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Introdu
tion 21 Introdu
tionLet S be a set of n points in Rd . The roundness of S 
an be measured by approxi-mating S with a sphere � so that the maximum distan
e between a point of S and �is minimized, i.e., by 
omputingmin
2Rd;r2Rmaxp2S jd(p; 
)� rj:For 
 2 Rd and for r; R 2 R with 0 � r � R, we de�ne the spheri
al shell (shell,for short, and, in the plane, annulus) A(
; r; R) to be the 
losed region lying betweenthe two 
on
entri
 spheres of radii r and R 
entered at 
. The width of A(
; r; R) isR � r. The problem of measuring the roundness of S is equivalent to 
omputing ashell, A�(S), of the smallest width that 
ontains S. See Figure 1.
r(c)

R(c)
c

Figure 1: The annulus A�(S).The main motivation for 
omputing a minimum-width shell or annulus 
omes frommetrology. For example, the 
ir
ularity of a two-dimensional obje
t O in the planeis measured by sampling a set S of points on the surfa
e of O (e.g., using 
oordinatemeasurement ma
hines) and 
omputing the width of the thinnest shell 
ontainingS [21℄. Motivated by this and other appli
ations, the problem of 
omputing A�(S)in the plane has been studied extensively [2, 6{8, 18, 19, 22, 26, 28, 30{33, 35, 36, 38℄.Ebara et al. [18℄ noti
ed that in the planar 
ase the 
enter of A�(S) is a vertex of theoverlay of the nearest- and farthest-neighbor Voronoi diagrams of S. This propertywas later re�ned and extended in [32, 36℄. These observations immediately lead toan O(n2)-time algorithm for 
omputing A�(S) in the plane. Subquadrati
 algorithmswere later developed in [2, 6, 7℄. The asymptoti
ally fastest known randomized algo-rithm, by Agarwal and Sharir [6℄, 
omputes A�(S) in expe
ted time O(n3=2+"), for any" > 0. Sin
e the subquadrati
 algorithms are rather 
ompli
ated, simpler and fasteralgorithms have been developed for various spe
ial 
ases [13, 16, 26, 37℄. Mehlhorn etal. [28℄ and Kumar and Sivakumar [25℄ have studied this problem under the probing2



Introdu
tion 3model in whi
h the set S of sample points is 
hosen adaptively; see the original papersfor details.Very little was known about 
omputing A�(S) eÆ
iently in higher dimensions.Extending the observation by Ebara et al. [18℄ to R3 , it 
an be shown that the 
enterof A�(S) is the interse
tion point of an edge of the nearest-neighbor Voronoi diagramof S with a fa
e of the farthest-neighbor Voronoi diagram of S, or vi
e versa. Usingthis fa
t, A�(S) 
an be 
omputed in O(n3 log n) time [16℄. This idea 
an also beextended to higher dimensions. Very re
ently Chan [11℄ pointed out that the three-dimensional problem 
an be solved exa
tly in a very simple manner in time O(n2);in fa
t his observation gives a pro
edure in all dimensions. See the dis
ussion at theend of the paper. borAny obje
tions?is  �This paper 
ontains two main results. borMade an itemize out of this ... If you do  �not like it, remove itemize and repla
e (i) and (ii) by words (�rst, se
ond...)is(i) For d � 2, given a parameter " > 0, we present simple algorithms that runeither in time O� n"d log( �!�")� or in O� n"d�2 �logn + 1"� log � �!�"�� for 
omputinga shell that 
ontains S and whose width is at most (1 + ")!�, where !� isthe width of A�(S) and � = diam(S) is the diameter of S (Se
tion 3). Ifthe middle radius (i.e., average of the inner and outer radii) of A�(S) is atmost U � diam(S), then the running time of the algorithms are O((n="d) logU)and O� n"d�2 �log n+ 1"� logU�, respe
tively. In most pra
ti
al situations, U isa 
onstant. For example, if the input points span an angle of at least � withrespe
t to the 
enter of A�(S), U = O(1=�).  �borTe
hni
ally when we write logU , do we mean maxflogU; 1g? Te
hni
ally, U
ould be less than 1!isA main idea used in the algorithms is the observation that, in the plane, theminimum-area annulus 
ontaining S 
an be used to approximate A�(S), andwhile this approximation might not always be good, it 
an at least be 
omputedin linear time using linear programming. We re�ne this idea and extend it tohigher dimensions to a
hieve the bounds stated above.(ii) We des
ribe simpler, faster algorithms for d = 2. We �rst des
ribe in Se
tion 4.1a very simple O(n logn)-time algorithm for 
omputing an annulus that 
ontainsS and whose width is at most twi
e that of A�(S). Dun
an et al. [16℄ haddes
ribed an approximation algorithm under some assumptions on the distribu-tion of input points. No general near-linear time algorithm with 
onstant-fa
torapproximation was previously known.We then 
ombine this algorithm with the previous one to obtain a (1 + ")-approximation algorithm. Given a parameter " > 0, we 
ompute in O(n logn+3



