lines in 3-space

m rotations (points) in 3-space

A rotation with multiplicity k is incident to k lines

Reduced Problem: Show that the number of points incident

to ≥ k lines is

O

(

s3

k2

)

= O

(

n3/2

k2

)
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The New Setup

Main Conjecture [Elekes-Sharir, 2010]:

Now Main Theorem [Guth-Katz, 2010]:

N≥k = O
(

s3/k2
)

= O
(

n3/2/k2
)

In more generality than the Elekes setup:

Arbitrary points and lines (with some restrictions)

(We [Elekes-Sharir] only managed to prove N≥k ≈ O

(

s3

k12/7

)

,

and only for k ≥ 3)
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The case k = 2

a

b

a′

b′

•• Number of rotations (rigid motions) which map (at least) two

points of S to two other points of S is O(s3)

• Hard special case; requires separate treatment

(Left open in [Elekes-Sharir 2010])

Challenge: Find direct proof?
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The case k = 3

c

b

c′

b′

a′

a

•• Number of rotations (rigid motions) which map (at least)

three points of S to three other points of S is O(s3)

(Already shown in [Elekes-Sharir 2010])
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Line-Point Incidences in R
3

Theorem: (implied by [Guth-Katz 10])

For a set P of m points

And a set L of n lines in R
3, such that

(i) Each point of P is incident to at least three lines

(ii) No plane contains more than O(n1/2) lines

(Holds in the Elekes setup)

max I(P,L) = Θ(m1/2n3/4 + n)

[Elekes, Kaplan, Sharir 09]

Same setup, but (ii) No plane contains more than O(n) points

max I(P,L) = Θ(m1/3n) for m ≥ n
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New ingredients of the proof

• Separate treatment of k = 2:

A set L of n lines in 3D, with at most O(n1/2) lines in a plane

or on a regulus, has at most O(n3/2) intersection points

• Uses 19th century algebraic geometry [Salmon 1882 / Cayley]

Related to ruled surfaces
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Avoid “complete bipartite” scenarios

Solution: Don’t put all your eggs in the same basket

(Only
√
n of them)
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New ingredients of the proof: The case k ≥ 3

Theorem: For a set L of n lines in 3D, so that no plane contains

more than O(
√
n) lines, the number of points incident to at least

k lines of L is at most O(n3/2/k2)

Follows from the incidence bound

mk = O(m1/2n3/4) ⇒ m = O(n3/2/k2)

Prove the incidence bound using polynomial partitions

Via the polynomial ham sandwich theorem
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Standard Ham Sandwich Cut

Any d sets in R
d can be simultaneously bisected by a common

hyperplane

2D:

3D:
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Polynomial Ham Sandwich Cut

Bisect more sets by the zero set of a higher-degree polynomial
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Polynomial Ham Sandwich Cut

[Stone, Tukey, 1942]

d = dimension

D = degree

Put M =
(

d+D
d

)

− 1

Let S1, . . . , SM be any M sets in R
d

Then there exists a polynomial p of degree at most D which

bisects each of S1, . . . , SM

Bisects : |Si ∩ {p < 0}|, |Si ∩ {p > 0}| ≤ |Si|/2

Moral: If you want to bisect M sets in d dimensions,

Use a polynomial of degree D ≈ M1/d
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Polynomial Ham Sandwich Cut

Frightening as it sounds, it is trivial nonetheless:

M =
(

d+D
d

)

−1 = Num of nonconstant monomials of a d-variate

polynomial of degree D

Apply the Veronese map V : Rd 7→ R
M

V (x) = tuple of the value at x of all M monomials of degree ≤ D

Then bisect each of V (S1), . . . , V (SM) by a hyperplane h in R
M

(Standard Ham Sandwich Cut)
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Polynomial Ham Sandwich Cut (PHSC)

p = h ◦ V is the desired bisecting polynomial:

Linear combination of monomials
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Polynomial partitioning of a point set via PHSC

A set S of n points in R
d can be partitioned into t subsets, each

consisting of at most n/t points, by a polynomial p of degree D =

O
(

t1/d
)

, so that the subsets lie in distinct connected components

of R
d \ Z

Sketch: Apply PHSC to S, then to the two halves, then to the

four quarters, etc., until obtaining the desired number of subsets

Sequence of bisecting polynomials p1, p2, . . .

Of degrees ≈ 11/d,21/d,41/d, . . . , t1/d

Multiply them to get the desired p = p1p2 · · ·
Of degree ≈ 11/d +21/d +41/d + · · ·+ t1/d = O

(

t1/d
)
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Polynomial partitioning

• A new kind of space decomposition

• Competes (very favorably) with cuttings, simplicial partitioning

• Many advantages (and some (temporary?) disadvantages)

• Main new tool to take home
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Szemerédi-Trotter planar incidence bound

Proof Via polynomial partitioning

Recall:

P : Set of m distinct points in the plane

L: Set of n distinct lines

I(P,L) = O(m2/3n2/3 +m+ n)

For simplicity, assume m = n

Partition P into t = Θ(n2/3) subsets, each consisting of at most

n/t = O(n1/3) points

Using a polynomial q of degree D = O(t1/2) = O(n1/3)

Z = Z(q): Zero set of q
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Proof, cont’d

Partitions P into subsets

P0, P1, . . . , Pt:

• P0 ⊂ Z

• |Pi| = O(n/t) = O(n1/3) for i ≥ 1

• Each component of R2\Z contains

at most one Pi
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Proof, cont’d

A line ℓ ∈ L interacts with at most

D +1 = O(n1/3) subsets Pi

(In between, has to cross Z, in at

most D points)
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Proof, cont’d

• ℓ has just one incidence with Pi:

Only O(nD) = O(n4/3) such inci-

dences
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Proof, cont’d

• ℓ has at least two incidences with Pi:

Each p ∈ Pi is incident to

at most |Pi| − 1 such lines

For a total of ≤ |Pi|(|Pi| − 1) incidences

Num of incidences:

O((n1/3)2) within one Pi

Times O(n2/3) sets Pi

= O(n4/3)
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Proof, cont’d

• Incidences with P0 (points on Z):

ℓ intersects Z in at most D points

(unless ℓ ⊂ Z)

O(nD) = O(n4/3) incidences

(The case ℓ ⊂ Z is also easy:

Only D such lines;

O(nD) = O(n4/3) incidences)
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Incidences in three dimensions

• Same approach

• Partitioning by a polynomial of degree D:

≈ D2 subsets in the plane

≈ D3 subsets in 3-space

Finer partition ⇒ Better bound

• But harder to handle points and lines on the zero set Z

• Still, much simpler variant of the technique in

[Elekes, Kaplan, Sharir 10]
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The Dawn of a New Era

• New, unexpected, powerful machinery

• Still early in the game to assess full impact;

Hope is unbounded

• Better bridges between the two communities

(Algebraic / combinatorial geometry)
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Thank You
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