
SIAM J. COMPUT. c© 2010 Society for Industrial and Applied Mathematics
Vol. 39, No. 7, pp. 2704–2725

APPROXIMATE HALFSPACE RANGE COUNTING∗

BORIS ARONOV† AND MICHA SHARIR‡

Abstract. We present a simple scheme extending the shallow partitioning data structures of
Matoušek, which supports efficient approximate halfspace range-counting queries in R

d with relative
error ε. Specifically, the problem is, given a set P of n points in R

d, to preprocess them into a data
structure that returns, for a query halfspace h, a number t so that (1− ε)|h∩P | ≤ t ≤ (1+ ε)|h∩P |.
One of our data structures requires linear storage and O(n1+δ) preprocessing time, for any δ > 0,

and answers a query in time O(ε−γn1−1/�d/2�2b log∗ n) for any γ > 2/�d/2�; the choice of γ and δ
affects b and the implied constants. Several variants and extensions are also discussed. As presented,
the construction of the structure is mostly deterministic, except for one critical randomized step, and
so are the query, storage, and preprocessing costs. The quality of approximation, for every query, is
guaranteed with high probability. The construction can also be fully derandomized, at the expense
of increasing preprocessing time.

Key words. geometric algorithms, relative approximations, range searching, range counting,
approximation algorithms, partition trees, shallow partition trees, cuttings, shallow cuttings, hyper-
plane arrangements, geometric sampling

AMS subject classifications. 68P05, 68P10, 68Q25, 68Q87, 68W20, 68W25, 68W40

DOI. 10.1137/080736600

1. Introduction. The problem studied in this paper is approximate range count-
ing. In abstract terms, we are given a range space (X,R), where X is a set of n objects
and R is a collection of subsets of X , called ranges. In a typical geometric setting, X
is a finite subset of some infinite ground set U (e.g., Rd), and R = {R∩X | R ∈ RU},
where RU is a collection of subsets (ranges) of U of some simple shape (such as half-
spaces). To simplify the notation, we do not distinguish between R and RU . The
goal is to preprocess X into a data structure that supports efficient queries of the
following form: Given R ∈ RU , compute a number t such that

(1− ε)|X ∩R| ≤ t ≤ (1 + ε)|X ∩R|.

Here the relative error ε, 0 < ε < 1, is either fixed and available during preprocessing
or not known in advance but specified as part of the query. We refer to such an
estimate t as an ε-approximate count of X ∩R.

Notice that the problem becomes more challenging as |X ∩R| decreases. At the
extreme, when |X ∩ R| < 1/ε, we must produce the count exactly. In particular, we

∗Received by the editors September 29, 2008; accepted for publication (in revised form) January
4, 2010; published electronically May 5, 2010. Work on this paper has been supported by joint
grant 2006/194 from the U.S.-Israeli Binational Science Foundation. A preliminary version of this
work appeared as part of B. Aronov, S. Har-Peled, and M. Sharir, On approximate halfspace range
counting and relative epsilon-approximations, in Proceedings of the 23rd Annual ACM Symposium
on Computational Geometry, Gyeongju, South Korea, 2007, ACM, New York, pp. 327–336.

http://www.siam.org/journals/sicomp/39-7/73660.html
†Department of Computer Science and Engineering, Polytechnic Institute of NYU, Brooklyn, NY

11201-3840 (aronov@poly.edu). This author’s work was supported by NSF ITR grant CCR-00-81964,
NSF grant CCF-08-30691, and NSA MSP grant H98230-06-1-0016.

‡School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute
of Mathematical Sciences, New York University, New York, NY 10012 (michas@post.tau.ac.il). This
author’s work was supported by NSF grants CCF-05-14079 and CCF-08-30272, by grants 155/05
and 338/09 from the Israel Science Fund, and by the Hermann Minkowski–MINERVA Center for
Geometry at Tel Aviv University.

2704

APPROXIMATE HALFSPACE RANGE COUNTING 2705

need to be able to detect without any error the empty ranges, i.e., those satisfying
X ∩R = ∅. Thus approximate range counting, in the above sense, is at least as hard
as range emptiness detection.

We make the standard assumption that the range space (X,R) (or, in fact,
(U,RU)) has finite (i.e., independent of n) VC-dimension δ, which is indeed the case
in many geometric applications; see [10, 19, 25, 27] for definitions and more details.

Epsilon-approximations. A standard and general technique for tackling the ap-
proximate range-counting problem is to use ε-approximations. An (absolute-error)
ε-approximation for (X,R) is a subset B ⊂ X such that, for each R ∈ R,

(1)

∣∣∣∣ |B ∩R|
|B| − |X ∩R|

|X |
∣∣∣∣ < ε.

As shown by Vapnik and Chervonenkis [31] (see also [10, 25, 27]), there always exist
absolute-error ε-approximations of size cδ

ε2 log
δ
ε , where c is an absolute constant. As a

matter of fact, any random sample of these many elements of X is an ε-approximation
with constant probability. More precisely, such a sample of size cδ

ε2 log
δ
ε + c

ε2 log
1
q ,

for a sufficiently large absolute constant c, is an ε-approximation with probability at
least 1 − q. See [10, 11, 19, 26] for more details. This bound was later improved to
cδ
ε2 + c

ε2 log
1
q by Talagrand [30] and by Li, Long, and Srinivasan [22]; see also [16].

Absolute-error ε-approximations are not exactly what is needed for approximate
range counting. That is, suppose we are given such an approximation B. For a range
R ∈ R, we can compute (say, by brute force) |B ∩R| and return |B ∩R| · |X |/|B| as
an estimate of |X ∩R|. By (1), we have

∣∣|B ∩R| · |X |/|B| − |X ∩R|∣∣ < ε|X |, but we
want the error to be at most ε|X ∩R|. If |X ∩R| is large, say, at least |X |/2, we can
replace ε by ε/2 and guarantee the desired relative error. But if |X ∩R| is small, the
error is much larger than we want.

For this reason, we would like to construct a relative-error ε-approximation set
for (X,R), which should be a subset A ⊂ X satisfying, for each R ∈ R,

(2) (1− ε)
|X ∩R|
|X | ≤ |A ∩R|

|A| ≤ (1 + ε)
|X ∩R|
|X | .

However, this “definition” suffers from the same syndrome as the definition of ap-
proximate range counting; that is, as |X ∩ R| shrinks, the absolute precision of the
approximation has to increase. At the extreme, when A∩R = ∅, X ∩R must also be
empty (assuming ε < 1); in general, we cannot guarantee this property unless we take
A = X , which defeats the whole purpose of using small ε-approximations to speed up
approximate counting.

In order to circumvent this issue, we refine the definition as follows: A relative-
error (p, ε)-approximation (or a relative (p, ε)-approximation, for short) is a subset
A ⊂ X that satisfies (2) for each R ∈ R with |R| ≥ pn, where 0 < p < 1 is another
fixed parameter. As noted by Har-Peled [16] (see also [17]), it follows from the result
of Li, Long, and Srinivasan [22] (see also [14, 18, 28]) that there exist subsets with this
property of size cδ

ε2p log
1
p , where c is an absolute constant. As a matter of fact, any

random sample of cδ
ε2p (log

1
p + log 1

q) elements of X is a relative (p, ε)-approximation

with probability at least 1 − q [16, 22]. The construction can also be derandomized,
using the recent technique of Har-Peled [16]; see section 3.1 for more details.

To appreciate the above bound on the size of relative (p, ε)-approximations, it
is instructive to observe that, for a given parameter p, any absolute-error (ε, p)-

2706 BORIS ARONOV AND MICHA SHARIR

approximation A will approximate “large” ranges (of size at least pn) to within rela-
tive error ε, as is easily checked, so it is a relative (p, ε)-approximation. However, the
Vapnik–Chervonenkis bound on the size of A in this case, namely, cδ

ε2p2 log
δ
εp , or even

the improved bound of Li, Long, and Srinivasan and others [22, 30, 16], namely, cδ
ε2p2 ,

is larger by roughly a factor of 1/p than the bound of [22] stated above.
Another related notion, introduced by Brönnimann, Chazelle, and Matoušek [9],

is that of sensitive ε-approximation. Specifically, given a range space (X,R) of finite
VC-dimension δ, a subset A ⊆ X is a sensitive ε-approximation if for every range
R ∈ R we have

∣∣∣∣ |X ∩R|
|X | − |A ∩R|

|A|
∣∣∣∣ ≤ ε

2

((|X ∩R|
|X |

)1/2

+ ε

)
.

As shown in [16, Lemma 6.2.8] and [17, Theorem 2.12], (i) a sensitive ε
√
p-approximation

is also a relative (p, ε)-approximation, and (ii) a random sample of O(δ
(ε′)2 log

1
ε′) ele-

ments of X is a sensitive ε′-approximation with constant positive probability. Com-
bining (i) and (ii) gives a roundabout way of obtaining relative (p, ε)-approximations
with almost the same bound on their size as in [16, 17] (with log 1

p replaced by log 1
εp).

