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Abstract
We show that a set of n points in the plane has at most
O(10.05n) perfect matchings with crossing-free straight-line
embedding. The expected number of perfect crossing-free
matchings of a set of n points drawn i.i.d. from an arbitrary
distribution in the plane is at most O(9.24n).

Several related bounds are derived: (a) The number
of all (not necessarily perfect) crossing-free matchings is
at most O(10.43n). (b) The number of red-blue perfect
crossing-free matchings (where the points are colored red
or blue, and each edge of the matching must connect a
red point with a blue point) is at most O(7.61n). (c) The
number of left-right perfect crossing-free matchings (where
the points are designated as left or as right endpoints of the
matching edges) is at most O(5.38n). (d) The number of
perfect crossing-free matchings across a line (where all the
matching edges must cross a fixed halving line of the set) is
at most 4n.

These bounds are employed to infer that a set of n points
in the plane has at most O(86.81n) crossing-free spanning
cycles (simple polygonizations), and at most O(12.24n)
crossing-free partitions (these are partitions of the point set,
so that the convex hulls of the individual parts are pairwise
disjoint).

We also derive lower bounds for some of these quanti-

ties.

1 Introduction

Let P be a set of n points in the plane. A geometric
graph on P is a graph that has P as its vertex set and
its edges are drawn as straight segments connecting the
corresponding pairs of points. The graph is crossing-
free if no pair of its edges cross each other, i.e., any two
edges are not allowed to share any points other than
common endpoints. Therefore, these are planar graphs
with a plane embedding given by this specific drawing.
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Switzerland. emo@inf.ethz.ch

We are interested in the number of crossing-free geo-
metric graphs on P of several special types. Specifically,
we consider the numbers tr(P ), of triangulations (i.e.,
maximal crossing-free graphs), pm(P ), of crossing-free
perfect matchings, sc(P ), of crossing-free spanning cy-
cles, and, cfp(P ), of crossing-free partitions1 (these are
partitions of P , so that the convex hulls of the individ-
ual parts are pairwise disjoint). We are primarily con-
cerned with upper bounds for the numbers listed above
in terms of n.

Figure 1: 6 points with 12 crossing-free perfect matchings,
the maximum possible number; see [3] for the maximum
numbers for up to ten points: 3 for 4 points, 12 for 6, 56 for
8, and 311 for 10.

History. This problem goes back to Newborn and
Moser [29] in 1980 who ask for the maximal possible
number of crossing-free cycles in a set of n points2—they
provide an upper bound of 2 · 6n−2

⌊
n
2

⌋
! but conjecture

that the right bound should be of the form cn for
some constant c. This fact was established in 1982 by
Ajtai, Chvátal, Newborn, and Szemerédi [4], who show3

1Our research was triggered by Marc van Kreveld asking about
the number of crossing-free partitions, and, in the same week,
by Michael Hoffmann and Yoshio Okamoto asking about the
number of crossing-free spanning paths of a point set (motivated
by their quest for good fixed parameter algorithms for the planar
Euclidean Traveling Salesman Problem in the presence of a fixed
number of inner points [12]).

2In fact, Akl’s work [6] appeared earlier, but it already refers
to the manuscript by Newborn and Moser, and improves a lower
bound (on the maximal number of crossing-free spanning cycles)
of theirs.

3This paper is famous for its Crossing Lemma, proved in
preparation of the singly exponential bound. The lemma gives
an upper bound on the number of edges a geometric graph with
a given number of crossings can have.



that there are at most 1013n crossing-free graphs on n
points.4

Further developments were mainly concerned with
deriving progressively better upper bounds for the num-
ber of triangulations5 [34, 15, 32], so far culminating in
a 59n upper bound by Santos and Seidel [31] in 2003.
This compares to Ω(8.48n), the largest known number
of triangulations for a set of n points, recently derived
by Aichholzer et al. [1]; this improves an earlier lower
bound of 8n/poly(n) given by Garćıa et al. [19]. (We
let “poly(n)” denote a polynomial factor in n.)