Geometri
 Preliminaries 4n="2) time an annulus that 
ontains S whose width is at most (1+ ")!�, where!� is the width of A�(S) (Se
tion 4.2).  �borShould we add here: More re
ently, T.M. Chan obtained a number of new approx-imation results using fairly simple te
hniques; refer to [11℄ and the dis
ussion at the endof this paper. SuÆ
ient? By the way, I am against enumerating the results he obtainedin his paper.is2 Geometri
 PreliminariesLet S be a set of n points in Rd . For a point p 2 Rd , let r(p) (resp. R(p)) denote thedistan
e between p and its nearest (resp. farthest) neighbor in S. A(p; r(p);R(p)) isthe shell of smallest width that is 
entered at p and 
ontains S, whi
h we denote byA(p). In what follows, unless we 
onsider the problem spe
i�
ally in the plane, wewill use the term \shell" to refer to a spheri
al shell in dimension higher than twoand to an annulus in two dimensions. Set!(p) = R(p)� r(p) and rmid(p) = R(p) + r(p)2 :We put !� = !�(S) = infp2Rd !(p) and denote by A� = A�(S) a shell of width !�
ontaining S. Note that the optimum value !� may not be attained by any �nitepoint, in whi
h 
ase A�(S) is a slab en
losed between two parallel hyperplanes, and!�(S) is then the standard width of S. See Figure 2 for an illustration of this 
ase.The following lemma states two simple but useful properties of rmid(p).
Figure 2: The minimum-width annulus is realized by a 
enter at in�nityLemma 2.1 Let S be a �nite set of points in Rd . For any p; q 2 Rd , we have thefollowing:(i) rmid(p) � R(p)=2 � diam(S)=4.(ii) jrmid(p)� rmid(q)j � d(p; q) � rmid(p) + rmid(q).4



An Approximation Algorithm in Any Dimension 5Proof: (i) is trivial to prove. To show (ii), use the inequalitiesr(p) � d(p; q) + r(q); R(p) � d(p; q) + R(q); d(p; q) � r(p) + R(q);whose proofs are straightforward. 2Let VorN (S) (resp. VorF (S)) denote the nearest-neighbor (resp. farthest-neighbor)Voronoi diagram of S. For d = 2, let VorN(S; `) denote the nearest-neighbor Voronoidiagram of S restri
ted to a line `. That is, VorN(S; `) is the partition of ` intomaximal intervals so that the same point of S is 
losest to all points within ea
hinterval. The verti
es of VorN(S; `) are the interse
tion points of ` with the edges ofVorN(S). We 
an obviously 
ompute VorN(S; `) in O(n logn) time by �rst 
omputingthe entire VorN (S) and then interse
ting ` with it. However, VorN (S; `) 
an be
omputed dire
tly, in O(n logn) time, using a 
onsiderably simpler algorithm; seee.g. [29℄. borNext senten
e: Why don't we drop it, if there are no obje
tions?is As  �an alternative, after having 
omputed VorN (S), we 
an 
ompute VorN(S; `) in O(n)time by tra
ing ` through VorN(S). We de�ne VorF (S; `) analogously; it 
an also be
omputed either dire
tly in O(n logn) time or in O(n) time after having 
omputedVorF (S).3 An Approximation Algorithm in Any DimensionLet S be a set of n points in Rd ; we assume that d is a small 
onstant. Set� = diam(S). We will �rst des
ribe an approximation algorithm for 
omputingthe thinnest shell A(p) 
ontaining S with the 
onstraint thatrmid(p) = (r(p) + R(p))=2 � U ��for some given parameter U 2 R. Let A�(S; U) denote this 
onstrained minimum-width shell, and let !�(S; U) denote the width of A�(S; U). Computing A�(S; U)
an be formulated as the following optimization problem in the d + 2 variablesx1; x2; : : : ; xd; r; R: borI dropped the parentheses in the previous senten
e and refor-  �matted the optimization problems. Feel free to hate me now.isminimize R � rsubje
t to r � �Pdi=1(xi � pi)2�1=2 � R 8p = (p1; : : : ; pd) 2 Sr +R � 2U�:Let C be a d-dimensional hyper-re
tangle of the form Qdi=1[�i; �i℄. We de�neanother 
onstrained shell E(S;C) (whi
h be
omes, when d = 2, the minimum-area5



