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Abstract

Let S be a set of n points in R?. The “roundness” of S can be measured by
computing the width w* = w*(S) of the thinnest spherical shell (or annulus in
R?) that contains S. This paper contains two main results related to computing
w*: (i) For d = 2, we can compute in O(nlogn) time an annulus containing S
whose width is at most 2w*(.S). We extend this algorithm, so that, for any given
parameter £ > 0, an annulus containing S whose width is at most (1 + ¢)w™* is
computed in time O(nlogn + n/e?). (ii) For d > 3, given a parameter ¢ > 0,
we can compute a shell containing S of width at most (1 + )w* either in time
O(S% log(ﬁ8 )) or in time O(gdL_2 (logn + %) log (%)), where A is the diameter
of S.
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1 Introduction

Let S be a set of n points in R?. The roundness of S can be measured by approxi-
mating S with a sphere I' so that the maximum distance between a point of S and I"
is minimized, i.e., by computing

1 d -l
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For ¢ € R? and for r, R € R with 0 < r < R, we define the spherical shell (shell,
for short, and, in the plane, annulus) A(c,r, R) to be the closed region lying between
the two concentric spheres of radii » and R centered at ¢. The width of A(c,r, R) is
R — r. The problem of measuring the roundness of S is equivalent to computing a
shell, A*(S), of the smallest width that contains S. See Figure 1.

Figure 1: The annulus A*(S).

The main motivation for computing a minimum-width shell or annulus comes from
metrology. For example, the circularity of a two-dimensional object O in the plane
is measured by sampling a set S of points on the surface of O (e.g., using coordinate
measurement machines) and computing the width of the thinnest shell containing
S [21]. Motivated by this and other applications, the problem of computing A*(S)
in the plane has been studied extensively [2,6-8, 18,19, 22,26, 28, 30-33, 35, 36, 38].
Ebara et al. [18] noticed that in the planar case the center of A*(S) is a vertex of the
overlay of the nearest- and farthest-neighbor Voronoi diagrams of S. This property
was later refined and extended in [32,36]. These observations immediately lead to
an O(n?)-time algorithm for computing A4*(S) in the plane. Subquadratic algorithms
were later developed in [2,6,7]. The asymptotically fastest known randomized algo-
rithm, by Agarwal and Sharir [6], computes .A*(S) in expected time O(n?/?+¢), for any
e > 0. Since the subquadratic algorithms are rather complicated, simpler and faster
algorithms have been developed for various special cases [13,16,26,37]. Mehlhorn et
al. [28] and Kumar and Sivakumar [25] have studied this problem under the probing



INTRODUCTION 3

model in which the set S of sample points is chosen adaptively; see the original papers
for details.

Very little was known about computing A*(S) efficiently in higher dimensions.
Extending the observation by Ebara et al. [18] to R?, it can be shown that the center
of A*(S) is the intersection point of an edge of the nearest-neighbor Voronoi diagram
of S with a face of the farthest-neighbor Voronoi diagram of S, or vice versa. Using
this fact, A*(S) can be computed in O(n®logn) time [16]. This idea can also be
extended to higher dimensions. Very recently Chan [11] pointed out that the three-
dimensional problem can be solved exactly in a very simple manner in time O(n?);
in fact his observation gives a procedure in all dimensions. See the discussion at the
end of the paper. "°"Any objections?;

This paper contains two main results. "°"Made an itemize out of this ... If you do
not like it, remove itemize and replace (i) and (ii) by words (first, second...);s

(i) For d > 2, given a parameter ¢ > 0, we present simple algorithms that run
either in time O(E% log(ﬁs)) or in O(EdL_Q(logn + %) log (ﬁg)) for computing
a shell that contains S and whose width is at most (1 4+ ¢)w*, where w* is

the width of A*(S) and A = diam(S) is the diameter of S (Section 3). If
the middle radius (i.e., average of the inner and outer radii) of A*(S) is at
most U - diam(S), then the running time of the algorithms are O((n/s%)logU)
and O(gd%(lognnL %) log U), respectively. In most practical situations, U is
a constant. For example, if the input points span an angle of at least ¢ with
respect to the center of A*(S), U = O(1/0).

borTechnically when we write log U, do we mean max{logU,1}? Technically, U
could be less than 1!;

A main idea used in the algorithms is the observation that, in the plane, the
minimum-area annulus containing S can be used to approximate A*(S), and
while this approximation might not always be good, it can at least be computed
in linear time using linear programming. We refine this idea and extend it to
higher dimensions to achieve the bounds stated above.