Since every crossing-free graph is contained in some
triangulation, and a triangulation has at most 3n −
6 edges, an upper bound of cn for the number of
triangulations immediately yields an upper bound of
23n−6cn < (8c)n for the number of all crossing-free
graphs on a set of n points. Thus, with c ≤ 59, this
number is at most 472n. To the best of our knowledge,
all upper bounds derived so far on the number of
crossing-free graphs of various types are derived via a
bound on the number of triangulations, albeit in more
refined ways.

One such approach is to exploit the fact that graphs
of certain specific types have a fixed number of edges.
For example, since a perfect matching has n

2 edges, we

readily obtain pm(P ) ≤
(
3n−6
n/2

)
tr(P ) < 227.98n [16].

A short historical account of bounds on sc(P ), with
references including [6, 14, 19, 20, 21, 29, 30], can be
found at the web site [13] (see also [11]). The best bound
published so far is 3.37n · tr(P ) ≤ 198.83n, which relies
on a bound of 3.37n on the number of cycles in a planar
graph [7].6

Crossing-free

Figure 2: A crossing-free parti-
tion and its graph.

partitions fit into
the picture, since
every such partition
can be uniquely
identified with the
graph of edges of
the convex hulls
of the individual
parts—these edges
form a crossing-free
geometric graph of

at most n edges; see Figure 2.
The situation is better understood for special con-

figurations, for example for P a set of n points in con-

4For motivation they mention—besides [29]—a question of
David Avis about the maximum number of triangulations a set of
n points can have.

5Interest was also motivated by the obviously related question
(from geometric modeling [34]) of how many bits it takes to encode
a triangulation of a point set.

6In the course of our investigations, we showed that a graph
with m edges and n vertices can have at most

`

m
n

´n
cycles; hence,

a planar graph can have at most 3n cycles. Then Raimund Seidel
provided us with an argument, based on linear algebra, that a
planar graph can have at most

√
6

n
< 2.45n spanning cycles.

vex position7 (namely, the vertex set of a convex n-
gon), where the Catalan numbers Cm := 1

m+1

(
2m
m

)
=

Θ(m−3/24m), m ∈ N0, play a prominent role. In convex
position tr(P ) = Cn−2 (the Euler-Segner problem, cf.
[35, page 212] for a discussion of its history), pm(P ) =
Cn/2 for n even (due to [18], cf. [35]), sc(P ) = 1, and
cfp(P ) = Cn ([9]).

Crossing-free partitions for point sets in convex
position constitute a well-established notion because
of its many connections to other problems, probably
starting with “planar rhyme schemes” in Becker’s note
[9], cf. [35, Solution to 6.19pp]. However, to our
surprise, we found not a single reference for the general
case.

Under

Figure 3: 6 points in convex position with C3 = 5 crossing-
free perfect matchings.

the
as-
sump-
tion
of
gen-

eral position (no three points on a common line) it is
known [19] that the number of crossing-free perfect
matchings on a set of fixed size is minimized when the
set is in convex position.8 With little surprise, the
same holds for spanning cycles, but it does not hold for
triangulations [22, 2, 27]. For crossing-free partitions,
this is an open question.

New results. The main results of this paper are
the following upper bounds, for a set P of n points in
the plane: pm(P ) = O(10.05n), sc(P ) = O(86.81n),
and cfp(P ) = O(12.24n). Also, the expected number
of perfect crossing-free matchings of a set of n points
drawn i.i.d. from any distribution in the plane (as long
as two random points coincide with probability 0) is at
most O(9.24n).

The new bound on the number of crossing-free
perfect matchings is derived by an inductive technique
that we have adapted from the method that Santos
and Seidel [31] used for triangulations (the adaption
however is far from obvious). We then go on to derive
several improved bounds on the number of crossing-
free matchings of various special types. Specifically, we
show:
(a) The number of all (not necessarily perfect) crossing-
free matchings is at most O(10.43n).
(b) The number of red-blue perfect crossing-free match-

7For another example, it can be shown that the number of
triangulations is at most 23mn−m−n for an m × n grid (with
(m + 1)(n + 1) points) [5] (cf. also [23]).