The analysis in [9] also gives an efficient (albeit complicated) deterministic algorithm
for computing sensitive approximations.

The existence of a relative (p, ε)-approximation A provides a simple mechanism
for approximate range counting, in the manner outlined above; that is, for a range R,
count A ∩ R exactly, say, by brute force in O(|A|) time, and output |A ∩ R|·|X |/|A| as
an ε-approximate count ofX∩R. However, this will work only for ranges of size at least
pn. The main contribution of this paper is to show that an appropriate incorporation
of relative (p, ε)-approximations into standard range searching data structures yields
a procedure for approximate range counting that works, quite efficiently, for ranges
of any size.

Exact range counting. The motivation for seeking approximate range-counting
techniques is that exact range counting is (more) expensive. For instance, consider
the classical halfspace range-counting problem [24], which is the exact analogue of the
main specific problem studied in this paper. Here, for a point set of size n in R

d, for
d > 3, the best known algorithm for exact range counting with near-linear storage
guarantees O(n1−1/d) query time [24]. In contrast, our results (reviewed in detail
below) reduce the query cost to roughly O(n1−1/�d/2�) (ignoring the dependence on
ε), about the same cost as that of answering halfspace range emptiness queries [23].
Recall that we cannot do better than that, since halfspace range emptiness is a special
case of our problem.

For completeness, we recall the results of [23] for halfspace range reporting and
emptiness queries, for a set P of n points in R

d, for d ≥ 4 (refer also to Table 1), as
follow:

Halfspace range reporting. P can be preprocessed in deterministic O(n log n) time
into a data structure of size O(n log logn), so that a halfspace range reporting query
can be answered in time O(n1−1/�d/2� logc n+ k), where k is the output size and c is
a parameter depending on the dimension.

Halfspace range emptiness detection. P can be preprocessed in deterministic
O(n1+δ) time, for any δ > 0, into a data structure of linear size, so that a half-
space range emptiness query can be answered in time O(n1−1/�d/2�2c

′ log∗ n), where c′

is a parameter depending on the dimension.

APPROXIMATE HALFSPACE RANGE COUNTING 2707

Table 1

Halfspace range searching results for d > 3; big-O symbol is omitted, k is the number of points
reported in the reporting query, δ > 0 is an arbitrary but fixed constant, γ is an arbitrary constant
in the range (2/�d/2�, 2), and β and b depend on d and γ. We include only data structures with
near-linear space and preprocessing costs.

Problem Storage Preprocessing Query time Source

Reporting n log logn n logn n1−1/�d/2� + k [23]

Emptiness n n1+δ n1−1/�d/2�2O(log∗ n) [23]

Approx. ε−2n logn ε−2n1+δ ε−2n1−1/�d/2�2c
′ log∗ n logn [4]

counting n n1+δ / n logn ε−γn1−1/�d/2� logβ n Theorem 3.1

n n1+δ ε−γn1−1/�d/2�2b log∗ n Theorem 3.2

Note that the best known lower bounds on the exact halfspace range searching
(counting, reporting, or emptiness), as summarized in [2], do not match the best known
algorithms, as listed above, so it is better to compare our approximation results to
those of existing algorithms rather than to lower bounds.

Other notions of approximate range searching. In our approach, the goal is to
approximate the count of points in a range (halfspace, that is) up to some relative
error, but we are not allowed to approximate the range itself. In some recent work
by Arya and coworkers [6, 7, 8], da Fonseca [15], and Chazelle, Liu, and Magen [12],
approximate range counting is interpreted differently, in that one seeks an exact count
in a range that closely approximates the input range, according to some geometric
error measure. The more recent studies also address the case where the ranges to be
approximated are halfspaces.

Alternative recent solutions. Two recent papers address the approximate range-
counting problem and achieve improvements similar to ours. The first result is due
to Aronov and Har-Peled [4], who reduce this problem to range emptiness by per-
forming binary search on the size |X ∩ R| for the given range R, until the desired
relative error is attained. Each decision step in the search is made by accessing
O
(

1
ε2 logn

)
different range emptiness structures on certain random samples of X .

This technique is a general reduction from approximate range searching to range
emptiness testing. In the revised version [4], the algorithm answers a query in time
O
(

1
ε2 logn

)
Qempty(n), whereQempty(n) is the time to answer a range emptiness query.

The storage is O
(

1
ε2 logn

)
Sempty(n), and the preprocessing is O

(
1
ε2 logn

)
Tempty(n),

where Sempty(n) and Tempty(n) are the storage requirements and preprocessing time,
respectively, for the range emptiness data structure. All bounds apply with high
probability. See [4, Theorem 5.6] for details.

Matoušek’s data structure [23] mentioned above, combined with the technique of
[4], yields (see also Table 1) Q(n) = O(ε−2n1−1/�d/2�2c

′ log∗ n logn), S(n) =
O(ε−2n logn), and T (n) = O(ε−2n1+δ), for any δ > 0.

Another approach is presented by Kaplan and Sharir [21], who exploit a general
technique of Cohen [13] for estimating the number of data objects in a range R of a
larger set X . In this approach, one assigns to each data object of X , independently,
a random weight, drawn from an exponential distribution with density e−x; sorts the
objects by their weights into a random permutation; and then finds the minimum
rank in that permutation of the objects in the query range R. As in the technique of
Aronov and Har-Peled, one then repeats this experiment O(1

ε2 logn) times,1 computes

1In both techniques, this is a consequence of using Chernoff bounds to guarantee high probability
of success.

2708 BORIS ARONOV AND MICHA SHARIR

the average μ of the weights of the minimum elements, and approximates |R| by 1/μ.
To apply this machinery to approximate halfspace range counting, one needs a

data structure that preprocesses the given set X of points, and a given random permu-
tation thereof, into a data structure that can answer halfspace-minimum range queries
efficiently: Given a query halfspace h, find the point of X of minimum rank among
those contained in h. Kaplan and Sharir present such structures for halfspaces in R

3

(a revised version [20] extends it to any dimension). The solutions of [20, 21] cater
to the situation where we want fast (say, logarithmic or polylogarithmic) query time,
allowing the storage and preprocessing costs to grow. Specifically, their algorithm
requires O(n�d/2� log2−�d/2�) storage and O(n�d/2� log2−�d/2�) expected preprocessing
time and answers an approximate halfspace counting query in O(ε−2 log2 n) expected
time.

Finally, we mention the recent works of Afshani and Chan [1] and of Har-Peled and
Sharir [17], which give efficient algorithms for approximate halfspace range counting
in two and three dimensions.

Our results. In this paper, we present an alternative, comparably efficient, and
somewhat improved solution for the approximate range-counting problem, focusing
mainly on halfspace ranges in R

d, d ≥ 4. Whereas the algorithm of Aronov and Har-
Peled uses a range emptiness procedure as a black box, we examine the inner workings
of such a procedure (or, more precisely, of a shallow range reporting procedure, which
has comparable performance) and turn it into an approximate counting procedure.
Informally, the range emptiness/reporting data structures of Matoušek [23] consist
of a partition tree, whose nodes store certain canonical subsets of X , and which has
the property that a query with a range that is shallow at a node v (i.e., one that
contains only a few points of the subset stored at v; see below for a more precise
definition) visits only a small number of children of v. When the procedure realizes
that the query visits too many children, it stops and reports that the range cannot be
shallow. For emptiness queries, this immediately implies that the range is not empty.
For reporting queries, one can then afford to perform the reporting by brute force,
knowing that the output size is large enough and thus commensurable with the size
of the subset of X stored at v.

In contrast, our solution exploits the fact that the range is deep (that is, not shal-
low) to invoke an auxiliary mechanism that approximates its size. Our main auxiliary
mechanism is to use a relative approximation, as discussed earlier. In this manner,
we derive two variants of our general approach. The first algorithm uses O(n) storage,
O(n1+δ) preprocessing time, for any δ > 0 (which reduces to O(n log n) for certain
choices of parameters), and answers an approximate halfspace range-counting query
in R

d in time O
(
ε−γn1−1/�d/2� polylogn

)
, where γ can be chosen arbitrarily from the

interval (2/	d/2
, 2); the choice of γ and δ affects the implied constants and the power
of the logarithm in the query time. An important feature of this implementation is
that the storage and preprocessing costs are independent of ε, and the dependence of
the query time on ε is improved over those in the previous approaches.