(ii) We describe simpler, faster algorithms for d = 2. We first describe in Section 4.1
a very simple O(nlogn)-time algorithm for computing an annulus that contains
S and whose width is at most twice that of A*(S). Duncan et al. [16] had
described an approximation algorithm under some assumptions on the distribu-
tion of input points. No general near-linear time algorithm with constant-factor
approximation was previously known.

We then combine this algorithm with the previous one to obtain a (1 + ¢)-
approximation algorithm. Given a parameter £ > 0, we compute in O(nlogn +

[l
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n/e?) time an annulus that contains S whose width is at most (1 +&)w*, where
w* is the width of A*(S) (Section 4.2).

borShould we add here: More recently, T.M. Chan obtained a number of new approx-
imation results using fairly simple techniques; refer to [11] and the discussion at the end
of this paper. Sufficient? By the way, | am against enumerating the results he obtained
in his paper.is

2 Geometric Preliminaries

Let S be a set of n points in R, For a point p € R?, let r(p) (resp. R(p)) denote the
distance between p and its nearest (resp. farthest) neighbor in S. A(p,r(p), R(p)) is
the shell of smallest width that is centered at p and contains S, which we denote by
A(p). In what follows, unless we consider the problem specifically in the plane, we
will use the term “shell” to refer to a spherical shell in dimension higher than two
and to an annulus in two dimensions. Set

R(p) +r(p)
—

We put w* = w*(S) = inf,cpaw(p) and denote by A* = A*(S) a shell of width w*
containing S. Note that the optimum value w* may not be attained by any finite
point, in which case A*(S) is a slab enclosed between two parallel hyperplanes, and
w*(S) is then the standard width of S. See Figure 2 for an illustration of this case.
The following lemma states two simple but useful properties of rp;qa(p).

w(p)=R(p) —r(p) and 7rmia(p) =

Figure 2: The minimum-width annulus is realized by a center at infinity

Lemma 2.1 Let S be a finite set of points in R?. For any p,q € R?, we have the
following:

(1) Tmia(p) > R(p)/2 > diam(S)/4.
(21) [rmia(p) — rmia(@)| < d(p, @) < rmia(p) + rmia(q)-

4
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Proof: (i) is trivial to prove. To show (ii), use the inequalities

r(p) < d(p,q) +1(q), R(p) < d(p,q) +R(q), d(p,q) <r(p)+R(q),

whose proofs are straightforward. O

Let Vory(S) (resp. Vorp(S)) denote the nearest-neighbor (resp. farthest-neighbor)
Voronoi diagram of S. For d = 2, let Vory (S, ¢) denote the nearest-neighbor Voronoi
diagram of S restricted to a line ¢. That is, Vory(S, () is the partition of ¢ into
maximal intervals so that the same point of S is closest to all points within each
interval. The vertices of Vory (S, ¢) are the intersection points of ¢ with the edges of
Vory(S). We can obviously compute Vory (S, ¢) in O(nlogn) time by first computing
the entire Vory(S) and then intersecting ¢ with it. However, Vory(S,() can be
computed directly, in O(nlogn) time, using a considerably simpler algorithm; see
e.g. [29]. P*Next sentence: Why don’t we drop it, if there are no objections?;; As
an alternative, after having computed Vory(S), we can compute Vory(S,¢) in O(n)
time by tracing ¢ through Vory(S). We define Vorg(S, ¢) analogously; it can also be
computed either directly in O(nlogn) time or in O(n) time after having computed
Vorg(95).

3 An Approximation Algorithm in Any Dimension

Let S be a set of n points in R?; we assume that d is a small constant. Set
A = diam(S). We will first describe an approximation algorithm for computing
the thinnest shell A(p) containing S with the constraint that

rmid(p) = (r(p) + R(p))/2<U-A

for some given parameter U € R. Let A*(S,U) denote this constrained minimum-
width shell, and let w*(S,U) denote the width of A*(S,U). Computing A*(S,U)
can be formulated as the following optimization problem in the d + 2 variables
21, %o, ..., 04,7, R: Pl dropped the parentheses in the previous sentence and refor-
matted the optimization problems. Feel free to hate me now.

minimize R —r

‘ p D\ 12
subject to r < (Zizl(fvi —Di) ) <R Vp=(p1,---,pa) €S
r+ R <2UA.

Let C' be a d-dimensional hyper-rectangle of the form [[“[a;, Bi]. We define
another constrained shell £(S,C') (which becomes, when d = 2, the minimum-area

5
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annulus containing S with center constrained to lie in C'), in the same variables, as
follows:

minimize R% — 1?2

1/2
subject to 7 < (Z?Zl(xi —pi)2> <R Vp=(p1,---,pa) €S

a; < < G 1<i<d.