8Recently, Aichholzer et al. [1] showed that any family of
acyclic graphs has the minimal number of crossing-free embed-
dings on a fixed point set when the set is in convex position.



ings (where half of the points are colored red and half
blue, and each edge of the matching must connect a red
point with a blue point) is at most O(7.61n).
(c) The number of left-right perfect crossing-free match-
ings (where the points are designated as left or as right
endpoints of the matching edges) is at most O(5.38n).
(d) The number of perfect crossing-free matchings
across a line (where all the matching edges must cross
a fixed halving line of the set) is at most 4n.

Finally, we derive upper bounds for the numbers
of crossing-free spanning cycles and crossing-free parti-
tions of P in terms of the number of certain types of
matchings of certain point sets P ′ that are constructed
from P . This yields the bounds O(86.81n) for the num-
ber of crossing-free cycles, and O(12.24n) for the num-
ber of crossing-free partitions.

We summarize the state of affairs in Table 1,
including lower bounds which we will derive in Section 6,
many of which use the double-chain configuration from
[19].

tr pm sc cfp ma rbpm lrpm alpm rdpm

∀P :≤ 59 [31] 10.05 86.81 12.24 10.43 7.61 5.38 4 9.24
∃P :≥ 8.48 [1] 3 [19] 4.64 [19] 5.23 4 2.23 2 2 3

Table 1: Entries c in the upper bound row should be read
as O(cn), and entries c in the lower bound row should
be read as Ω(cn/poly(n)), where n := |P |. “ma” stands
for all (not necessarily perfect) crossing-free matchings,
“rbpm” for perfect red-blue crossing-free matchings, “lrpm”
for perfect left-right crossing-free matchings, “alpm” for
perfect crossing-free matchings across a line, and “rdpm” for
the expected number of perfect crossing-free matchings of a
set of i.i.d. points.

This paper shows that significantly better bounds
can be derived for matchings than those known earlier
for other types of graphs, and, moreover, that matchings
are a good basis for deriving bounds for crossing-
free partitions and spanning cycles—as opposed to the
situation before, where such bounds have always relied
on triangulations.

An obvious collection of open problems that this
paper raises are to improve the upper bounds derived
here, none of which is expected to be tight. In work
in progress [33], we are currently refining a tailored
analysis for spanning cycles and trees, where the bounds
now stand at O(79n) and O(296n), respectively.

2 Matchings: The Setup and a Recurrence

Let P be a set of n points in the plane in general
position, no three on a line, no two on a vertical line. It
is easy to see that this is no constraint when it comes to

upper bounds on pm(P ). A crossing-free matching is a
collection of pairwise disjoint segments whose endpoints
belong to P . Given such a matching M , each point of
P is either matched, if it is an endpoint of a segment
of M , or isolated, otherwise. The number of matched
points is clearly always even. If 2m points are matched
and s points are isolated, we call M a crossing-free m-
matching or (m, s)-matching. We have n = 2m + s.

We denote by mam(P ) the number of crossing-free
matchings of P with m segments (for m ∈ R—this
number is clearly 0 unless m ∈ {0, 1, . . . ,

⌊
n
2

⌋
}), and

by ma(P ) the number of all crossing-free matchings of
P (i.e., ma(P ) =

∑

m mam(P )). Recall that pm(P ) =
man/2(P ).

Let M be a crossing-free (m, s)-matching on a set
P of n = 2m + s points, as above. The degree d(p)
of a point p ∈ P in M is defined as follows. It
is 0 if p is isolated in M . Otherwise, if p is a left
(resp., right) endpoint of a segment of M , d(p) is equal
to the number of visible left (resp., right) endpoints
of other segments of M , plus the number of visible
isolated points; “visible” means vertically visible from
the relative interior of the segment of M that has p
as an endpoint. Thus p and the other endpoint of the
segment are not counted in d(p). See Figure 4 for an
illustration.

Each left

u

v

w
z

Figure 4: Degrees in a matching:
d(u) = 2, d(v) = 5, d(w) = 1,
d(z) = 2.