A slight potential weakness of this solution is that the query time bound, ignoring
its dependence on ε, involves a polylogarithmic factor and is thus comparable with the
overhead term in the bound for Matoušek’s halfspace range reporting query algorithm
[23], whereas the query time in the solution of Aronov and Har-Peled [4] is expressed
in terms of the cost of Matoušek’s halfspace range emptiness query algorithm, which
is O

(
n1−1/�d/2� · 2O(log∗ n)

)
[23]. See Table 1. On the one hand, this replaces the

polylogarithmic factor in our time bound by the smaller factor 2O(log∗ n), but, on the
other hand, in the algorithm of [4] one has to multiply this bound by O

(
1
ε2 logn

)
,

APPROXIMATE HALFSPACE RANGE COUNTING 2709

making the dependence on ε worse.
Nevertheless, our second implementation demonstrates that the fine-tuning done

in [23] to achieve the improved bound for emptiness queries can also be carried out
in our context, leading to an algorithm that uses linear storage and O(n1+δ) prepro-
cessing time for any δ > 0, and answers a query in time O

(
ε−γn1−1/�d/2� · 2O(log∗ n)

)
,

where γ can be chosen anywhere in the same interval as above. This bound compares
favorably with the one in [4], both in terms of the dependence on ε and the logarith-
mic or sublogarithmic factors. Moreover, the storage used by both solutions is O(n),
independent of ε, which is a significant improvement over the previous results.

The general technique that we propose is sufficiently modular so as to support var-
ious extensions and variants. One interesting variant is a data structure that answers
efficiently halfspace range-minimum queries, with respect to a random permutation
of the input set, of the sort that is needed for the technique of [13, 20, 21] described
above (see section 3.5). Another variant is a data structure where ε need not be
prespecified and can be part of the query; in contrast, the “competing” structures
mentioned above have to be built with the prior knowledge of the value of ε. Another
recent application of our general approach was recently described by Sharir and Shaul
[29].

The analysis of our implementations involves somewhat tedious calculations. In
the hope of making the paper more readable, we delegate these calculations to the
appendix.

2. The general technique. In this section we describe, in somewhat more
detailed but still high-level terms, our general technique. In the next section we
present two concrete implementations of this machinery, resulting in two algorithms
with similar, albeit slightly different, performance bounds, as stated above. As already
mentioned, hereafter we focus on the case of halfspace ranges in R

d, d ≥ 4, rather
than more general range spaces. To conform with the notation in the existing range-
searching literature, we henceforth use P rather than X to denote the input point
set.

A note on the randomized behavior of our algorithms. Before beginning the de-
scription of our technique, it is important to clarify a critical issue concerning the
randomization that we use. The approach is essentially to construct a shallow par-
tition tree on P , in the style of Matoušek [23] (see below), and then attach to each
node v of the tree a relative (pv, εv)-approximation of the set Pv associated with v,
for appropriate parameters pv, εv. Constructing these sets deterministically is feasi-
ble, using the procedure in [9], but this construction is fairly complicated and causes
some degradation in the preprocessing cost. We therefore prefer to construct these ap-
proximations as random samples, of the appropriate size, from the respective sets Pv.
Verifying that such a sample is indeed a relative (pv, εv)-approximation is a nontrivial
task which we do not know how to perform efficiently. So we adopt an approach in
which we just sample the subsets and trust each of them to be an approximation of
the right kind. While this will be the case on average, some of these samples may fail
to satisfy this property, and we cannot guarantee high probability for overall success
(i.e., that all samples are approximations of the desired kind) unless we increase the
sample sizes, again causing some degradation in the algorithm performance.

Nevertheless, as we show later, in section 3.3, things work well, with high prob-
ability, even in our lax and “careless” approach. Specifically, as we will show, even
though some of the samples may not produce the desired level of accuracy, the exces-
sive errors that they produce tend to cancel each other and result in an overall good

2710 BORIS ARONOV AND MICHA SHARIR

accuracy, and this holds, with high probability, for every query halfspace.
The details of this analysis are technical and somewhat involved, so we prefer to

present the algorithm under the assumption that all our samples are indeed relative
approximations with the desired parameters, and only later resolve the potential dis-
crepancy between this ideal situation and our actual implementation. Of course, this
becomes a nonissue if one is willing to invest a bit more in preprocessing, storage, and
query costs, so as to ensure, either deterministically or with high probability, that all
the samples are indeed relative approximations with the correct parameters.

We now present the high-level version of our algorithm. We recall the following
result of Matoušek, where a t-shallow halfspace is one that contains fewer than t points
of the set P .

Theorem 2.1 (partition theorem for shallow halfspaces [23]). For any positive
integer parameter r < n there exists a partition of P into r/2 ≤ k ≤ r subsets
P1, P2, . . . , Pk, where, for each i, n/r ≤ |Pi| ≤ 2n/r and Pi is enclosed in a simplex
Δi such that any hyperplane that bounds an (n/r)-shallow halfspace crosses at most
μ(r) = O(r1−1/�d/2�) simplices Δi in four and higher dimensions, and at most μ(r) =
O(log r) simplices in the plane and in 3-space. Such a partition can be constructed
in time O(n1+δ), for any δ > 0. Moreover, there exists a constant ξ = ξ(d) > 0, so
that if r ≤ nξ, then the partition and the bounding simplices can be constructed in
O(n log r) time.

For a fixed set P and a choice of parameter r at every interior node (which may
vary from node to node), Theorem 2.1 induces, in a natural way, a tree T = T (P),
called a shallow partition tree of P , which is constructed as follows. Its root stores the
entire P and some bounding simplex Δ of P . The root has k children, each storing
one of the sets Pi and its bounding simplex Δi. Then the theorem is used recursively
on each child, possibly with different values of r, to construct the grandchildren of
the root, and so on, stopping when we reach nodes whose associated sets have size
smaller than some specific threshold.

Denote by Pv the subset of P stored at a node v of T , and by rv the parameter
r used when applying Theorem 2.1 to Pv. Our proposed approximate range-counting
data structure is, effectively, an augmented shallow partition tree. We store some
additional information at each node v; in the main implementations that we present,
this is a relative (1/rv, ε/2)-approximation Av of Pv. Querying with a halfspace h
proceeds as follows: When visiting a node v, if the boundary ∂h of h meets many
(more than μ(rv)) simplices of the set Sv := {Δi} of the partition at v, or if it fully
contains one of these simplices, it cannot be (|Pv|/rv)-shallow with respect to Pv; that
is, |h ∩ Pv| ≥ |Pv|/rv. This makes it easier to answer an approximate range-counting
query for Pv, e.g., by counting h ∩ Av instead. Otherwise, we recursively obtain an
ε-approximate count at all the children of v whose simplex is crossed by ∂h, and
return the sum of the answers, which is easily seen to be an ε-approximate count of
|h ∩ Pv|. See Algorithm 1 for the pseudocode.

It remains to specify, for each node v, the parameter rv used at v, the thresh-
old n0(ε) for the size of Pv below which v becomes a leaf, and the following three
subroutines:

1. the implicit subroutine (that we call SearchSim(h, v)) used in lines 3 and 6
of the algorithm to determine how many, and which, of the simplices of Sv are met
by the hyperplane ∂h and whether any of the simplices of Sv are contained in h;

2. procedure LeafNodeApxCount(h, v, ε), which directly estimates the count
for h at a leaf v of the tree; and

APPROXIMATE HALFSPACE RANGE COUNTING 2711

Algorithm 1. Pseudocode of our main query algorithm.

1: function ApxCount(h, v, ε)
� Halfspace h, node v of an augmented shallow partition tree, and ε > 0.

2: if v is a leaf node then return LeafNodeApxCount(h, v, ε).

� S = Sv is the set of simplices associated with children of v.
� r = rv is the partition parameter at v.

3: if ∂h crosses at most μ(r) simplices of S and no simplex is fully contained in
h

4: then � Shallow halfspace, recurse.
5: answer ← 0.
6: for all children ξ of v whose bounding simplex is crossed by ∂h do
7: Add ApxCount(h, ξ, ε) to answer.

8: return answer.
9: else � Deep halfspace, answer locally.

10: return DeepApxCount(h, v, ε).

3. procedure DeepApxCount(h, v, ε), which estimates the count of a deep
range h at an interior node v, using the relative approximation set or any other
appropriate auxiliary structure.

Let Qsim(k), Qleaf(n, ε), and Qdeep(n, ε) be upper bounds on the running times
of these three respective operations, where k (with r/2 ≤ k ≤ r) is the number of
simplices to test against, n is the size of the point set associated with the current
node, and ε is the approximation parameter. We obtain the following recurrences
for the query time Q(n, ε), storage S(n, ε), and preprocessing time T (n, ε) of our
data structure. The parameter r = rv is the one used at the current node of the
tree; in our implementations it is a function of n (and possibly ε). For simplicity,
we use k = r in the recurrences, for the maximum possible number of children of
a node (but our analysis also applies to any valid value of k). We use Ssim, Tsim

(Sleaf, Tleaf and Sdeep, Tdeep) to denote the storage and preprocessing time required
by SearchSim (LeafNodeApxCount and DeepApxCount, respectively). Tpart

is the time needed to construct the partition at v.