An Approximation Algorithm in Any Dimension 6annulus 
ontaining S with 
enter 
onstrained to lie in C), in the same variables, asfollows: minimize R2 � r2subje
t to r � �Pdi=1(xi � pi)2�1=2 � R 8p = (p1; : : : ; pd) 2 S�i � xi � �i 1 � i � d:If we substitute � for R2�Pdi=1 x2i and � for r2�Pdi=1 x2i , then ��� = R2� r2,and we 
an restate the optimization problem de�ning E(S;C) as:minimizae �� �subje
t to � � �Pdi=1 2pixi +Pdi=1 p2i � � 8p = (p1; : : : ; pd) 2 S�i � xi � �i 1 � i � d:This is, however, an instan
e of linear programming with d+ 2 variables, and 
an besolved in O(n) time [17, 27℄, provided d is a 
onstant. Let !̂(S;C) denote the widthof E(S;C).We now des
ribe our approximation algorithm. Let C(p; s) be the d-dimensionalaxis-parallel 
ube of side length s and 
entered at p.Algorithm Approx Shell (S, U , ")1. Compute E(S;Rd). If !̂(S;Rd) = 0, then return E(S;Rd).2. Pi
k a point o 2 S and set C = C(o; (2U + 2)�).3. Partition C into a 
olle
tion C = fC1; : : : ; Ckg of axis-parallel 
ubes so that, forall points p; q inside the same 
ube Ci, rmid(p) � (1 + ")rmid(q).4. For ea
h Ci 2 C, 
ompute Ai = E(S;Ci). borShould we use a s
ript A instead of  �itali
 here?is5. Return the thinnest shell among A1; : : : ; Ak.Lemma 3.1 Approx Shell(S, U , ") returns a shell whose width is at most (1 +")!�(S; U).Proof: If !̂(S;Rd) = 0, then the statement is obvious. Otherwise, let p be the 
enterof A�(S; U). Sin
e rmid(o) � R(o) � � and rmid(p) � U�, we have, by Lemma 2.1(ii),that p 2 C. Let Ci be the 
ube 
ontaining p. Let q 2 Ci be the 
enter of E(S;Ci).Then R2(q)� r2(q) � R2(p)� r2(p); or rmid(q)!(q) � rmid(p)!(p):6



An Approximation Algorithm in Any Dimension 7Equivalently, !(q) � rmid(p)rmid(q)!(p) � (1 + ")!�(S; U): 2We now des
ribe how to 
onstru
t a partition C of C. A similar 
onstru
tion isgiven in [23℄.Lemma 3.2 Let U; " be two positive numbers. Then C = C(o; (2U + 2)�) 
an bepartitioned into a set C of O((1=")d logU) 
ubes so that rmid(p) � (1 + ")rmid(q)for all p; q in the same 
ube of the partition. This tiling 
an be 
omputed in O(n +(1=")d logU) time.

Figure 3: Tiling of C.Proof: Compute a real number � su
h that �=2 � � � �. (See [20℄ for a simple O(n)algorithm for approximating the diameter to within a fa
tor of p3 in any dimension.Alternatively, �x any p 2 S and take � = R(p) � �=2, by Lemma 2.1(i).)Set m = dlog2(U + 1)e. For i = 1; : : : ; m, we de�neB0 = C(o; 4�); Bi = C(o; 2i+2�) n C(o; 2i+1�):We 
an tile B0 by O(1="d) axis-parallel 
ubes having side length r0 = �"=(4pd).Let C be a 
ube in this tiling. For p; q 2 C, we have, by Lemma 2.1,rmid(p) � rmid(q) + d(p; q) � rmid(q) + �"=4� (1 + ")rmid(q);sin
e rmid(q) � �=4 � �=4.Let ri = 2i�"=pd, for i = 1; : : : ; m. Bi 
an be tiled byO �2i+2�ri �d! = O � 2i+2�2i�"=pd�d! = O� 1"d�7



An Approximation Algorithm in Any Dimension 8axis-parallel 
ubes with side length ri, for i = 1; : : : ; m.Let C be a 
ube in this tiling of Bi, and let p; q be two points in C. UsingLemma 2.1(ii) and the fa
t that rmid(o) � � � 2�, we have borshould 2i+1� be  �2i+1�pd below?is rmid(q) � d(q; o)� rmid(o) � 2i+1�� 2� � 2i�:We also have rmid(p) � rmid(q) + d(q; p) � rmid(q) +pdri= rmid(q) + 2i�" � rmid(q)(1 + "):See Figure 3 for an illustration of the resulting tiling. This 
ompletes the proof ofthe lemma, sin
e Bm borIsn't Bm twi
e as big as it needs to be?is 
ontains C and the  �total number of 
ubes is O((1="d) logU). The bound on the running time of this
onstru
tion is obvious. 2Theorem 3.3 Let S be a set of n points in Rd , " > 0, and U > 0. One 
an 
omputea shell A � S whose width is at most (1 + ")!�(S; U) either in time O((n="d) logU)or in time O� n"d�2�log n+ 1"� logU�:Proof: The �rst bound on the running time is a 
onsequen
e of the pre
edingdis
ussion: We spend O(n) time on ea
h 
ube of C, and C has O((1="d) logU)
ubes. The se
ond bound follows by observing that the exe
ution of the algorithmApprox Shell 
an be interpreted as follows: We 
ompute a sequen
e of 
ubesC1; : : : ; Cm, where m = O(logU). Ea
h su
h 
ube is de
omposed into O(1="d) sub-
ubes using an appropriate uniform grid. For ea
h sub
ube C we obtain E(S;C) asa solution of an appropriate linear programming problem.Let Ci be su
h a 
ube, and let V = fC1; : : : ; C�g be the resulting de
omposition ofCi into sub
ubes. The linear programming instan
es on ea
h Cj are almost identi
alex
ept for the 2d inequalities restri
ting the solution to lie inside Cj. This impliesthat, with the possible ex
eption of one sub
ube, the solutions to all those linearprogramming instan
es must lie on the boundaries of the respe
tive 
ubes C1; : : : ; C�.Moreover, the solution of the at most one instan
e of the linear programming thatdoes lie in the interior of its 
ube, 
an be 
omputed dire
tly, by solving a singlelinear-programming instan
e, without restri
ting the lo
ation of the solution to anysub
ube (i.e. by dropping the inequalities �i � xi � �i).In parti
ular, we 
on
lude that we 
an redu
e the d-dimensional problem to a(d� 1)-dimensional problem, as follows: 8