(resp., right) end-
point u in M can
contribute at most
2 to the degrees
of other points:
1 to each of the
left (resp., right)
endpoints of the
segments lying
vertically above
and below u, if
there exist such segments. Similarly, each isolated
point u can contribute at most 4 to the degrees of other
points: 1 to each of the endpoints of the segments lying
vertically above and below u. It follows that

∑

p∈P

d(p) ≤ 4m + 4s.

There are many segments ready for removal.
The idea is to remove segments incident to points of low
degree in an (m, s)-matching (points of degree at most
3 or at most 4, to be specific). We will show that there
are many such points at our disposal. Then, in the next
step, we show that segments with an endpoint of low
degree can be reinserted in not too many ways. These
two facts will be combined to derive a recurrence for the



matching count.
For each integer i ∈ N0, let vi = vi(M) denote the

number of matched points of P with degree i in M .
Hence,

∑

i≥0 vi = 2m.

Lemma 2.1. Let n, m, s ∈ N0, with n = 2m + s. In
every (m, s)-matching of any set of n points, we have

2n ≤ 4v0 + 3v1 + 2v2 + v3 + 6s , and(2.1)

3n ≤ 5v0 + 4v1 + 3v2 + 2v3 + v4 + 7s .(2.2)

Proof. Let P be the underlying point set. We have
∑

i≥0

i vi =
∑

p∈P

d(p) ≤ 4s + 4m = 4s +
∑

i≥0

2vi .

Therefore, 0 ≤ 4s +
∑

i≥0(2 − i)vi. For κ ∈ R
+

, we add
κ times n = s +

∑

i≥0 vi to both sides to get
(2.3)

κn ≤ (4+κ)s+
∑

i≥0

(2+κ−i)vi ≤ (4+κ)s+
∑

0≤i<2+κ

(2+κ−i)vi .

We specialize9 to κ = 2 for assertion (2.1) and κ = 3 for
(2.2).

There are not too many ways of inserting a
segment. Fix some p ∈ P and let M be a crossing-
free matching which leaves p isolated. Now we match
p with some other isolated point such that the overall
matching continues to be crossing-free. For i ∈ N0, let
hi = hi(p, P, M) be the number of ways that can be
done so that p has degree i after its insertion.

Lemma 2.2.4h0 + 3h1 + 2h2 + h3 ≤ 24 , and(2.4)

5h0 + 4h1 + 3h2 + 2h3 + h4 ≤ 48 .(2.5)

Proof. Let ℓi = ℓi(p, P, M) be the number of ways
we can match the point p as a left endpoint of degree i.
First, we claim that ℓ0 ∈ {0, 1}.

To show this, form the vertical decomposition of M
by drawing a vertical segment up and down from each
(matched or isolated) point of P \{p}, and extend these
segments until they meet an edge of M , or else, all the
way to infinity; see Figure 5 for an illustration of such
a decomposition. We call these vertical segments walls
in order to distinguish them from the segments in the
matching.

We obtain a decomposition of the plane into ver-
tical trapezoids. Let τ be the trapezoid containing p
(assuming general position, p lies in the interior of τ).
See Figure 5.

We move from τ to the right through vertical walls
to adjacent trapezoids until we reach a vertical wall that
is determined by a point v that is either a left endpoint

9We list here explicitly the two values that lead to the best
results in the further derivations, although at this point it clearly
looks rather arbitrary.

or an isolated point (if at all—we may make our way to
infinity when p cannot be matched as a left endpoint to
any point, in which case ℓi = 0 for all i).

Note that up to that point there was always a
unique choice for the next trapezoid to enter. Every
crossing-free segment with p as its left endpoint will
have to go through all of these trapezoids. It connects
either to v (which can happen only if v is isolated),
or crosses the vertical wall up or down from v. The
former case yields a segment that gives p degree 0. In
the latter case, v will contribute 1 to the degree of p. So
pv, if an option, is the only possible segment that lets
p have degree 0 as a left endpoint. (pv will not be an
option when it crosses some segment, or when v is a left
endpoint.)