Q(n, ε) ≤
{
Qsim(r) + max{Qdeep(n, ε), μ(r)Q(2n/r, ε)} if n > n0(ε),

Qleaf(n, ε) otherwise,
(3)

S(n, ε) ≤
{
Ssim(r) + Sdeep(n, ε) +

∑r
i=1 S(ni, ε) if n > n0(ε),

Sleaf(n, ε) otherwise,
(4)

and

T (n, ε) ≤
{
Tpart(n, r) + Tsim(r) + Tdeep(n, ε) +

∑r
i=1 T (ni, ε) if n > n0(ε),

Tleaf(n, ε) otherwise,
(5)

where ni ≤ 2n/r for each i and
∑r

i=1 ni = n. Note that, since Tsim, Ssim, and Qsim

are the respective preprocessing time, storage of, and query time in a set of O(r)
simplices, they are functions of r only.

3. Two concrete implementations. To recap, in order to obtain concrete im-
plementations of the data structure, we have to supply specific choices of the parame-
ters rv and n0(ε), as well as of the three routines SearchSim, LeafNodeApxCount,

2712 BORIS ARONOV AND MICHA SHARIR

and DeepApxCount.
There are a number of ways to choose the parameters and to implement these

procedures. We focus on two of them; the first is simpler, more naive, and has slightly
poorer performance, while the second is more sophisticated with slightly better per-
formance. Roughly speaking, the first implementation has performance comparable
with that of the halfspace range reporting procedure of [23], whereas the second im-
plementation has performance comparable with that of the halfspace range emptiness
procedure of [23].

3.1. First implementation. Recall that we are implementing approximate
range-counting queries for halfspaces in R

d, where d > 3. For each node v, set
nv := |Pv|. Here we choose rv := nα′

v , for some 0 < α′ < α, whose concrete choice will
be discussed below; α := 1−1/	d/2
 denotes the exponent appearing in the definition
of μ(r) in Theorem 2.1. We store at v a relative (1/rv, ε/2)-approximation Av, of size
crv
ε2 log rv, for some constant c = c(d) > 0, which we obtain by taking a random sam-
ple of these many points from Pv. As follows from [16, 22], such a sample is a relative
(1/rv, ε/2)-approximation of the desired kind with probability at least 1−1/rbv, where
b = b(c) is a linearly increasing function of c. In section 3.3 we will see how to boost
the overall success probability, making the failure probability polynomially small in n.
For now, we simply assume that Av is indeed an approximation of the required type
and size.

In this implementation, we use brute force for two of the three subroutines. We
implement SearchSim by simply iterating over all simplices and selecting those that
∂h crosses, stopping after collecting more than μ(rv) of them or after encountering
a simplex that is fully contained in h. The cost is O(rv) = O(nα′

v). We implement
LeafNodeApxCount by iterating over Pv and counting h∩Pv explicitly, at the cost
of O(nv).

We implement DeepApxCount recursively, by calling ApxCount itself, on an
auxiliary data structure constructed for Av as the input set, with error parameter
ε/3. If we were to count h∩Av exactly, we would have returned |h ∩Av| · nv/|Av| as
an (ε/2)-approximate count of h ∩ Pv. The recursion, though, returns only a relative
(ε/3)-approximation of that latter count, which is thus an ε-approximation of the
desired count,2 for ε < 1, as is easy to verify (cf. (2)).

In order for this implementation to work efficiently, we need to impose some
restrictions on the choice of parameters. Specifically, we first insist, for technical
reasons that arise in the analysis of the storage requirements (see the appendix), that

|Av| = crv
ε2

log rv ≤ nv

k log3 lognv

,

for some constant k. Intuitively, this requires that the size of Av be small enough
(albeit not drastically smaller) compared to that of Pv. By the choice of rv, this is
equivalent to n1−α′

v ≥ kc
ε2 lognα′

v log3 lognv, which holds if we choose nv ≥
(c′
ε2 log

1
ε log

3 log 1
ε)

1/(1−α′) for an appropriate multiple c′ of c. We thus set

(6) n0(ε) :=

(
c′

ε2
log

1

ε
log3 log

1

ε

)1/(1−α′)

.

2Recall our convention of assuming that all our samples are indeed relative approximations of the
desired kind. We will continue to highlight other steps of the algorithm and its analysis which make
this assumption; they all work correctly, with high probability, in view of the analysis in section 3.3.

APPROXIMATE HALFSPACE RANGE COUNTING 2713

Our goal is to make the query time satisfy

(7) Q(n, ε) ≤ F (ε)nα logβ n,

for some parameter β and function F (ε) whose specific choices will be discussed
shortly. In particular, we want Qleaf(n, ε) to satisfy this bound. (The bound on Qdeep

will follow from the recursion—see below.) That is, we require

n0(ε) ≤ c′′F (ε)n0(ε)
α logβ n0(ε),

where c′′ ≥ 1 is some constant. This will hold by simply requiring n0(ε) = F (ε)n0(ε)
α;

that is,

(8) F (ε) := n0(ε)
1−α =

(
c′

ε2
log

1

ε
log3 log

1

ε

)(1−α)/(1−α′)

.

Recall that 0 < α′ < α = 1− 1/	d/2
. Hence F (ε) is approximately of the form 1/εγ,
where γ := 2(1 − α)/(1 − α′) satisfies 2/	d/2
 < γ < 2. Note that γ approaches its
upper (resp., lower) bound as α′ approaches α (resp., 0).

Query time. Once α′ is fixed, the recurrence for Q(n, ε) becomes

Q(n, ε) ≤
{
O(nα′

) + max
{
Q
(

n
k log3 logn

, ε
3

)
, μ(nα′

)Q(2n1−α′
, ε)
}

if n > n0(ε),

O(n) otherwise.

We show in the appendix that the recurrence solves to the bound in (7), for an
appropriate choice of β = β(α′).

Storage. The storage bound S(n, ε) satisfies the recurrence3

S(n, ε) ≤
{
O(nα′

) + S
(

n
k log3 logn

, ε
3

)
+
∑nα′

i=1S(ni, ε) if n > n0(ε),

O(n) otherwise,
(9)

where ni ≤ 2n1−α′
for each i and

∑nα′

i=1 ni = n. We show in the appendix that the
solution of the recurrence is S(n) = O(n), with the implied constant independent of ε.
(As will follow from the analysis in the appendix, the factor log3 logn can be replaced
by any factor of the form log2+δ logn, for any positive constant δ.)

Preprocessing. In our implementation, Tsim(k) = O(k) and Tleaf(n, ε) = O(n).
For Tpart(n, r), we use the bounds in Theorem 2.1, which depend on how small α′

is. In general, Tpart(n, r) = O(n1+δ) for any δ > 0, and, if α′ is smaller than some
threshold α′

0, implied by Theorem 2.1, Tpart(n, r) = O(n log r) = O(n log n). The
resulting recurrence for T (n, ε) is thus

T (n, ε) ≤
⎧⎨
⎩
{

O(n1+δ)
O(n log n)

}
+ T

(
n

k log3 logn
, ε
3

)
+
∑nα′

i=1 T (ni, ε) if n > n0(ε),

O(n) otherwise,

where ni ≤ 2n1−α′
for each i and

∑nα′

i=1 ni = n, and we choose the O(n1+δ) version if
α′ > α′

0 and the O(n log n) version otherwise. It is straightforward to verify that the

3Again, recall that summations are written, for simplicity, with the maximum possible number
of child nodes.

2714 BORIS ARONOV AND MICHA SHARIR

solution of this recurrence is

T (n, ε) =

{
O(n1+δ) if α′ > α′

0,

O(n log n) otherwise,

with implied constants of proportionality independent of ε.
We thus have our first main result, with all the ingredients in place (and with the

details supplied in the appendix), except for the high probability assertion, for which
see section 3.3.

Before stating the theorem, we emphasize the role of the “hidden parameter” α′. It
can be chosen within the range 0 < α′ < α = 1−1/	d/2
. As α′ decreases, γ decreases
(thus making the factor depending on ε smaller), while β increases (thus making the
polylogarithmic factor larger). We therefore obtain a trade-off between these two
factors. In addition, bringing α below the threshold α′

0 reduces the preprocessing
time bound from O(n1+δ) to O(n log n).

Another point to emphasize is that, in the statement of Theorems 3.1 and 3.2,
the bounds on the query cost, storage, and preprocessing, and on the quality of the
approximation, are “almost” (a) deterministic and (b) worst-case. The bounds hold
with high probability. The only randomization used in our algorithm is the sampling
of the various relative approximation sets.

Theorem 3.1. We can preprocess a set P of n points in R
d, with a prespecified

error parameter ε, 0 < ε < 1, into a data structure of size O(n), independent of
ε, so that, with high probability, for any query halfspace h, we can obtain a relative
ε-approximate count of h∩P , in time O(ε−γnα logβ n), where α = 1−1/	d/2
, where
γ can be chosen anywhere in (2/	d/2
, 2), and where β is a constant that depends on
γ and increases when γ decreases.

The data structure is constructed deterministically, except for the random sam-
plings that produce the various relative approximations. The (worst-case) preprocess-
ing cost is O(n1+δ), for any δ > 0. It reduces to O(n logn) when γ is chosen suf-
ficiently small, with an appropriate calibration of parameters, thereby increasing β.
These bounds are also independent of ε.