If we substitute ¥ for R2 — 3" 22 and o for r2 — Y27 22, then £ — 0 = R? — 2,

=11 i=1"%>
and we can restate the optimization problem defining £(S,C') as:

minimizae X — o
subject to o < — Zle 2p;x; + Zle pr <Y Vp=(p1,...,pa) €S
a; < < G 1<i<d.

This is, however, an instance of linear programming with d + 2 variables, and can be
solved in O(n) time [17,27], provided d is a constant. Let @(S,C) denote the width
of £(S,C).

We now describe our approximation algorithm. Let C'(p, s) be the d-dimensional
axis-parallel cube of side length s and centered at p.

Algorithm APPROX_SHELL (S, U, &)
1. Compute £(S,R?). If ©(S,R?) = 0, then return £(S,R?).
2. Pick a point 0 € S and set € = C'(o, (2U + 2)A).

3. Partition € into a collection C = {C1, ... ,C}y} of axis-parallel cubes so that, for
all points p, ¢ inside the same cube C;, rmia(p) < (1 + &)rmia(q).

4. For each C; € C, compute A; = £(S,C;). "°*Should we use a script A instead of <+—
italic here?;q

5. Return the thinnest shell among Ay, ..., Ag.

Lemma 3.1 APPROX_SHELL(S, U, ¢) returns a shell whose width is at most (1 +
e)w*(S,U).

Proof: If ©(S,R?) = 0, then the statement is obvious. Otherwise, let p be the center
of A*(S,U). Since rpia(0) < R(o) < A and rpa(p) < UA, we have, by Lemma 2.1(ii),
that p € €. Let C; be the cube containing p. Let ¢ € C; be the center of £(S,C;).
Then

R*(q) —r*(q) <R*(p) —r*(p), or rmia(@)w(q) < rmia(p)w(p).
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Equivalently,
Tmid (p)
T'mid (q )

w(q) < w(p) < (14 ¢e)w*(S,U).

O

We now describe how to construct a partition C of €. A similar construction is
given in [23].

Lemma 3.2 Let U,e be two positive numbers. Then € = C/(o, (2U + 2)A) can be
partitioned into a set C of O((1/2) logU) cubes so that rmiq(p) < (1 + &)rmia(q)
for all p,q in the same cube of the partition. This tiling can be computed in O(n +
(1/2)41ogU) time.

Figure 3: Tiling of €.

Proof: Compute a real number p such that A/2 < p < A. (See [20] for a simple O(n)
algorithm for approximating the diameter to within a factor of v/3 in any dimension.
Alternatively, fix any p € S and take = R(p) > A/2, by Lemma 2.1(i).)

Set m = [logy,(U + 1)]. For i =1,... ,m, we define

By = C(0,41), Bi=C(0,2""pu)\ C(0,2" ).

We can tile By by O(1/2?) axis-parallel cubes having side length ro = ue/(4v/d).
Let C' be a cube in this tiling. For p,q € C', we have, by Lemma 2.1,

Pmid(P) < rmia(q) +d(p, q) < rmialq) + pe/4
< (T+¢)rmia(q),

since rmia(q) > A/4 > p/4.
Let r; = 2pe//d, for i = 1,... ,m. B; can be tiled by

o((52)) -0 () ) o ()

7
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axis-parallel cubes with side length r;, for: =1,... ,m.

Let C' be a cube in this tiling of B;, and let p,q be two points in C. Using
Lemma 2.1(ii) and the fact that rmq(0) < A < 2u, we have "°'should 21 be
201 117/d below?;

rmid(q) > d(q,0) — rmia(0) > 2 — 2 > 2.
We also have

rmid(P) < rmia(q) +d(q,p) < rmia(q) + Vdr,
= Tmia(q) +2'pe < rmia(g)(14¢).

See Figure 3 for an illustration of the resulting tiling. This completes the proof of
the lemma, since B,, "°"lsn't B,, twice as big as it needs to be?;; contains ¢ and the
total number of cubes is O((1/¢%)logU). The bound on the running time of this
construction is obvious. O

Theorem 3.3 Let S be a set of n points in R?, € > 0, and U > 0. One can compute
a shell A D S whose width is at most (1+ &)w*(S,U) either in time O((n/e%)logU)

or in time
n 1
O(m <logn+ g> logU>.

Proof: The first bound on the running time is a consequence of the preceding
discussion: We spend O(n) time on each cube of C, and C has O((1/%)logU)
cubes. The second bound follows by observing that the execution of the algorithm
APPROX_SHELL can be interpreted as follows: We compute a sequence of cubes
Ci,-..,Cn, where m = O(logU). Each such cube is decomposed into O(1/z%) sub-
cubes using an appropriate uniform grid. For each subcube C' we obtain £(S,C) as
a solution of an appropriate linear programming problem.