We will return

p v

τ

Figure 5: Inserting a segment at p;
d(p) = 1 after insertion.

to this set-up
when we consider
degrees ≥ 1, in
which case v acts
as a bifurcation
point. Before
doing so, we first
introduce a func-
tion f . It maps
every nonnega-
tive real vector
(λ0, λ1, . . . , λk) of

arbitrary length k + 1 ∈ N to the maximum possible
value10 the expression

(2.6) λ0ℓ0 + λ1ℓ1 + · · · + λkℓk

can attain (for any isolated point in any matching of any
finite point set of any size). We have already shown

that f(λ) ≤ λ for λ ∈ R
+

0 . We claim that for all

(λ0, λ1, . . . , λk) ∈ (R
+

0 )k+1, with k ≥ 1, we have
(2.7)
f(λ0, λ1, . . . , λk) ≤ max{λ0+f(λ1, . . . , λk), 2f(λ1, . . . , λk)} .

Assuming (2.7) has been established, we can conclude
that f(1) ≤ 1, f(2, 1) ≤ 3, f(3, 2, 1) ≤ 6, and
f(4, 3, 2, 1) ≤ 12; that is11, 4ℓ0 + 3ℓ1 + 2ℓ2 + ℓ3 ≤ 12
and the first inequality of the lemma follows, since the
same bound clearly holds for the case when p is a right
endpoint. The second inequality follows similarly from
f(5, 4, 3, 2, 1) ≤ 24.

So it remains to prove (2.7). Consider a con-
stellation with a point p that realizes the value of
f(λ0, λ1, . . . , λk). We return to the set-up considered
above, where we have traced a unique sequence of trape-
zoids from p to the right, till we encountered the first
bifurcation point v (if v does not exist then all ℓi van-
ish).

10A priori, this value could be infinite.
11Note that ℓi ≤ 2i for each i ≥ 0 (which can be shown to be

tight); this only yields a bound of 26 for the linear combination

in question. Moreover,
Pk

i=0
ℓi ≤ 2k (which again is tight), but

this only improves the bound to 15, still short of what we need.



Case 1: v is isolated. We know that λ0ℓ0 ≤ λ0. If
we remove v from the point set, then every possible
crossing-free segment emanating from p to its right has
its degree decreased by 1. Therefore, λ1ℓ1 + · · · +
λkℓk ≤ f(λ1, . . . , λk), so the expression (2.6) cannot
exceed λ0 + f(λ1, . . . , λk) in this case.

Case 2: v is a matched left endpoint. Then λ0ℓ0 = 0
(that is, we cannot connect p to v). Possible crossing-
free segments with p as a left endpoint are discriminated
according to whether they pass above or below v. We
first concentrate on the segments that pass above v;
we call them relevant segments (emanating from p).
Let ℓ′i be the number of relevant segments that give
p degree i. We carefully remove isolated points from
P \ {p} and segments with their endpoints from the
matching M (eventually also the segment of which v
is a left endpoint), so that in the end all relevant
segments are still available and each one, if inserted,
makes the degree of p exactly 1 unit smaller than its
original value (this deletion process may create new
possibilities for segments from p). That will show
λ1ℓ

′
1 + · · · + λkℓ′k ≤ f(λ1, . . . , λk). The same will

apply to segments that pass below v, using a symmetric
argument, which gives the bound of 2f(λ1, . . . , λk) for
(2.6) in this second case.

The removal process is performed as follows. We
define a relation ≺ on the set whose elements are the
edges of M and the singleton sets formed by the isolated
points of P \ {p}: a ≺ b if a point a′ ∈ a is vertically
visible from a point b′ ∈ b, with a′ below b′. As is well
known (cf. [17, Lemma 11.4]), ≺ is acyclic. Let ≺+

denote the transitive closure of ≺, and let ≺∗ denote
the transitive reflexive closure of ≺.