Remarks. 1. We note that the construction of the relative approximation sets
can also be derandomized, as mentioned in the introduction. We give here only a
brief sketch of such a construction, since, in our opinion, the randomized construc-
tion, combined with the high-probability analysis of section 3.3, is much simpler and
cleaner. The idea of the derandomized construction is to use the deterministic al-
gorithm of Brönnimann, Chazelle, and Matoušek [9] to construct a sensitive (ε

√
p)-

approximation A and then argue, as in [16, Lemma 6.2.8] and [17, Theorem 2.12], that
the resulting set is also a relative (p, ε)-approximation. Such a construction takes time
linear in n and polynomial in 1

ε
√
p .

2. We note that, although the storage and preprocessing time bounds asserted in
Theorem 3.1 are independent of ε, there is nevertheless some implicit dependence on
ε, in that n has to be sufficiently large, as a function of ε, to make these bounds hold.
This remark also applies to our second implementation; see Theorem 3.2 below.

3.2. Second implementation. We present the second data structure again,
ignoring the issue of high success probability, which is handled in section 3.3.

This implementation follows the approach of Matoušek [23] for answering half-
space emptiness queries. We choose rv = nv/ log

ρ nv, for some parameter ρ > 2
whose value will be fixed below. The partition tree has depth O(log∗ n). However,

APPROXIMATE HALFSPACE RANGE COUNTING 2715

efficient implementation of the three subroutines is now more challenging, because rv
is almost as large as nv.

Our second implementation proceeds as follows. The (1/rv, ε/2)-approximation
Av at a node v is now of size

c1rv
ε2

log rv =
c1nv

ε2 logρ nv
log

nv

logρ nv
,

for some absolute constant c1. We now want this size to be at most nv/ lognv. That
is, we require that, for n ≥ n0(ε),

c1n

ε2 logρ n
log

n

logρ n
≤ n

logn
,

or logρ n ≥ c1
ε2 log

2 n, which holds if we choose

(10) n0(ε) := 2

(
c′
ε2

)1/(ρ−2)

,

for an appropriate constant c′ > 0. (Note that the dependence of n0(ε) on 1/ε can be
“controlled” by increasing the value of ρ. However, as we will shortly notice, there is
a limit on how large we can take ρ to be.)

We also note that the construction can continue only as long as logρ n < n. That
is, we need to ensure that

logρ n0(ε) ≤ n0(ε),

or that (
c′

ε2

)ρ/(ρ−2)

< 2

(
c′
ε2

)1/(ρ−2)

.

For x :=
(
c′
ε2

)1/(ρ−2)
, the above requirement is that xρ < 2x, and it holds if x =

Ω(ρ log ρ) (with an appropriate constant of proportionality) or

c′

ε2
= Ω((ρ log ρ)ρ−2).

That is, it is sufficient to ensure that ρ log ρ = O(log 1
ε), or that

(11) ρ ≤ λ log 1
ε

log log 1
ε

,

for an appropriate constant λ. It is easily checked that, with λ appropriately cali-

brated, setting ρ to this maximum value yields n0(ε) = 2O(polylog
1
ε).

We now proceed to describe our implementation of the three subroutines.
SearchSim. We take the set Vv of O(rv) vertices of the simplices of the par-

tition at v and preprocess it for halfspace range reporting, as in [23]. This takes
O(rv log log rv) storage, and a query with a halfspace h takes O(rαv logβ rv + k) time,
where k = |h∩Vv| is the output size. (We may assume, without loss of generality, that
β is the same as in our first implementation.) In fact, one can easily fine-tune the algo-
rithm, so that it never reports more than some threshold number k0 of vertices, which
we set to k0 := (d+1)μ(rv) = O(rαv). With an appropriate choice of ρ and this choice

2716 BORIS ARONOV AND MICHA SHARIR

of k0, the reporting time is at most O(nα
v logβ nv/ log

αρ nv) = O(nα
v / log

αρ−β nv). By
choosing ρ sufficiently large, we may assume that this is at most O(nα

v).
To execute SearchSim(v), we call the reporting structure just defined with the

query halfspace h. If it reports all vertices of a single simplex, or if it reports more than
k0 vertices, we stop—h is then deep at v. Otherwise, ∂h crosses at most (d+ 1)μ(rv)
simplices. We count the actual number of simplices that it crosses, recurse at the
appropriate children of v if this number is at most μ(rv), or declare h to be deep
otherwise. If h is deep, we proceed to call DeepApxCount(h, v, ε).

LeafNodeApxCount, at a leaf v, is implemented by querying our first data
structure, constructed for Pv, with h. The query time is at most F (ε)n0(ε)

α logβ n0(ε).
We want to upper bound it by a bound of the form G(ε)n0(ε)

α, which thus requires
that F (ε) logβ n0(ε) ≤ G(ε). Using (10), this constraint will hold if we set

(12) G(ε) = F (ε) ·
(
c′

ε2

)β/(ρ−2)

.

That is, if we take ρ to be sufficiently large, say its maximum allowed value given
by (11), we can make G(ε) “close enough” to F (ε) (when ρ is given its maximum
value, G(ε) is larger than F (ε) by a factor of the form polylog 1

ε) and can still bound
it by ε−γ , where γ can be chosen anywhere in the interval (2/	d/2
, 2).

DeepApxCount is implemented recursively, by calling the auxiliary data struc-
ture constructed for Av with error parameter ε/3, similar to what is done in the first
implementation.

Analysis. The analysis of the query time, storage, and preprocessing leads to
corresponding recurrence formulas, similar to the ones that arise in the first imple-
mentation, whose precise form and solution are given in the appendix. This analysis
implies the following second main result.

Theorem 3.2. We can preprocess a set P of n points in R
d, with a prespecified

error parameter 0 < ε < 1, into a data structure of size O(n), independent of ε, so that,
with high probability, for any query halfspace h, we can obtain an ε-approximate count
of h∩P , in time O(ε−γnα ·2b log∗ n), where α = 1−1/	d/2
, γ can be chosen anywhere
in (2/	d/2
, 2), and b depends on the choice of γ, increasing as γ increases. The
preprocessing cost of the algorithm is O(n1+δ), for any δ > 0, and is also independent
of ε.

Again, the bounds on the quality of the approximation and the query time, pre-
processing time, and storage hold with high probability.

3.3. Ensuring high probability. So far we have presented the data structures
under the assumption that at each node v we have, or can efficiently construct, a
relative (1/rv, ε/2)-approximation of the required size. We can achieve this either by
a fairly complicated preprocessing step that constructs these sets deterministically
based on the technique in [9], as already mentioned, or by drawing them at random
and verifying that they are indeed relative approximations with the appropriate pa-
rameters, which does not appear to be trivial. In this subsection we argue that neither
of these steps is necessary, and that simply drawing these sets at random without any
verification still ensures high success probability.

A priori, though, drawing, at each node v, a random sample of size crv
ε2 log rv

as the respective approximation set (without any verification), as proposed in both
implementations, makes it difficult to guarantee high probability. Indeed, the failure
probability of such a sample at a node v is only O(1/rbv), for some constant b that
depends on c. For nodes v that are deep in the tree, rv is small, and the success

APPROXIMATE HALFSPACE RANGE COUNTING 2717

probability becomes smaller, approaching constant probability as we get closer to the
leaves. Since the number of distinct ranges is polynomial in n, bounding the overall
failure probability via a naive probability union bound does not imply a small overall
failure probability.

Alternatively, increasing the sample size by a factor of logn would guarantee low
failure probability, but this might (slightly) affect the algorithm’s performance (recall
that a similar phenomenon occurs in the “competing” algorithms [4, 20, 21]).

We argue that, nevertheless, using such a random sampling approach, with some
additional simple mechanisms, does guarantee high success probability. The intuition
is that we can think of the elements of all the relative approximation sets at the
nodes that a query halfspace reaches as a sequence of independent Bernoulli trials,
so that an appropriate weighted sum of their corresponding indicator variables is the
approximate count that the algorithm produces. This suggests that the errors that
the individual relative approximation sets incur tend to cancel each other out, leading
to an overall error that is much smaller than the sum of the individual errors.

In more detail, the analysis proceeds as follows. We consider a fixed halfspace
h and bound the probability that the query with h fails to produce the desired ε-
approximate count. Consider the set V = V (i) of all nodes v that satisfy (i) n/2i <
nv ≤ n/2i−1 for some fixed “level” i ≥ 1, (ii) v is reached by the query with h, and (iii)
h is found to be deep at v, so |h∩Pv| is approximated using Av. (By construction, no
node of V (i) is a descendant of another such node.) For each of these nodes v, we can
think of the relative-error approximation Av as a random sample, where each point
of Pv is chosen independently with probability4

pv =
cvrv
ε2 log rv

nv
,

where cv is the constant in the bound of [16, 22], which we adjust at v, multiplying
it by at most some absolute constant factor, so as to ensure that the probabilities pv
are all equal for nodes v at the same level; we denote this common value by p(i), for
nodes at level i. At each such node v, we count |h ∩ Av| (approximately, in both of
our implementations, but let us pretend, for the sake of analysis only, and without
affecting the resulting asymptotic bounds, that we get the exact count5) and add
|h ∩ Av| · nv/|Av| to the global count. To fit into the new model, we slightly modify
this step, and add instead to the global count

|h ∩ Av| · nv

E {|Av|} =
|h ∩ Av|

pv
=
|h ∩Av|
p(i)

.