Let C; be such a cube, and let V = {C}, ... ,C}} be the resulting decomposition of
C; into subcubes. The linear programming instances on each C; are almost identical
except for the 2d inequalities restricting the solution to lie inside C;. This implies
that, with the possible exception of one subcube, the solutions to all those linear
programming instances must lie on the boundaries of the respective cubes C1, ... ,C,,.
Moreover, the solution of the at most one instance of the linear programming that
does lie in the interior of its cube, can be computed directly, by solving a single
linear-programming instance, without restricting the location of the solution to any
subcube (i.e. by dropping the inequalities o; < z; < f3;).

In particular, we conclude that we can reduce the d-dimensional problem to a
(d — 1)-dimensional problem, as follows:

%

H
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e Solve the unrestricted version of the linear programming (i.e., compute the
global “minimum area” shell).

e For each axis-parallel (d — 1)-dimensional hyperplane H of the grid defining
the decomposition V', find recursively a (1 + ¢)-approximate shell containing S
whose center is constrained to lie on HNC;. There are O(d/¢) such hyperplanes.

e Return the shell of minimum width among all those generated by the algorithm.

The recursion bottoms out at d = 2, where we proceed as follows. Let H be our
two-dimensional plane. We can compute in O(nlogn) time the maps induced on H
by the d-dimensional nearest- and furthest-neighbor Voronoi diagrams of S (those
maps are called power diagrams [9], they have linear complexity, and they can be
computed in O(nlogn) time). Our target is to approximate the minimum difference
between the farthest and nearest neighbors of points on H (this is the width of the
minimum-width shell whose center is restricted to lie on H). "°'| am confused. Don't
we minimize differences of squares here and not width? Hmmm...;; We note that we can
compute this minimum along a line ¢ in O(n) time, by performing a walk through the
overlay of those two diagrams along ¢. We do this along each line of the grid, and also
solve the global linear-programming instance where the center of the shell is restricted
to lie on H. Thus, we can solve a two-dimensional instance in O(nlogn + n/e) time.

Overall, the recursive algorithm for the subcubes of C; requires O((n/e%=2)logn +

n/e41) time. Thus, solving all the linear programming instances for Cy,...,Cp,
requires
1
O(% <logn+ —> logU>
g £
time. a

Even though Theorem 3.3 is not fully satisfactory, for all practical purposes the
assumptions in the theorem are reasonable. For example, in the plane, if the points
in S span an angle of at least # € [0,7/2] with respect to the center ¢ of A*(S),
then rmiq(c) = O(A/sind) = O(A/0). In this case we can compute an annulus that
contains S and has width at most (1 + ¢)w*(S), in time O(% log 7).

For d = 2 the algorithm of Theorem 3.3 can be further simplified and improved,
by noting that in this case the power diagrams are (regular) nearest- and furthest-
neighbor Voronoi diagrams, and that they need to be computed only once. We thus
obtain the following.

Theorem 3.4 Let S be a set of n points in the plane, € > 0, and U > 0. One can
compute an annulus A O S of width at most (1 + e)w*(S,U) in time O(nlogn +
(n/2)logU). "*verify new running timel;q
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We next modify the algorithm APPROX_SHELL so that it produces in all cases a
shell containing S of width at most (1 + g)w*(S).

Lemma 3.5 For U > 6 we have

8 - diam(S
WH(S,U) < w(9) + S diam(S)
U
7,
1w
b v - a p [& a

Figure 4: Construction for the proof of Lemma 3.5.

Proof: P°"Can someone fix the Ipe Figure 4 as follows: move a and b down a bit. Move <+—
W outside of the big circle. In fact, maybe even extend the two rays out of u past the

big circle.;; Let A* be a minimum-width shell containing S, with center p and width

w* = w*(S). Put A = diam(S). It suffices to consider the case w*(S,U) # w*(S), so

we have rpq(p) > UA.

Let V be a circular cone centered at p, containing S, and having the smallest
opening angle. Let V=V N A*. Since rpq(p) > 6A, V spans less than a halfspace.
Let v be the ray emanating from p along the axis of symmetry of V; see Figure 4. Let
b and ¢ be the points where v meets the inner and outer spheres of A*, respectively.
Let u be a point on the segment pb at distance r = UA/2 from b. Let W be the
smallest circular cone centered at u, with axis of symmetry along v and containing
V. Let o be the (d — 2)-sphere formed by intersecting 0VV with the sphere of radius
r centered at u, and let a and [ denote the center and radius of o, respectively (see
Figure 4). Consider the portion of W lying on the same side as p and u of the
hyperplane through ¢ and orthogonal to v, and let R denote the maximum distance
from u to a point in this portion. The shell A" centered at u with radii » and R,
encloses V' and thus also covers S. We now estimate w(u) by obtaining an upper
bound on the width of A’.