Let e be the segment with v as its left endpoint,
and consider a minimal element a with a ≺+ e. Such
an element exists, unless e itself is a minimal element
with respect to ≺.

a is a singleton: So it consists of an isolated point; with
abuse of notation we also denote by a the isolated point
itself. a cannot be a point to which p can connect with
a relevant edge. Indeed, if this were the case, we add
that edge e′ = pa and modify ≺ to include e′ too; more
precisely, any pair in ≺ that involves a is replaced by a
corresponding pair involving e′, and new pairs involving
e′ are added (clearly, the relation remains acyclic and all
pairs related under ≺+ continue to be so related after
e′ is included and replaces a). See Figure 6(a). We
have e ≺ e′ (since, by assumption, the left endpoint v of
e is vertically visible below e′), and e′ ≺+ e (since the
right endpoint a of e′ satisfies a ≺+ e)—a contradiction.
With a similar reasoning we can rule out the possibility
that a contributes to the degree of p when matched via

a relevant edge pq. Indeed, if this were the case, let e′′

be the segment directly above a, which is the first link in
the chain that gives a ≺+ e, i.e., a ≺ e′′ ≺∗ e (e′′ must
exist since a ≺+ e). After adding pq with a contributing
to its degree, we have either a ≺ pq and pq ≺ e′′ (see
Figure 6(b)), or we have pq ≺ a (see Figure 6(c)). In
the former case, we have a ≺ pq ≺ e′′ ≺∗ e ≺ pq—
contradicting the acyclicity of ≺. In the latter case, we
have pq ≺ a ≺+ e ≺ pq, again a contradiction. So if we
remove a, then all relevant edges from p remain in the
game and the degree of each of them (i.e., the degree of
p that the edge induces when inserted) does not change.

(a)

ap

v

e

e′ p

v

e

(b)

q

a

e′′

p

v

Figure 6: (a) The point a cannot be connected to p via a
relevant edge. (b,c) a cannot contribute from below (in (b))
or from above (in (c)) to the degree of p when a relevant
edge pq is inserted.

a is an edge:
a

q

p
v

e

Figure 7: Edge a cannot obstruct a point
from contributing from above to the degree
of p when a relevant edge pq is inserted.

It cannot
obstruct
any isolated
point or left
endpoint be-
low it from
contributing
to the degree
of a relevant
edge pq
above v (because a is minimal with respect to ≺). If
a obstructs a contribution to a relevant edge pq from
above, then we add pq, thus pq ≺ a which, together
with a ≺+ e and e ≺ pq, contradicts the acyclicity of
≺. See Figure 7. Again, we can remove a without any
changes to relevant possible edges from p.

We keep successively removing elements until e is
minimal with respect to ≺. Note that so far all the
relevant edges from p are still possible, and the degree
of p that any of them induces when inserted has not
changed.

Now we remove e with its endpoints. This cannot
clear the way for any new contribution to the degree
of a relevant edge. In fact, any such degree decreases
by exactly 1 because v disappears. The claim is shown,



and the proof of the lemma is completed.

Deriving a recurrence.

Lemma 2.3. Let n, m ∈ N0, such that m ≤ n
2 and

s := n − 2m. For every set P of n points, we have

mam(P ) ≤







12(s+2)
n−3s mam−1(P ) if s < n

3 , and

16(s+2)
n−7s/3 mam−1(P ) if s < 3n

7 .

Let us note right away that the first inequality super-
sedes the second for s < n

5 (i.e. m > 2n
5 ), while the

second one is superior for s > n
5 .

Proof. Fix the set P , and let X and Y be the sets
of all crossing-free m-matchings and (m−1)-matchings,
respectively, in P .

Let us concentrate on the first inequality. We define
an edge-labeled bipartite graph G on X

.
∪ Y as follows:

Given an m-matching M , if p is an endpoint of a
segment e ∈ M and d(p) ≤ 3, then we connect M ∈ X
to the (m − 1)-matching M \ {e} ∈ Y with an edge
labeled (p, d(p)); d(p) is the degree label of the edge.
Note that M and M \ {e} can be connected by two
(differently labeled) edges, if both endpoints of e have
degree at most 3.

For 0 ≤ i ≤ 3, let xi denote the number of edges in
G with degree label i. We have

(2n−6s) |X |
︸︷︷︸

mam(P )

≤ 4x0+3x1+2x2+x3 ≤ 24(s+2) |Y|
︸︷︷︸

mam−1(P )

.