Hence, the overall count that the approximations yield at a fixed level i is

1

p(i)
·
∑
v∈V

|h ∩ Av| = 1

p(i)
· |h ∩ A|,

where A = A(i) :=
⋃

v∈V Av. Under the above assumptions, we can treat |h ∩ A| as
the sum of independent indicator variables Ix for x ∈ h ∩⋃v∈V Pv, where Ix = 1 if x

4Note that the sampling model used in [31] and the majority of subsequent papers picks a random
subset of prespecified size, with all such subsets chosen with equal probability. Most of the results also
hold in the model we use here, where each point is sampled independently with a fixed probability.
We have elected to use the latter model to be able to apply Chernoff bounds.

5Recall that the actual approximate count that we get is within a factor of 1 ± ε/2 of the exact
count. This is another instance where we rely on the high-probability analysis spelled out here.
Technically, we apply it recursively to Av and guarantee the estimate with high overall probability.

2718 BORIS ARONOV AND MICHA SHARIR

is chosen in the respective Av. The expected value of
∑

x∈h∩⋃
v∈V Pv

Ix is

μ := E
{|h ∩ A|} = p(i) ·

∑
v∈V

|h ∩ Pv| =
∑
v∈V

cvrv
ε2 log rv

nv
|h ∩ Pv|.

Note that since h is deep at each of the nodes v, by assumption, we have |h ∩ Pv| ≥
nv/rv for each v ∈ V . Hence

(13) μ ≥
∑
v∈V

cvrv
ε2 log rv

nv
· nv

rv
≥ |V | · cmin

ε2
log rmin,

where cmin = min{cv | v ∈ V } and rmin = min{rv | v ∈ V }. By Corollary A.14 of [3],
we have

Pr
{∣∣|h ∩ A| − μ

∣∣ > εμ
}
< 2e−c(ε)μ,

where

c(ε) = min

{
(1 + ε) ln(1 + ε)− ε,

1

2
ε2
}

>
1

4
ε2,

for 0 < ε < 1. Hence, using (13), we have

Pr
{∣∣|h ∩ A| − μ

∣∣ > εμ
}
< 2e−

cmin
4 |V | log rmin .

In other words, the failure probability (within the present fixed level i) depends on
|V |. Specifically, setting a := cmin/4, the above probability is smaller than

2e−a|V | log rmin =
2

r
a|V |
min

.

Recall that rv is chosen to be either a fixed fractional power of nv, or nv/ polylognv;
in either case, since nv ≈ n/2i at our fixed level i, the failure probability is at most

(14) 2

(
2i

n

)a′|V |
,

where a′ is an appropriate multiple of a.
Informally, if either n(i) := n/2i is large or |V | is large, this bound is exponentially

or at least polynomially small in n. (Recall that n(i) is at least n0(ε), so it is never
close to 1.) However, if |V | is small (in the extreme case, we could even have |V | = 1),
and if n(i) is small too (we are in a deep level), then the failure probability in (14)
might be quite large. (In the worst case, it depends only on ε (via the dependence on
n0(ε)), and not on n.)

To rectify this problem, we simply note that when |V | is small, we can afford
more time for the query at the nodes of V and can even afford to process the query at
these nodes by brute force, testing every member of Pv for belonging to h. To make
this argument more precise, we fix some fraction ν < α and consider situations where
n(i) < nν/2 and |V | < nν/n(i). (It is easily checked that, in any other situation, the
bound in (14) is at most polynomially small in n, with an exponent that can be chosen
arbitrarily large by calibrating the constants cv and cmin.) In such cases, the brute-
force cost of processing all the nodes of V is O

(∑
v∈V nv

)
= O(n(i)|V |) = O(nν), and

APPROXIMATE HALFSPACE RANGE COUNTING 2719

summing this over all levels, we get an overall cost of O(nν logn) = O(nα), well within
our target bound. (Note that this part of the procedure is purely deterministic.)

To complete the analysis, we apply a union bound to estimate the probability
that the approximate count yielded by the above procedure will fail for at least one
level for at least one query halfspace h. Since the number of levels is only logarithmic,
and the number of (combinatorially different) halfspaces is only O(nd), it follows that
this overall failure probability (namely, that for at least one halfspace the count is not
accurate enough) is at most polynomially small in n, with an exponent that can be
chosen arbitrarily large.

To implement the modified procedure, we first collect, during the processing of
the query with h, the sets V (i) of all the nodes v at any fixed level i, where h is deep
in Pv. If, for any level i, n(i) and |V (i)| are both small, in the precise sense defined
above, we count

∑
v∈V |h∩Pv| by brute force. Otherwise, we obtain this count using

the approximations stored at these nodes, as prescribed earlier.
We have to be careful with the storage requirement, especially in the second

implementation, because the above technique requires us to store each of the sets Pv so
that we can search any of these sets by brute force during a query if necessary. Storing
these sets explicitly would require Θ(n log logn) storage in the first implementation
and Θ(n log∗ n) storage in the second implementation. However, we can reduce the
storage to linear if we maintain just one master list (or array) of all the points in
P , so that, for any node v, Pv is a contiguous sublist, which can be specified by two
pointers to its first and last elements. We omit the further easy details of constructing
this list and these pointers during preprocessing.

The preceding discussion implies that, with high probability, the resulting data
structure yields an ε-approximate count of h ∩ P for any halfspace h. The storage,
preprocessing time, and query time all remain asymptotically the same, but the query
procedure is slightly modified, as explained above. (Recall that these bounds are
worst-case deterministic, except for the sampling of the approximation sets.)

With this analysis, the proofs of Theorems 3.1 and 3.2 are now complete.

3.4. Discussion. We conclude the presentation of the basic technique with a
few comments.

(a) Notice that there is a sharp discontinuity in the performance of a query in the
first implementation, as we reach the leaves of the partition tree. At internal nodes,
we effectively ensure that the cost of the approximate counting via the (1/rv, ε/2)-
approximation stored at a node v is roughly nα

v . In contrast, when we reach a leaf,
the cost goes up to Θ(nv). Quite likely, smoothly interpolating between these two
scenarios should refine the dependence of the performance bounds on ε. We leave this
as an open problem for further research.

(b) Our technique can be modified to produce a data structure where ε is not
known in advance. Of course, we cannot let ε become arbitrarily small, or else the
size of the structure will grow out of control. We therefore specify the smallest value
εmin of ε that we want the structure to handle, and maintain, at each node v of the
tree, many relative approximations. Specifically, we store at v a relative (1/rv, εi)-
approximation, for each εi in an appropriate geometric sequence, stopping at the
larger of εmin and the smallest εi for which the size of the approximation is still below
the threshold nv/(k log

3 lognv), say. Since the sizes of these approximations also form
a geometric sequence, their overall size is still within the allowed storage. Note that
a node v may become a leaf for certain values of εi and remain an internal node
for smaller values of εi. This can easily be handled by comparing nv with n0(εi),

2720 BORIS ARONOV AND MICHA SHARIR

at each node v. Overall, assuming n is sufficiently large, we get a data structure
whose storage and preprocessing costs are as stated in Theorem 3.1 or 3.2, and whose
query performance is again bounded as in these theorems, but in terms of the actual
ε ≥ εmin specified in the query.

(c) An interesting issue not addressed in this paper is that of designing a range
of data structures exhibiting the query-time–storage-space trade-off; such trade-offs
have been studies extensively for other range searching problems [2].

3.5. Range-minimum queries. We can apply our technique to design an effi-
cient algorithm for answering range-minimum queries for halfspaces, with respect to
a given random permutation π of the input points, of the type needed in the approach
of Cohen [13] and of Kaplan and colleagues [20, 21], as described in section 1. The
only difference is that at each node v of the partition tree, we restrict π to Pv and
store the prefix of the first crv logn elements of the resulting restricted permutation
πv, for a sufficiently large constant c. Intuitively, if a halfspace h is deep at v (i.e.,
|h ∩ Pv| ≥ nv/rv), the point p of h ∩ Pv of minimum rank should appear, with high
probability, among the first crv logn elements of πv, so we can find p by examining
each of these elements. This allows us to execute a query in much the same way as
above. It is also fairly easy to show that the procedure has high overall success prob-
ability. Omitting all further details, we obtain the following. (The theorem parallels
our first implementation; extending the second implementation can also be done.)