An Approximation Algorithm in Any Dimension 9� Solve the unrestri
ted version of the linear programming (i.e., 
ompute theglobal \minimum area" shell).� For ea
h axis-parallel (d � 1)-dimensional hyperplane H of the grid de�ningthe de
omposition V , �nd re
ursively a (1 + ")-approximate shell 
ontaining Swhose 
enter is 
onstrained to lie on H\Ci. There are O(d=") su
h hyperplanes.� Return the shell of minimum width among all those generated by the algorithm.The re
ursion bottoms out at d = 2, where we pro
eed as follows. Let H be ourtwo-dimensional plane. We 
an 
ompute in O(n logn) time the maps indu
ed on Hby the d-dimensional nearest- and furthest-neighbor Voronoi diagrams of S (thosemaps are 
alled power diagrams [9℄, they have linear 
omplexity, and they 
an be
omputed in O(n logn) time). Our target is to approximate the minimum di�eren
ebetween the farthest and nearest neighbors of points on H (this is the width of theminimum-width shell whose 
enter is restri
ted to lie on H). borI am 
onfused. Don't  �we minimize di�eren
es of squares here and not width? Hmmm...is We note that we 
an
ompute this minimum along a line ` in O(n) time, by performing a walk through theoverlay of those two diagrams along `. We do this along ea
h line of the grid, and alsosolve the global linear-programming instan
e where the 
enter of the shell is restri
tedto lie on H. Thus, we 
an solve a two-dimensional instan
e in O(n logn+ n=") time.Overall, the re
ursive algorithm for the sub
ubes of Ci requires O((n="d�2) logn+n="d�1) time. Thus, solving all the linear programming instan
es for C1; : : : ; Cmrequires O� n"d�2�log n+ 1"� logU�time. 2Even though Theorem 3.3 is not fully satisfa
tory, for all pra
ti
al purposes theassumptions in the theorem are reasonable. For example, in the plane, if the pointsin S span an angle of at least � 2 [0; �=2℄ with respe
t to the 
enter 
 of A�(S),then rmid(
) = O(�=sin �) = O(�=�). In this 
ase we 
an 
ompute an annulus that
ontains S and has width at most (1 + ")!�(S), in time O( n"2 log 1� ).For d = 2 the algorithm of Theorem 3.3 
an be further simpli�ed and improved,by noting that in this 
ase the power diagrams are (regular) nearest- and furthest-neighbor Voronoi diagrams, and that they need to be 
omputed only on
e. We thusobtain the following.Theorem 3.4 Let S be a set of n points in the plane, " > 0, and U > 0. One 
an
ompute an annulus A � S of width at most (1 + ")!�(S; U) in time O(n logn +(n=") logU). sarverify new running time!iel  �9



An Approximation Algorithm in Any Dimension 10We next modify the algorithm Approx Shell so that it produ
es in all 
ases ashell 
ontaining S of width at most (1 + ")!�(S).Lemma 3.5 For U > 6 we have!�(S; U) � !�(S) + 8 � diam(S)U :
u a b 
 qlr V Wp �

Figure 4: Constru
tion for the proof of Lemma 3.5.Proof: borCan someone �x the Ipe Figure 4 as follows: move a and b down a bit. Move  �W outside of the big 
ir
le. In fa
t, maybe even extend the two rays out of u past thebig 
ir
le.is Let A� be a minimum-width shell 
ontaining S, with 
enter p and width!� = !�(S). Put � = diam(S). It suÆ
es to 
onsider the 
ase !�(S; U) 6= !�(S), sowe have rmid(p) > U�.Let V be a 
ir
ular 
one 
entered at p, 
ontaining S, and having the smallestopening angle. Let V = V \ A�. Sin
e rmid(p) > 6�, V spans less than a halfspa
e.Let � be the ray emanating from p along the axis of symmetry of V; see Figure 4. Letb and 
 be the points where � meets the inner and outer spheres of A�, respe
tively.Let u be a point on the segment pb at distan
e r = U�=2 from b. Let W be thesmallest 
ir
ular 
one 
entered at u, with axis of symmetry along � and 
ontainingV . Let � be the (d� 2)-sphere formed by interse
ting �W with the sphere of radiusr 
entered at u, and let a and l denote the 
enter and radius of �, respe
tively (seeFigure 4). Consider the portion of W lying on the same side as p and u of thehyperplane through 
 and orthogonal to �, and let R denote the maximum distan
efrom u to a point in this portion. The shell A0 
entered at u with radii r and R,en
loses V and thus also 
overs S. We now estimate !(u) by obtaining an upperbound on the width of A0. 10