10
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Let ¢ be the point on V at distance R from u, as shown in Figure 4. We have
w(u) <w*+d(c,q). However, d(u,a) = /r? — [? and

_ 2 _ 2 — I I

d(a,b) =r r2—1 r+mér'
r 4+ w*
d(u,a

Note that w* < A < r/3 and that | < A = 2r/U < r/3. To see the latter
inequality, project S centrally, towards u, to the sphere ¢ of radius » about u. The
image S of S falls inside the cap 6 N W, which, by construction, is a smallest cap on ¢
enclosing S (indeed, if § N WV is not minimal, then V can be also shrunk
down, which contradicts its minimality). end

bor| do not believe it as written. | do not see a clean way of fixing it. Talk to me if
interested to know what | am talking about. The ref is right!l;s Since the projection does
not increase the distances between points, the diameter of S is at most A, which is

easily seen to imply that [ < A. This implies that d(u,a) = Vr2 =12 > r\/1 — é >

r/2. Hence, we have "°"Would changing 7/2 to 2r/3 and then 2r to 4r/3 get a 4 instead
of 8 in the lemma? Or did | make a mistake anywhere? Should we bother?;

By similarity, we have d(c,q) = d(a,b)

2 2r 4P
d(e,q) < ==L =2
(c.0) < ror/2  r
Putting things together,
412 4N?
db,q) = w'+d(c,q) <w'+— <w'+—
r r
< wia 4A? - 8A
w =W+ —.
- UA/2 U
Note that
w* w* 8A 3r 8A
. < _ 7 < T W
rmid(w) < r+d(b,q) 5 _r—|—2+U <2+U
3U 8
= A|l—+ = U-A.
(35 <
Hence w*(S,U) < w(u) < w* + 82, as asserted. O

Corollary 3.6 Lete > 0, U > 6 be two positive constants. One can compute in time
O(((n/e¥2)logn +n/e™ ) logU) or O(n/elogU), a shell of width at most
8A
(1 + 8) [w*(S) + 7:|

that contains S, where A = diam(S5).

11
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Finally, we describe the general approximation algorithm. Let APPROX_D1aM(S)
be the procedure that computes in linear time a /3-approximation Ay of A(S) =
diam(S) (see [20] or the discussion at the beginning of the proof of Lemma 3.2).

Algorithm APPROX_SHELL_2 (S, ¢)

w = Ay = APPROX_DI1AM (5); woq = 00;
while w < wyq/2 do

Ay 1
U:%-—;

£ w
A(p) = APPROX_SHELL(S, U, ¢/8);
Wold = W;  w =w(p);
end while
return A(p);

Theorem 3.7 Given a set S of n points in R? and a parameter 0 < ¢ < 1, Ap-
PROX_SHELL_2 computes a shell of width at most (14 ¢)w*(S). With an appropriate
optimization of the calls to APPROX_SHELL, the running time is either

({3 o ofc(oeneom(35)

Proof: If w*(S) = 0, the algorithm terminates after the first iteration. Otherwise,
it eventually terminates, as the positive width returned in each call decreases by at
least a factor of two, but is no smaller than the optimum width w*(S).

Suppose the while loop is executed m times. Let w;, U; be the values of w and U
computed in the i-th iteration of the loop. Then, putting w* = w*(95),

Wy < (1+5/8)w*—|—(1+6/8)%

Un
8A
< (I+¢/8)w 4+ (1+¢/8
dew,,
< (14¢/8)w" +(1+¢2/8) 5‘;5 !
96wm
< (1 8
< (1+¢e/8)w* + —= o
by Lemma 3.5, and since wy, > wy,_1/2. Thus,
1+¢/8
< — 12 <1 *
“m S g ppt S (LHew

Note that for all 7 < m we have w; < AO*/_ Hence, w* < w,,_1 < ?,91‘/1_, implying that
m = O(log 2) and U,, = O(A/(w*e)).

12
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Note that the i-th call to APPROX_SHELL (executed, say, by the first algorithm of
Theorem 3.3) constructs a tiling of €; = C(o, (2U; + 2)A), and computes (S, C') for
each cube C' in this tiling. By modifying the algorithm so that it computes £(S, C)
only for the new cubes C' in the tiling (that is, ignoring cubes that are covered by
cubes produced in earlier iterations), it follows that the running time of the i-th

iteration can be improved to O(E% <1 + log U{_:)), for : = 2,... ,m. Overall, the

running time of the algorithm is thus

n “n U;
0] (9 logUy + ;:2 i <1 + log Uz’—1>>
n n A
= O(E(m+logUm)) = O(—log >

The other time bound follows if we execute APPROX_SHELL using the second
algorithm of Theorem 3.3. O

4 Approximation Algorithms in the Plane

Let S be a set of n points in the plane. We first present an O(nlogn)-time algorithm
that computes an annulus containing S whose width is at most 2w*. We then describe
an algorithm that, given a parameter £ > 0, computes in O(nlogn + n/s?) time an
annulus containing S whose width is at most (1 + )w*.