Theorem 3.3. One can preprocess a set P of n points in R
d, and a random

permutation π of P , into a linear-size data structure such that, with high probability,
the element of P with minimum rank in π in a query halfspace can be computed in
time O(n1−1/�d/2� logβ n), for an appropriate constant β = β(d). The preprocessing
cost is O(n1+δ), for any δ > 0, and it improves to O(n logn) if β is chosen sufficiently
large. The bounds on the preprocessing, storage, and query costs are all worst-case
deterministic, and the correctness of the queries is guaranteed with high probability,
for all queries.

3.6. Approximate range counting with semialgebraic sets. Our techniques
can be extended to yield efficient data structures for approximate range counting,
where the ranges are semialgebraic sets of constant description complexity. This has
recently been carried out by Sharir and Shaul [29], who first extended Matoušek’s
range reporting and emptiness data structures [23] to semialgebraic ranges and then
plugged the machinery of the current paper into those extended structures. See [29]
for details.

4. Open problems. As mentioned above, we have presented a general frame-
work of using shallow partition trees for approximate range counting. We examined
in some detail two specific instances of such a data structure and several extensions.
It remains to explore other uses of this structure and other combinations of building
blocks that may yield more efficient or less complicated variants. In particular, we
do not feel we have completely exhausted the entire “bag of tricks” for reducing the
dependence of the query time on the approximation parameter ε.

Appendix A. First implementation.
Analysis of query time. For compactness, in this section we introduce the notation

n′ := n/(k log3 logn). We want to show that the solution of the recurrence

Q(n, ε) ≤
{
O(nα′

) + max
{
Q
(
n′, ε

3

)
, μ(nα′

)Q(2n1−α′
, ε)
}

if n > n0(ε),

O(n) otherwise

APPROXIMATE HALFSPACE RANGE COUNTING 2721

is given by (7), with F (ε) given by (8). We proceed by induction on n. Equation (7)
clearly holds for n ≤ n0(ε), by the choice of n0(ε). For larger values of n, to carry out
the induction step, we need to show that

c1n
α′

+max
{
F
(ε
3

)
(n′)α logβ (n′) , c2nα′αF (ε)n(1−α′)α logβ n1−α′}

≤ F (ε)nα logβ n,

for appropriate constants c1, c2. If we calibrate the constant in the definition of F (ε),
so that F (ε) is always at least 2c1, then c1n

α′
< c1n

α ≤ 1
2F (ε)nα logβ n. Hence, it is

enough to show that

1

2
+ max

{
F
(
ε
3

)
F (ε)kα log3α logn

, c2(1 − α′)β
}
≤ 1,

which holds, by the way F (ε) is defined in (8), if β and k are chosen large enough.
Remark. Note the trade-off between β and F (ε): We can make F (ε) asymptot-

ically smaller (i.e., decrease γ) if we decrease α′ and consequently increase β. (The
bound on the cost of a query can thus be optimized, for given values of n and ε, if so
desired.)

Analysis of storage. We want to show that the solution of the recurrence

S(n, ε) ≤
{
O(nα′

) + S
(|A|, ε

3

)
+
∑nα′

i=1S(ni, ε) if n > n0(ε),

O(n) otherwise
(9)

is linear in n, where, for an appropriate constant c1,

|A| = c1n
α′

ε2
log(nα′

) ≤ n′

is the size of the relative (1/r, ε/2)-approximation stored at the current node, ni ≤
2n1−α′

for each i, and
∑nα′

i=1 ni = n.
We first show that S(n) ≤ Dn log logn, where D is a constant that does not

depend on ε. Again, we prove this by induction on n, noting that it holds for n ≤ n0(ε),
for an appropriate choice of D (independent of ε). For larger values of n, to carry out
the inductive argument it suffices to show that

c2n
α′

+Dn′ log logn′ +
nα′∑
i=1

Dni log log(2n
1−α′

) ≤ Dn log logn,

for an appropriate constant c2. We use n instead of nα′
in the first term and ensure

that nα′/2 > 2 for n ≥ n0(ε), which we enforce, independently of ε, by choosing the
constant c′ in (6) large enough. Then it is sufficient to guarantee that

c2 +
D

k log2 logn
+D

(
log

(
1− α′

2

)
+ log logn

)
≤ D log logn,

which holds if we choose, say, α′ > 2
(
1− 1

22/k

)
and D > 2c2k. (Again, we have a

trade-off: To reduce F (ε) asymptotically, we have to choose smaller α′, so k has to
be chosen larger, which causes the constant of proportionality in the storage bound
to increase.)

2722 BORIS ARONOV AND MICHA SHARIR

This finishes the argument that S(n, ε) ≤ Dn log log n. Armed with this bound,
we apply it to S

(|A|, ε
3

)
to obtain

S
(
|A|, ε

3

)
≤ Dn′ log logn = O

(
n

log2 logn

)
.

Since this dominates the first term O(nα′
) in the recursion (9), we get a new recurrence

of the form (in which we drop the unnecessary dependence on ε)

S(n) ≤
{

D′n
log2 log n

+
∑nα′

i=1 S(ni) if n > n0(ε),

D′n otherwise,

for some absolute constant D′, with the usual constraints on the numbers ni.
We claim that the solution of this recurrence is S(n) = O(n), where the constant of

proportionality clearly does not depend on ε. To show this, we unwind the recurrence,
as follows. When we expand a node v of the tree and form its children, each child w

satisfies, by construction, n1−α′
v ≤ nw ≤ 2n1−α′

v ≤ n
1−α′/2
v . We say that a node v lies

at a level j if

n(1−α′/2)j+1

< nv ≤ n(1−α′/2)j .

Thus the root lies at level 0, and the maximum level is at most c3 log logn, for some
constant c3, depending on ε and α′. Also, no two nodes on a common path have the
same level, so the sum of the sizes nv, over all nodes v of a fixed level, is at most n.
Hence, the sum of the overhead terms of all the nodes at level j is at most

D′n
log2 logn(1−α′/2)j+1

=
D′n

(log logn− ξ(j + 1))
2 ,

where ξ = log 1
1−α′/2 > 0. The sum of the amounts of storage S(nw) at the leaves w

of the tree is clearly at most D′n. Hence, the overall storage requirement is at most

D′n+
∑

0≤j≤c3 log logn

D′n

(log logn− ξ(j + 1))2
.

The smallest value of any denominator is attained at the parents of the leaves, and is
at least (log logn0(ε))

2
. This implies (e.g., by replacing the sum by an integral) that

the sum can be bounded by O (n/ log logn0(ε)), which is O(n) (with the constant of
proportionality independent of ε).

Appendix B. Second implementation.
Analysis of query time. The query time Q(n, ε) satisfies the following recurrence:

Q(n, ε) ≤
{
O(nα) + max

{
Q
(

n
logn ,

ε
3

)
, μ
(

n
logρ n

)
·Q(2 logρ n, ε)

}
if n > n0(ε),

G(ε)nα otherwise,

where G(ε) is defined as in (12).
We claim that Q(n, ε) ≤ G(ε)nα · 2φ(n), for an appropriate choice of b and of

the constant of proportionality of G, where φ(n) is the following recursively defined
function:

φ(n) =

{
φ(2 logρ n) + 1 if n > n∗

0,

1 if n ≤ n∗
0,

APPROXIMATE HALFSPACE RANGE COUNTING 2723

where n∗
0 is the smallest integer satisfying n ≥ 2 logρ n. It is easily checked that

φ(n) = Θ(log∗ n), so for the sake of simplifying the presentation, we abuse the notation
and refer to φ also as log∗ n. We are thus set to prove that

(15) Q(n, ε) ≤ G(ε)nα · 2bφ(n).
We prove (15) by induction on n. It clearly holds when n ≤ n0(ε)—this follows

from the way G was defined in (12). For larger values of n, using the induction
hypothesis, it is sufficient to show that

anα +max

{
G
(ε
3

)(n

logn

)α

2b log
∗(n/(logn)),

A

(
n

logρ n

)α

·G(ε) (logρ n)
α · 2b log∗(2 logρ n)

}
≤ G(ε)nα · 2b log∗ n,

for appropriate constants a,A. Calibrate the constant of proportionality in the ex-
pression for G(ε) so that G(ε) > 2a. It then suffices to show that

1

2
+ max

{
G(ε/3)

G(ε)
· 1

logα n
,
A · 2b log∗(2 logρ n)

2b log
∗ n

}
≤ 1,

which follows easily (i) from the definition of G(ε) and (ii) from our redefinition of
the log∗(·) function, provided that b is chosen large enough to satisfy 2b ≥ 2A.