An Approximation Algorithm in Any Dimension 11Let q be the point on V at distan
e R from u, as shown in Figure 4. We have!(u) � !� + d(
; q). However, d(u; a) = pr2 � l2 andd(a; b) = r �pr2 � l2 = l2r +pr2 � l2 � l2r :By similarity, we have d(
; q) = d(a; b)r + !�d(u; a) :Note that !� < � < r=3 and that l � � = 2r=U � r=3. To see the latterinequality, proje
t S 
entrally, towards u, to the sphere Æ of radius r about u. Theimage Ŝ of S falls inside the 
ap Æ\W, whi
h, by 
onstru
tion, is a smallest 
ap on Æen
losing Ŝ start (indeed, if Æ \W is not minimal, then V 
an be also shrunk  �Chgdown, whi
h 
ontradi
ts its minimality). end  �borI do not believe it as written. I do not see a 
lean way of �xing it. Talk to me ifinterested to know what I am talking about. The ref is right!is Sin
e the proje
tion doesnot in
rease the distan
es between points, the diameter of Ŝ is at most �, whi
h iseasily seen to imply that l � �. This implies that d(u; a) = pr2 � l2 � rq1� 19 �r=2. Hen
e, we have borWould 
hanging r=2 to 2r=3 and then 2r to 4r=3 get a 4 instead  �of 8 in the lemma? Or did I make a mistake anywhere? Should we bother?isd(
; q) � l2r � 2rr=2 = 4l2r :Putting things together,d(b; q) = !� + d(
; q) � !� + 4l2r � !� + 4�2r� !� + 4�2U�=2 = !� + 8�U :Note that rmid(u) � r + d(b; q)� !�2 � r + !�2 + 8�U < 3r2 + 8�U= ��3U4 + 8U� < U ��:Hen
e !�(S; U) � w(u) � !� + 8�U , as asserted. 2Corollary 3.6 Let " > 0, U > 6 be two positive 
onstants. One 
an 
ompute in timeO��(n="d�2) logn+ n="d�1� logU� or O(n="d logU), a shell of width at most(1 + ") �!�(S) + 8�U �that 
ontains S, where � = diam(S). 11



An Approximation Algorithm in Any Dimension 12Finally, we des
ribe the general approximation algorithm. Let Approx Diam(S)be the pro
edure that 
omputes in linear time a p3-approximation �0 of �(S) =diam(S) (see [20℄ or the dis
ussion at the beginning of the proof of Lemma 3.2).Algorithm Approx Shell 2 (S, ")! = �0 = Approx Diam (S); !old =1;while ! < !old=2 doU = 50p3�0" � 1! ;A(p) = Approx Shell(S, U , "=8);!old = !; ! = !(p);end whilereturn A(p);Theorem 3.7 Given a set S of n points in Rd and a parameter 0 < " < 1, Ap-prox Shell 2 
omputes a shell of width at most (1 + ")!�(S). With an appropriateoptimization of the 
alls to Approx Shell, the running time is eitherO� n"d log� �!�(S)"�� or O� n"d�2 �logn + 1"� log� �!�(S)"��:Proof: If !�(S) = 0, the algorithm terminates after the �rst iteration. Otherwise,it eventually terminates, as the positive width returned in ea
h 
all de
reases by atleast a fa
tor of two, but is no smaller than the optimum width !�(S).Suppose the while loop is exe
uted m times. Let !i; Ui be the values of ! and U
omputed in the i-th iteration of the loop. Then, putting !� = !�(S),!m � (1 + "=8)!� + (1 + "=8)8�Um� (1 + "=8)!� + (1 + "=8) 8�50p3�0=(!m�1")� (1 + "=8)!� + (1 + "=8)4"!m�125� (1 + "=8)!� + 9"!m25 ;by Lemma 3.5, and sin
e wm � wm�1=2. Thus,!m � 1 + "=81� 9"=25!� � (1 + ")!�:Note that for all i < m we have !i < �0p32i . Hen
e, !� � !m�1 � �0p32m�1 , implying thatm = O(log �!� ) and Um = O(�=(!�")). 12



Approximation Algorithms in the Plane 13Note that the i-th 
all to Approx Shell (exe
uted, say, by the �rst algorithm ofTheorem 3.3) 
onstru
ts a tiling of Ci = C(o; (2Ui + 2)�), and 
omputes E(S;C) forea
h 
ube C in this tiling. By modifying the algorithm so that it 
omputes E(S;C)only for the new 
ubes C in the tiling (that is, ignoring 
ubes that are 
overed by
ubes produ
ed in earlier iterations), it follows that the running time of the i-thiteration 
an be improved to O� n"d�1 + log UiUi�1��; for i = 2; : : : ; m. Overall, therunning time of the algorithm is thusO n"d logU1 + mXi=2 n"d�1 + log UiUi�1�!= O� n"d (m+ logUm)� = O� n"d log �!�"�:The other time bound follows if we exe
ute Approx Shell using the se
ondalgorithm of Theorem 3.3. 24 Approximation Algorithms in the PlaneLet S be a set of n points in the plane. We �rst present an O(n logn)-time algorithmthat 
omputes an annulus 
ontaining S whose width is at most 2!�. We then des
ribean algorithm that, given a parameter " > 0, 
omputes in O(n logn + n="2) time anannulus 
ontaining S whose width is at most (1 + ")!�.4.1 A 2-approximation algorithmWe �rst 
ompute the width width(S) of S (i.e., the minimum distan
e between apair of parallel lines that 
ontain S between them). Next, we 
ompute a diametralpair of S, i.e., a pair p; q 2 S su
h that d(p; q) = diam(S) � maxp0;q02Sd(p0; q0).borIs this the only pla
e where we use � to denote de�nition?is Both of these steps  �take O(n logn) time. borShould we 
ite an
ient width or diameter algorithms?is Let `  �be the perpendi
ular bise
tor of pq. We 
ompute VorN(S; `) and VorF (S; `), mergethe verti
es of the two diagrams into a single sorted list V , and 
ompute the pointv� that minimizes !(v) over all v 2 `. The latter stages 
an be done in O(jV j) timebe
ause, between any pair of su