4.1 A 2-approximation algorithm

We first compute the width width(S) of S (i.e., the minimum distance between a
pair of parallel lines that contain S between them). Next, we compute a diametral
pair of S, i.e., a pair p,q € S such that d(p,q) = diam(S) = maxy sesd(p’, ¢').
borls this the only place where we use = to denote definition?;; Both of these steps
take O(nlogn) time. P°"Should we cite ancient width or diameter algorithms?;; Let ¢
be the perpendicular bisector of pg. We compute Vory (S, () and Vorg(S, (), merge
the vertices of the two diagrams into a single sorted list V', and compute the point
v* that minimizes w(v) over all v € ¢. The latter stages can be done in O(|V]) time
because, between any pair of successive points of V', w(v) coincides with the difference
of distances to two fixed points of S P°Trephrased;s. If width(S) > w(v*), we return
A(v*); otherwise, we return a strip of width width(S) that contains S. The algorithm
obviously returns an annulus that contains S, and it runs in O(nlogn) time.

13
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APPROXIMATION ALGORITHMS IN THE PLANE 14

Theorem 4.1 The width of the annulus computed by the above algorithm is at most
2w*. That 1s,
min{w(v*), width(S)} < 2w*.

Remark 4.2 An easy calculation, which is based on area considerations and uses
the fact that pq is a diameter, shows that S can be covered by a strip of width at
most 2 width(S) and bounding lines parallel to pg. Therefore, w(v*) < 2width(S),
which, in view of Theorem 4.1, implies that w(v*) < 4w*, so that skipping the width
computation in the algorithm gives a 4-approximation of w*.

Let A = diam(S). Let Cp and C} be the outer and inner circles of an annulus A*
of width w* that contains S, and let ¢ be the center of A* (we can clearly assume that ¢
is not at infinity). Let p, ¢ be the diametral pair computed by the algorithm. Without
loss of generality, we can assume that ¢ is the origin, p = (0,1), 1 = d(¢,p) > d(c, q),
and x(q) > 0 (see Figure 5). Let D be the circle of radius d(p,q) = A centered at p.

Lemma 4.3 If A < 1, then S in contained in a horizontal strip of width at most
w* + A?/2.

Figure 5: The minimum-width annulus and the strip defined by A=, h™.

Proof: Let a be the topmost point of Cp. Since A < 1, ¢ ¢ int(D), which implies that
either D lies fully above C; (i.e., the horizontal line passing through the topmost point
of Cy strictly separates D and Cf) or 0D and Cf intersect at two points with positive
y-coordinates; the case in which 9D and C} touch can be handled by essentially the
same argument. The first situation is impossible: since S C D, we can grow C7 and
still have S lie in the shrunken annulus, contrary to the minimality of A*. Let b be

14
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the intersection point of @D and Cf lying to the right of the y-axis. Let A=, h™ be the
horizontal lines passing through b and a, respectively. Since S C A* N D, the strip
bounded by h~, h" contains S; see Figure 5. Let a’ be the intersection point of h~
and the y-axis. Then

d(a';e) = d(c,b)cos(£Lbep)
d(p,c)* + d(c,b)* — d(p,b)*

= d(c,b) 2d(p, ¢)d(c, b)

1472 — A2
2 )

by the law of cosines, where r; is the radius of Cj. Therefore the width of the strip is

1 Q_AZ
d(a,c) —d(d',c) = ri+w"— %
*+A2 (1—r1)2< *+A2
= w4 —-—"<w+—.
2 2 - 2

Figure 6: The minimum-width annulus and the circle C,.

Hence, if A < 1 and w* > A?/2, the algorithm computes an annulus (that is, a
strip) of width at most 2w*. We now assume that either A > 1 or w* < A?/2.

Let C,, be the circle that passes through p and ¢ and whose center ¢ lies on the
y-axis; see Figure 6. We will show that all points of S lie within distance w* from C,,
which implies that the annulus centered at £ with the inner radius d(&, p) — w* and
the outer radius d(&, p) + w* contains S. Since & lies on the perpendicular bisector

15
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of pq, the thinnest annulus that the algorithm computes is certainly no wider than
A(E), i.e., its width is at most 2w*.