The first inequality is a consequence of inequality (2.1)
of Lemma 2.1. The second inequality is implied by
inequality (2.4) in Lemma 2.2, as follows. For a fixed
(m−1)-matching M ′ in P , consider an edge of G that is
incident to M ′ and is labeled by (p, i) (if there is such an
edge). Then p must be one of the s+2 isolated points of
P (with respect to M ′), and there is a way to connect
p to another isolated point in a crossing-free manner,
so that p has degree i in the new matching. Hence, the
contribution by p and M ′ to the sum 4x0+3x1+2x2+x3

is at most 24, by inequality (2.4) in Lemma 2.2, and
the right inequality follows. The combination of both
inequalities yields the second inequality in (2.8).

By considering endpoints up to degree 4 (instead of
3), we get the second inequality in an analogous fashion
(with the help of inequality (2.2) in Lemma 2.1 and
inequality (2.5) in Lemma 2.2).

For m, n ∈ N0, let mam(n) denote the maximum
number of crossing-free m-matchings a set of n points
can have.

Lemma 2.4. Let s, m, n ∈ N0, with n = 2m + s. We
have

ma0(0) = 1,

mam(n) ≤







n
s mam(n − 1), for s ≥ 1,
12(s+2)
n−3s mam−1(n), for s < n

3 , and
16(s+2)
n−7s/3 mam−1(n), for s < 3n

7 .

(2.8)

Proof. ma0(0) = 1 is trivial.
The first of the three inequalities in (2.8) is implied

by

s · mam(P ) =
∑

p∈P

mam(P \ {p}) ≤ n · mam(n − 1) ,

for any set P of n points. The second and third
inequality follow from Lemma 2.3.



3 Solving a Recurrence

We derive an upper bound for a function

G ≡ Gλ,µ : N
2
0 → R

+

,

for a pair of parameters λ, µ ∈ R
+

, µ ≥ 1, which satisfies

G(0, 0) = 1,

G(m, n) ≤
{ n

s G(m, n − 1) , for s ≥ 1, and

λ(s+2)
n−µs G(m − 1, n) , for s < n

µ ,
(3.9)

with the convention s := n − 2m.
The recurrence in (2.8) implies that an upper

bound on G12,3(m, n) serves also as an upper bound for
mam(n), and the same holds for G16,7/3(m, n). We will
later see how to best combine the two parameter pairs,
to obtain even better bounds for mam(n). Later, we will
encounter other instances of this recurrence, with other
values of λ and µ.

We normalize by dividing by λmµn−m. Then (3.9)
becomes

G(m, n)

λmµn−m
≤







n
µs

G(m,n−1)
λmµn−1−m , for s ≥ 1, and

µ(s+2)
n−µs

G(m−1,n)
λm−1µn−m+1 , for s < n

µ .

We set H(m, n) = Hµ(m, n) := G(m,n)
λmµn−m . Therefore,

still with the convention s := n−2m and the assumption
µ ≥ 1, we have

H(0, 0) = 1,

H(m, n) ≤
{ n

µs H(m, n − 1) , for s ≥ 1, and

µ(s+2)
n−µs H(m − 1, n) , for s < n

µ .
(3.10)

We note that this recurrence depends only on µ.

Lemma 3.1. Let m, n ∈ N0, with m ≤ n
2 . Then

H(m, n) ≤
(

n
m

)
.

Proof . H(0, 0) = 1 ≤
(
0
0

)
forms the basis of a

proof by induction on n and m. For all n ∈ N0,
H(0, n) ≤ µ−n ≤ 1 =

(
n
0

)
follows, since µ ≥ 1.

Let 1 ≤ m ≤ n
2 . If m ≤ n − µs then s ≤ n−m

µ < n
µ .

Hence, the second inequality in (3.10) can be applied,
after which the first inequality can be applied. Hence,

H(m, n) ≤ µ(s + 2)

n − µs
H(m − 1, n)

≤ µ(s + 2)

n − µs

n

µ(s + 2)
H(m − 1, n − 1)

≤ n

m

(
n − 1

m − 1

)

=

(
n

m

)

.