essive points of V , !(v) 
oin
ides with the di�eren
eof distan
es to two �xed points of S borrephrasedis . If width(S) � !(v�), we return  �A(v�); otherwise, we return a strip of width width(S) that 
ontains S. The algorithmobviously returns an annulus that 
ontains S, and it runs in O(n logn) time.13



Approximation Algorithms in the Plane 14Theorem 4.1 The width of the annulus 
omputed by the above algorithm is at most2!�. That is, minf!(v�);width(S)g � 2!�:Remark 4.2 An easy 
al
ulation, whi
h is based on area 
onsiderations and usesthe fa
t that pq is a diameter, shows that S 
an be 
overed by a strip of width atmost 2width(S) and bounding lines parallel to pq. Therefore, !(v�) � 2width(S),whi
h, in view of Theorem 4.1, implies that !(v�) � 4!�, so that skipping the width
omputation in the algorithm gives a 4-approximation of !�.Let � = diam(S). Let CO and CI be the outer and inner 
ir
les of an annulus A�of width !� that 
ontains S, and let 
 be the 
enter ofA� (we 
an 
learly assume that 
is not at in�nity). Let p; q be the diametral pair 
omputed by the algorithm. Withoutloss of generality, we 
an assume that 
 is the origin, p = (0; 1), 1 = d(
; p) � d(
; q),and x(q) � 0 (see Figure 5). Let D be the 
ir
le of radius d(p; q) = � 
entered at p.Lemma 4.3 If � � 1, then S in 
ontained in a horizontal strip of width at most!� +�2=2.
IC

CO

D

a h

h-

+

c

ba’

q

p

Figure 5: The minimum-width annulus and the strip de�ned by h�; h+.Proof: Let a be the topmost point of CO. Sin
e � � 1, 
 62 int(D), whi
h implies thateither D lies fully above CI (i.e., the horizontal line passing through the topmost pointof CI stri
tly separates D and CI) or �D and CI interse
t at two points with positivey-
oordinates; the 
ase in whi
h �D and CI tou
h 
an be handled by essentially thesame argument. The �rst situation is impossible: sin
e S � D, we 
an grow CI andstill have S lie in the shrunken annulus, 
ontrary to the minimality of A�. Let b be14



Approximation Algorithms in the Plane 15the interse
tion point of �D and CI lying to the right of the y-axis. Let h�; h+ be thehorizontal lines passing through b and a, respe
tively. Sin
e S � A� \ D, the stripbounded by h�; h+ 
ontains S; see Figure 5. Let a0 be the interse
tion point of h�and the y-axis. Thend(a0; 
) = d(
; b) 
os(℄b
p)= d(
; b)d(p; 
)2 + d(
; b)2 � d(p; b)22d(p; 
)d(
; b)= 1 + r2I ��22 ;by the law of 
osines, where rI is the radius of CI . Therefore the width of the strip isd(a; 
)� d(a0; 
) = rI + !� � 1 + r2I ��22= !� + �22 � (1� rI)22 � !� + �22 : 2
CO

I

D

C
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Figure 6: The minimum-width annulus and the 
ir
le Cpq.Hen
e, if � � 1 and !� � �2=2, the algorithm 
omputes an annulus (that is, astrip) of width at most 2!�. We now assume that either � > 1 or !� < �2=2.Let Cpq be the 
ir
le that passes through p and q and whose 
enter � lies on they-axis; see Figure 6. We will show that all points of S lie within distan
e !� from Cpq,whi
h implies that the annulus 
entered at � with the inner radius d(�; p)� !� andthe outer radius d(�; p) + !� 
ontains S. Sin
e � lies on the perpendi
ular bise
tor15