Since d(c,p) > d(c,q), Cpq lies inside the circle passing through p and centered
at ¢, and therefore it also lies inside Cp. But Cp, may intersect C; (as in Figure 6).
Let I' C C,, be the circular arc from p to ¢ in the clockwise direction. A simple
calculation shows that the distance from ¢ to the points of I' decreases monotonically
along I'. Since p,q € A*, the entire arc I lies inside A*.

Lemma 4.4 If A > 1 or w* < A?/2, then dpqc < 7/2.
Proof: If A > 1, then ¢ € int(D). We then have £pgc < £pgm < Ltqgqm = 7/2,

where P°"“m” is not on the picture so asking the reader to consult it is kind of odd;; m

is the bottommost point of D; consult Figure 6. Next, assume that w* < A%/2. Since
d(e,p) =1,d(p,q) = A, and 1 > d(c,q) > 1 — w*, we obtain

d(p,q)* +d(c,q)* = d(c,p)?

2d(p, q)d(c, q)
A? +d(c,q)* =1

2Ad(c, q)
A?+ (1 —w")?—1
2A

A2 — 20" + w*?

2A

cos(dpge) =

> 0.

The last inequality follows from the assumption that w* < A?/2. This completes the
proof of the lemma. O

We now prove that for any point z € S, the distance d(z, Cp,) between C,, and z is
at most w*. We will prove the claim for points with positive x-coordinates; the same
argument applies to points with negative z-coordinates. Let o be the intersection
point of ), with the ray emanating from & in direction gz; see Figure 6. Then
d(z,Cpq) = d(z, ).

If z € int(C),), then let 5 be the intersection point of C), with the ray emanating
from z in direction ¢Z (see Figure 7); otherwise, let 5 be the intersection point of C),
with the ray emanating from z in direction Z¢. The point [ exists since ¢ lies inside
Chys as Apqe < /2. Since « lies on the line passing through z and the center of C,,,
i.e., a is the nearest point on C,, from z, d(z,a) < d(z, ).

Lemma 4.5 d(z,3) < w*.

16
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(i)

Figure 7: Illustration of the proof of Lemma 4.5. (i) 2’ € Dla,q|, (ii) 2’ &€ Dla, q].

Proof: We will prove that /3 lies in the annulus A*. Let 2’ be the intersection point

of D with the ray ¢z. P°'l am confused. Why is there only one such intersection? Aren't <—
there always two and you always take the second one? Help!;; For two points z,y € D,

let D[x,y] C D denote the circular arc from x to y in the clockwise direction. Let ¢

be the topmost point of D. There are two cases to consider:

Case (i) 2’ € D[t,q|. By Lemma 4.4, {pgc < 7/2, therefore D[t, ¢ lies in the wedge
formed by the positive y-axis and the ray ¢g. This in turn implies that § € T’
irrespective of whether z lies inside or outside C,,; see Figure 7(i). As noted
earlier, I' € A*, so 8 € A*, as claimed.

Case (ii) 2’ € DJt,q]. Note that ¢ is an intersection point of circles D and C,, and
their second point of intersection is the mirror image of ¢ on the other side of y-
axis. Therefore the portion of D from ¢ to its bottommost point in the clockwise
direction lies inside C),. Since 2’ has positive z-coordinate and z' € DIt,¢|, 2’
lies on the portion P°"Only if 2’ is the SECOND intersection pointli, of 9D inside <—
Cpq- Therefore S lies after 2z’ on the ray ¢Z (see Figure 7(ii)) and

rr S d(C,Z) S d(C, ZI) < d(@ﬁ) <To,

where the last inequality follows from the fact that C,, C int(Cp). This implies
that § € A*, as desired.

We thus have d(z, ) < w*. O

Lemmas 4.3 and 4.5 imply the theorem.

17
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4.2 A (1+ ¢)-approximation algorithm

In this subsection, we present a (1 + ¢)-approximation algorithm for the minimum-
width annulus. The algorithm is a combination of the approximation techniques
developed in the previous subsections.

Algorithm PLANAR_APPROX_SHELL (S, ¢)

1. Run the 2-approximation algorithm of Theorem 4.1. Let A’ be the resulting
annulus. If the width w’ of A’ is 0 then return A’.

2. Compute the nearest- and farthest-neighbor Voronoi diagrams Vor(S), Vory(.S),
in O(nlogn) time.

3. Compute, in O(nlogn + (n/c)logU) time, an annulus A" of width < (1 +
£/2)w*(S,U), using the algorithm of Theorem 3.4, with U = 10000/=. (Either
A" is the required e-approximation, or rmiq(A*(S)) > UA(S).)