Analysis of storage. The storage bound S(n, ε) satisfies the following recurrence,
in which n = nv, the storage needed for SearchSim is O(rv log log rv), and the storage
for leaf nodes is O(nv) = O(n), a bound independent of ε, since we use our first data
structure at each leaf:

S(n, ε) ≤
{
O
(

n log logn
logρ n

)
+ S

(
n

log n ,
ε
3

)
+
∑n/ logρ n

i=1 S(ni, ε) if n > n0(ε),

O (n) otherwise,
(16)

where ni ≤ 2 logρ n and
∑n/ logρ n

i=1 ni = n.
We bound S(n) in two stages. We first claim that the solution of the recur-

rence (16) is S(n) ≤ Dn · 2b′ log∗ n, for appropriate constants D, b′ independent of
ε. We prove this by induction, noting that it trivially holds for n ≤ n0(ε), with an
appropriate choice of D. For larger values, to carry out the induction step, it suffices
to show that

c′n log logn

logρ n
+

Dn

logn
· 2b′ log∗ n +

n/ logρ n∑
i=1

Dni · 2b′ log∗(2 logρ n) ≤ Dn · 2b′ log∗ n,

for an appropriate constant c′. This is easily seen to hold if D and b′ are chosen
sufficiently large (independently of ε).

Armed with this intermediate bound, we use it to get the upper bound

S

(
n

logn
,
ε

3

)
≤ Dn · 2b′ log∗ n

logn
≤ D′n

log1/2 n
,

for some constant D′. This is also an upper bound on the first term in (16), so the
recurrence becomes

S(n, ε) ≤
{

D′′n
log1/2 n

+
∑n/ logρ n

i=1 S(ni, ε) if n > n0(ε),

O (n) otherwise,

2724 BORIS ARONOV AND MICHA SHARIR

for yet another constant D′′, where ni ≤ 2 logρ n and
∑n/ logρ n

i=1 ni = n. We claim that
the solution of this recurrence is S(n, ε) = O(n), with the constant of proportionality
independent of ε, and show it by unwinding the recurrence, using the fact that there
are only O(log∗ n) levels. Specifically, we proceed similarly to the analysis of the first
implementation. We define a sequence n0 = n, nj+1 = 2 logρ nj , j ≥ 0, and say that
a node v is at level j if nj+1 < nv ≤ nj . The sum of the sizes nv, over all nodes v at
any fixed level j, is at most n (again, no two nodes on a common path can have the

same level), and the sum of their overhead terms is at most D′′n/ log1/2 nj+1. It is

now an easy exercise to show that
∑

j≥0 1/ log
1/2 nj = O(1). This is because the nj ’s

form a sequence of exponential towers, so the terms 1/ log1/2 nj increase very rapidly,

and their sum is essentially equal to the last term 1/ log1/2 lognjmax , which is at most
a constant (independent of ε), since nj ≥ n0(ε) for all j.

This completes the proof that S(n) = O(n), with a constant of proportionality
independent of ε.

Analysis of preprocessing. Here we use the bound Tpart(n, r) = O(n1+δ), for any
δ > 0 where this bound is independent of ε, and note that this bound also applies to
Tsim and Tleaf. We thus get the following recurrence:

T (n, ε) ≤
{
O(n1+δ) + T

(
n

logn ,
ε
3

)
+
∑2n/ logρ n

i=1 T (ni, ε) if n > n0(ε),

O(n1+δ) otherwise,

for any δ > 0, with the usual constraints on the ni’s. Using techniques similar to (and
somewhat simpler than) those in the previous analyses, one can easily verify that
T (n, ε) = O(n1+δ′), for any δ′ > δ > 0 with a constant of proportionality independent
of ε.

REFERENCES

[1] P. Afshani and T. M. Chan, On approximate range counting and depth, Discrete Comput.
Geom., 41 (2009), pp. 3–21.

[2] P. K. Agarwal and J. Erickson, Geometric range searching and its relatives, in Advances in
Discrete and Computational Geometry, American Mathematical Society, Providence, RI,
1999, pp. 1–56.

[3] N. Alon and J. Spencer, The Probabilistic Method, Wiley-Interscience, New York, 1992.
[4] B. Aronov and S. Har-Peled, On approximating the depth and related problems, SIAM

J. Comput., 38 (2008), pp. 899–921.
[5] B. Aronov, S. Har-Peled, and M. Sharir, On approximate halfspace range counting and

relative epsilon approximations, in Proceedings of the 23rd Annual ACM Symposium on
Computational Geometry, Gyeongju, South Korea, 2007, ACM, New York, pp. 327–336.

[6] S. Arya, G. D. da Fonseca, and D. Mount, Trade-offs in approximate range searching made
simpler, in Proceedings of the 21st Brazilian Symposium on Computer Graphics and Image
Processing, 2008, pp. 237–243.

[7] S. Arya, T. Malamatos, and D. Mount, Space-time tradeoffs for approximate spherical range
counting, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, Vancouver, BC, 2005, SIAM, Philadelphia, pp. 535–544; full version available
as Department of Computer Science Technical Report CS-TR-4842, University of Maryland,
College Park, MD, 2006, pp. 535–544.

[8] S. Arya, T. Malamatos, and D. Mount, The effect of corners on the complexity of approxi-
mate range searching, Discrete Comput. Geom., 41 (2009), pp. 398–443.

[9] H. Brönnimann, B. Chazelle, and J. Matoušek, Product range spaces, sensitive sampling,
and derandomization, SIAM J. Comput., 28 (1999), pp. 1552–1575.

[10] B. Chazelle, The Discrepancy Method, Cambridge University Press, Cambridge, UK, 2001.
[11] B. Chazelle, The discrepancy method in computational geometry, in Handbook of Discrete

and Computational Geometry, 2nd ed., J. E. Goodman and J. O’Rourke, eds., CRC Press,
Boca Raton, FL, 2004, pp. 983–996.

APPROXIMATE HALFSPACE RANGE COUNTING 2725

[12] B. Chazelle, D. Liu, and A. Magen, Approximate range searching in higher dimension,
Comput. Geom. Theory Appl., 39 (2008), pp. 24–29.

[13] E. Cohen, Size-estimation framework with applications to transitive closure and reachability,
J. Comput. System Sci., 55 (1997), pp. 441–453.

[14] E. Cohen, H. Kaplan, Y. Mansour, and M. Sharir, Approximations with Relative Errors
in Range Spaces of Finite VC Dimension, manuscript, School of Computer Science, Tel
Aviv University, 2006.

[15] G. D. da Fonseca, Approximate range searching: The absolute model, in Proceedings of the
Workshop on Algorithms and Data Structures, Halifax, 2007, Lecture Notes in Comput.
Sci. 4619, Springer, New York, 2007, pp. 2–14.

[16] S. Har-Peled, Carnival of Samplings: Nets, Approximations, Relative, and Sensitive,
manuscript, Department of Computer Science, University of Illinois at Urbana–Champagne,
2008; available online at http://arxiv.org/abs/0908.3716v1.

[17] S. Har-Peled and M. Sharir, Relative (p, ε)-approximations in geometry, Discrete Comput.
Geom., to appear; http://arxiv.org/abs/0909.0717.

[18] D. Haussler, Decision theoretic generalizations of the PAC model for neural net and other
learning applications, Inform. and Comput., 100 (1992), pp. 78–150.

[19] D. Haussler and E. Welzl, Epsilon nets and simplex range queries, Discrete Comput. Geom.,
2 (1987), pp. 127–151.

[20] H. Kaplan, E. Ramos, and M. Sharir, Range minima queries with respect to a random
permutation, and approximate range counting, Discrete Comput. Geom., to appear.

[21] H. Kaplan and M. Sharir, Randomized incremental construction of three-dimensional convex
hulls and planar Voronoi diagrams, and approximate range counting, in Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, Miami, FL, 2006,
SIAM, Philadelphia, 2006, pp. 484–493.

[22] Y. Li, P. M. Long, and A. Srinivasan, Improved bounds on the sample complexity of learning,
J. Comput. System Sci., 62 (2001), pp. 516–527.

[23] J. Matoušek, Reporting points in halfspaces, Comput. Geom. Theory Appl., 2 (1992), pp.
169–186.

[24] J. Matoušek, Efficient partition trees, Discrete Comput. Geom., 8 (1992), pp. 315–334.
[25] J. Matoušek, Geometric Discrepancy: An Illustrated Guide, Algorithms Combin. 18, Springer-

Verlag, Berlin, 1999.
[26] J. Matoušek, E. Welzl, and L. Wernisch, Discrepancy and approximations for bounded

VC-dimension, Combinatorica, 13 (1993), pp. 455–466.
[27] J. Pach and P. K. Agarwal, Combinatorial Geometry, Wiley-Interscience, New York, 1995.
[28] D. Pollard, Rates of Uniform Almost-Sure Convergence for Empirical Processes Indexed by

Unbounded Classes of Functions, manuscript, 1986.
[29] M. Sharir and H. Shaul, Semi-algebraic range reporting and emptiness searching with appli-

cations, SIAM J. Comput., submitted; http://arxiv.org/abs/0908.4061v2.
[30] M. Talagrand, Sharper bounds for Gaussian and empirical processes, Ann. Probab., 22 (1994),

pp. 28–76.
[31] V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative frequencies

of events to their probabilities, Theory Probab. Appl., 16 (1971), pp. 264–280.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