Approximation Algorithms in the Plane 16of pq, the thinnest annulus that the algorithm 
omputes is 
ertainly no wider thanA(�), i.e., its width is at most 2!�.Sin
e d(
; p) � d(
; q), Cpq lies inside the 
ir
le passing through p and 
enteredat 
, and therefore it also lies inside CO. But Cpq may interse
t CI (as in Figure 6).Let � � Cpq be the 
ir
ular ar
 from p to q in the 
lo
kwise dire
tion. A simple
al
ulation shows that the distan
e from 
 to the points of � de
reases monotoni
allyalong �. Sin
e p; q 2 A�, the entire ar
 � lies inside A�.Lemma 4.4 If � > 1 or !� < �2=2, then ℄pq
 < �=2.Proof: If � > 1, then 
 2 int(D). We then have ℄pq
 < ℄pqm < ℄tqm = �=2,where bor\m" is not on the pi
ture so asking the reader to 
onsult it is kind of oddis m  �is the bottommost point of D; 
onsult Figure 6. Next, assume that !� < �2=2. Sin
ed(
; p) = 1, d(p; q) = �, and 1 � d(
; q) � 1� !�, we obtain
os(℄pq
) = d(p; q)2 + d(
; q)2 � d(
; p)22d(p; q)d(
; q)= �2 + d(
; q)2 � 12�d(
; q)� �2 + (1� !�)2 � 12�= �2 � 2!� + !�22�> 0:The last inequality follows from the assumption that !� < �2=2: This 
ompletes theproof of the lemma. 2We now prove that for any point z 2 S, the distan
e d(z; Cpq) between Cpq and z isat most !�. We will prove the 
laim for points with positive x-
oordinates; the sameargument applies to points with negative x-
oordinates. Let � be the interse
tionpoint of Cpq with the ray emanating from � in dire
tion ~�z; see Figure 6. Thend(z; Cpq) = d(z; �).If z 2 int(Cpq), then let � be the interse
tion point of Cpq with the ray emanatingfrom z in dire
tion ~
z (see Figure 7); otherwise, let � be the interse
tion point of Cpqwith the ray emanating from z in dire
tion ~z
. The point � exists sin
e 
 lies insideCpq, as ℄pq
 < �=2. Sin
e � lies on the line passing through z and the 
enter of Cpq,i.e., � is the nearest point on Cpq from z, d(z; �) � d(z; �).Lemma 4.5 d(z; �) < !�. 16



Approximation Algorithms in the Plane 17
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Figure 7: Illustration of the proof of Lemma 4.5. (i) z0 2 D[a; q℄, (ii) z0 62 D[a; q℄.Proof: We will prove that � lies in the annulus A�. Let z0 be the interse
tion pointof D with the ray ~
z. borI am 
onfused. Why is there only one su
h interse
tion? Aren't  �there always two and you always take the se
ond one? Help!is For two points x; y 2 D,let D[x; y℄ � D denote the 
ir
ular ar
 from x to y in the 
lo
kwise dire
tion. Let tbe the topmost point of D. There are two 
ases to 
onsider:Case (i) z0 2 D[t; q℄. By Lemma 4.4, ℄pq
 < �=2, therefore D[t; q℄ lies in the wedgeformed by the positive y-axis and the ray ~
q. This in turn implies that � 2 �irrespe
tive of whether z lies inside or outside Cpq; see Figure 7(i). As notedearlier, � � A�, so � 2 A�, as 
laimed.Case (ii) z0 62 D[t; q℄. Note that q is an interse
tion point of 
ir
les D and Cpq andtheir se
ond point of interse
tion is the mirror image of q on the other side of y-axis. Therefore the portion ofD from q to its bottommost point in the 
lo
kwisedire
tion lies inside Cpq. Sin
e z0 has positive x-
oordinate and z0 62 D[t; q℄, z0lies on the portion borOnly if z0 is the SECOND interse
tion point!is of �D inside  �Cpq. Therefore � lies after z0 on the ray ~
z (see Figure 7(ii)) andrI � d(
; z) � d(
; z0) < d(
; �) < rO;where the last inequality follows from the fa
t that Cpq � int(CO). This impliesthat � 2 A�, as desired.We thus have d(z; �) < !�. 2Lemmas 4.3 and 4.5 imply the theorem.
17



Approximation Algorithms in the Plane 184.2 A (1 + ")-approximation algorithmIn this subse
tion, we present a (1 + ")-approximation algorithm for the minimum-width annulus. The algorithm is a 
ombination of the approximation te
hniquesdeveloped in the previous subse
tions.Algorithm Planar Approx Shell (S, ")1. Run the 2-approximation algorithm of Theorem 4.1. Let A0 be the resultingannulus. If the width !0 of A0 is 0 then return A0.2. Compute the nearest- and farthest-neighbor Voronoi diagrams VorF (S);VorN(S),in O(n logn) time.3. Compute, in O(n logn + (n=") logU) time, an annulus A00 of width � (1 +"=2)!�(S; U), using the algorithm of Theorem 3.4, with U = 10000=". (EitherA00 is the required "-approximation, or rmid(A�(S)) > U�(S).)4. Compute, in O(n logn) time, a pair of points p; q 2 S that realize the diameterof S. We assume without loss of generality that p = (�1; 0); q = (1; 0). LetÆ = "!0=20, Let Pp = P (p; Æ; "), Pq = P (q; Æ; "), whereP (z; Æ; ") = nz + (0; Æ)i ��� i = �d40="e; : : : ; d40="eo :See Figure 8.5. For ea
h pair u 2 Pp; v 2 Pq 
ompute the minimum-width annulus whose 
enterlies on the perpendi
ular bise
tor of uv. Using the pre
omputed VorF (S) andVorN(S), this takes O(n) time per pair, as in the algorithm of Theorem 3.3.6. Output the minimum-width annulus among those 
omputed.Theorem 4.6 The width of the annulus output by Planar Approx Shell (S, ")is at most (1 + ")!�(S), and the running time of the algorithm is O(n logn+ n="2).Proof: If rmid(A�(S)) � U�(S), the 
orre
tness and the bound on the running timeare 
onsequen
es of the previous algorithms, so assume that rmid(A�(S)) > U�(S).Let C� be the middle 
ir
le of A�(S), and let 
�; r� denote the 
enter and the radiusof C�, respe
tively. Without loss of generality, assume that 
� lies (far away) belowthe x-axis. Let Ip and Iq denote the segments spanned by the points of Pp and of Pq,respe
tively.We have that !�(S) < �(S)=300 (otherwise, by Lemma 3.5, A00 is the requiredapproximation), whi
h implies that both Ip, and Iq are \short" 
ompared to the18