4. Compute, in O(nlogn) time, a pair of points p,q € S that realize the diameter
of S. We assume without loss of generality that p = (—1,0),¢ = (1,0). Let
d =ew'/20, Let P, = P(p,0,¢), P, = P(q,d,¢), where

P(z,6,¢) = {z +(0,4)i

i=—[40/z],..., [40/51}.

See Figure 8.

5. For each pair u € P,,v € P, compute the minimum-width annulus whose center
lies on the perpendicular bisector of wv. Using the precomputed Vorg(S) and
Vory (S), this takes O(n) time per pair, as in the algorithm of Theorem 3.3.

6. Output the minimum-width annulus among those computed.

Theorem 4.6 The width of the annulus output by PLANAR_APPROX_SHELL (S, ¢)
is at most (1 + g)w*(S), and the running time of the algorithm is O(nlogn + n/s?).

Proof: If r,q(A*(S)) < UA(S), the correctness and the bound on the running time
are consequences of the previous algorithms, so assume that ryiq(A*(S)) > UA(S).
Let C* be the middle circle of A*(S), and let ¢*, 7* denote the center and the radius
of C*, respectively. Without loss of generality, assume that ¢* lies (far away) below
the z-axis. Let I, and I, denote the segments spanned by the points of P, and of P,,
respectively.

We have that w*(S) < A(S)/300 (otherwise, by Lemma 3.5, A" is the required
approximation), which implies that both I,, and I, are “short” compared to the

18
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Figure 8: Proof of correctness of PLANAR_APPROX_SHELL

diameter of S. Moreover, the radius of the optimal solution is huge (i.e., at least
(10000/2)A(S)); namely, the sector of the optimal annulus that contains S spans a
very small angle.

bor\Why exactly can't it miss?;s It is clear that C* crosses both I, and I, at two
respective points u,v. Let uy (resp. v;) denote the point of P, (resp. of P,) that lies
immediately below u (resp. v). We first translate C* downwards, till it first hits either
uy or vy. Suppose, without loss of generality, that it first hits v;. Let C' denote the
translated circle. Clearly, the center ¢ of C' lies vertically below ¢* at distance less
than 6. In particular, for any s € S we have |d(c, s) — d(c*,s)| < d(e,¢*) < 6. Put
D(C,S) = maxes d(C, s), and w = 2D(C, S) and observe that

w<2(D(C*,8)+0) =w"+2) < (14¢/5)w".

Next, shrink C' by moving its center from ¢ towards v; while keeping vy on the circle,
until it also passes through u;. Let C’ denote the new circle and let ¢’ denote its
center. See Figure 8.

The distance from ¢ to points on C’ decreases monotonically as we traverse C'
from v; counterclockwise until we reach the point on C' antipodal to v;. Let s be
any point of S. The ray p from ¢ towards s crosses C' at a point w and C” at a point
w'. We have d(w', s) < d(w, s) +d(w,w'") < w/2+d(w,w’). Tt easily follows from the
preceding discussion that d(w, w’) attains its maximum when w’ is near u;, "°*Should
we add that the logic also works CLOCKWISE of v, but we do not have far to go?
Literally taken, we have no argument for the other side of v; now!;s and this maximum
is smaller than 20 (the later statement is easy to verify, using the fact that the line
through w and w’ is almost vertical). This implies that

w(d) <2D(C",S) <w+20 < (1+2e/5)w* < (1+¢)w"

Since ¢ lies on the perpendicular bisector of wujvy, it follows that the width of the
annulus output by the algorithm is at most w(¢') < (1 + ¢)w*, as asserted. The

19
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bound on the running time is obvious: We have O(1/2?) bisectors to process, and the
processing of each of them takes O(n) time, as noted in the algorithm. O

5 Conclusions

We presented simple and efficient approximation algorithms for computing the minimum-
width shell containing a set of points in R?. Although several approximation algo-
rithms were proposed earlier for the planar case, all of them made some assumptions
either on the input points or on the minimum-width annulus. In an earlier version
of this paper [1], we also presented the first subcubic algorithm for computing a
minimum-width shell containing a set of points in R®. The algorithms was fairly
involved and mostly interesting as a confirmation that the problem can be solved in
subcubic time. Since then we have learned that a significantly simpler quadratic algo-
rithm exists for solving the problem [11]. It was noticed by T. Chan, who also proposes
several improvements over the approximation algorithms we described above [11].

borls this enough?; —

e Can the running time of our planar approximation algorithm be improved to
O(nlogn +1/2%)?

e Can the minimum-width shell containing a set of points in R* be computed in

near-quadratic time? "'l guess that’s settled!; —

e Develop an efficient as algorithm for computing the minimum-width cylindrical

shell containing a set of points in R®. "°"Same here? Doesn't a simple exact <+—

quadratic algorithm follow from Timothy's stuff?;
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