Approximation Algorithms in the Plane 19
p qC�C C 0u1 v1


 
0
�s w

Figure 8: Proof of 
orre
tness of Planar Approx Shelldiameter of S. Moreover, the radius of the optimal solution is huge (i.e., at least(10000=")�(S)); namely, the se
tor of the optimal annulus that 
ontains S spans avery small angle.  �borWhy exa
tly 
an't it miss?is It is 
lear that C� 
rosses both Ip and Iq, at tworespe
tive points u; v. Let u1 (resp. v1) denote the point of Pp (resp. of Pq) that liesimmediately below u (resp. v). We �rst translate C� downwards, till it �rst hits eitheru1 or v1. Suppose, without loss of generality, that it �rst hits v1. Let C denote thetranslated 
ir
le. Clearly, the 
enter 
 of C lies verti
ally below 
� at distan
e lessthan Æ. In parti
ular, for any s 2 S we have jd(
; s) � d(
�; s)j � d(
; 
�) < Æ. PutD(C; S) = maxs2S d(C; s), and ! = 2D(C; S) and observe that! < 2(D(C�; S) + Æ) = !� + 2Æ � (1 + "=5)!�:Next, shrink C by moving its 
enter from 
 towards v1 while keeping v1 on the 
ir
le,until it also passes through u1. Let C 0 denote the new 
ir
le and let 
0 denote its
enter. See Figure 8.The distan
e from 
 to points on C 0 de
reases monotoni
ally as we traverse C 0from v1 
ounter
lo
kwise until we rea
h the point on C 0 antipodal to v1. Let s beany point of S. The ray � from 
 towards s 
rosses C at a point w and C 0 at a pointw0. We have d(w0; s) � d(w; s)+ d(w;w0) � !=2+ d(w;w0). It easily follows from thepre
eding dis
ussion that d(w;w0) attains its maximum when w0 is near u1, borShould  �we add that the logi
 also works CLOCKWISE of v1, but we do not have far to go?Literally taken, we have no argument for the other side of v1 now!is and this maximumis smaller than 2Æ (the later statement is easy to verify, using the fa
t that the linethrough w and w0 is almost verti
al). This implies that!(
0) � 2D(C 0; S) � ! + 2Æ � (1 + 2"=5)!� � (1 + ")!�:Sin
e 
0 lies on the perpendi
ular bise
tor of u1v1, it follows that the width of theannulus output by the algorithm is at most !(
0) < (1 + ")!�, as asserted. The19



Con
lusions 20bound on the running time is obvious: We have O(1="2) bise
tors to pro
ess, and thepro
essing of ea
h of them takes O(n) time, as noted in the algorithm. 25 Con
lusionsWe presented simple and eÆ
ient approximation algorithms for 
omputing the minimum-width shell 
ontaining a set of points in Rd . Although several approximation algo-rithms were proposed earlier for the planar 
ase, all of them made some assumptionseither on the input points or on the minimum-width annulus. In an earlier versionof this paper [1℄, we also presented the �rst sub
ubi
 algorithm for 
omputing aminimum-width shell 
ontaining a set of points in R3 . The algorithms was fairlyinvolved and mostly interesting as a 
on�rmation that the problem 
an be solved insub
ubi
 time. Sin
e then we have learned that a signi�
antly simpler quadrati
 algo-rithm exists for solving the problem [11℄. It was noti
ed by T. Chan, who also proposesseveral improvements over the approximation algorithms we des
ribed above [11℄.borIs this enough?is  �� Can the running time of our planar approximation algorithm be improved toO(n logn+ 1="2)?� Can the minimum-width shell 
ontaining a set of points in R3 be 
omputed innear-quadrati
 time? borI guess that's settled!is  �� Develop an eÆ
ient as algorithm for 
omputing the minimum-width 
ylindri
alshell 
ontaining a set of points in R3 . borSame here? Doesn't a simple exa
t  �quadrati
 algorithm follow from Timothy's stu�?isReferen
es[1℄ P. K. Agarwal, B. Aronov, S. Har-Peled, and M. Sharir, Approximation and exa
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lidean minimumspanning trees and bi
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rete Comput. Geom., 6 (1991), 407{422. 20
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