Otherwise, m > n − µs holds, which ensures µs >
n − m ≥ 0, i.e., s ≥ 1. We can therefore employ the
first inequality of (3.10), and obtain

H(m, n) ≤ n

µs
H(m, n− 1) <

n

n − m

(
n − 1

m

)

=

(
n

m

)

.

By expanding along the first inequality for a while
before employing Lemma 3.1, we get

H(m, n) ≤ n

µs
· · · n − k + 1

µ(s − k + 1)
H(m, n − k)

≤ 1

µk

(
k−1∏

i=0

n − i

s − i

)(
n − k

m

)

=
1

µk

(
n
k

)

(
s
k

)

(
n − k

m

)

(3.11)

=
1

µk

(
2m
m

)

(
n−m−k

m

)

(
n

2m

)

, for N0 ∋ k ≤ s.(3.12)

When we stop this unwinding of the recurrence, we
could have alternatively proceeded one more step, and
upper bound H(m, n − k) by n−k

µ(s−k)

(
n−k−1

m

)
, provided

k < s. As long as this expression is smaller than
(
n−k
m

)
,

we should indeed have expanded further. That is, we
expand as long as

n − k

µ(s − k)

(
n − k − 1

m

)

<

(
n − k

m

)

⇔ n − k

µ(s − k)
(n − k − m) < n − k

⇔ k <
µs + m − n

µ − 1
= n − m

(
2µ − 1

µ − 1

)

= n − m

ρ
,

for ρ := µ−1
2µ−1 . In other words, the best choice of k in

(3.11) is

(3.13) k =

⌈

n − m

ρ

⌉

= n −
⌊

m

ρ

⌋

.

In fact, if this suggested value of k is negative (or if
ρ = 0), we should not expand at all. Instead, we can
try to expand along the second inequality of (3.10), to
get (note that here reducing m by 1 increases s by 2)

H(m, n) ≤ µ(s + 2)

n − µs
· · · µ(s + 2 + 2(k − 1))

n − µ(s + 2(k − 1))
H(m − k, n)

≤
(

k−1∏

i=0

s
2 + 1 + i
n
2µ − s

2 − i

)(
n

m − k

)

=

( s
2+k

k

)

( n
2µ− s

2

k

)

(
n

m − k

)

,(3.14)



for N0 ∋ k < n
2µ − s

2 + 1 = m − µ−1
2µ n + 1; we employ

here the usual generalization of binomial coefficients
(
a
k

)

to a ∈ R, namely,
(
a
k

)
:= a(a−1)···(a−k+1)

k! .
Rather than optimizing the value of k at which we

stop the unwinding of the second recurrence inequality
of (3.10), we approximate it by

(3.15) k =

⌈

m − µ − 1

2µ− 1
n

⌉

= m − ⌊ρn⌋ ,

and note that it lies in the allowed range, provided it is
positive. (With some tedious calculations, one can show
that the optimal stopping value is k = m − ⌊ρ(n + 1)⌋,
which is either equal to the k in (3.15) or is smaller than
it by 1.)

When m
n = ρ, both values suggested for k in

(3.13) and (3.15) are 0, which indicates that we have to
content ourselves with the bound

(
n
m

)
from Lemma 3.1.

Otherwise, it is clear which way to expand, since

m

n
< ρ ⇒ n −

⌊
m
ρ

⌋

≥ 0,

m

n
> ρ ⇒ m − ⌊ρn⌋ ≥ 0.

We are now ready for an improved bound. For that we
substitute k in (3.11) according to (3.13), and in (3.14)
according to (3.15).

Lemma 3.2. Let m, n ∈ N0, where 2m ≤ n, and set
ρ := µ−1

2µ−1 . If m
n ≤ ρ, then

Hµ(m, n) ≤ 1

µn−⌊m/ρ⌋

(
n

n−⌊m/ρ⌋

)

(
n−2m

n−⌊m/ρ⌋

)

(⌊m/ρ⌋
m

)

,

and for m
n > ρ, we have

Hµ(m, n) ≤
( n

2 −⌊ρn⌋

m−⌊ρn⌋

)

(m−n
2 (1− 1

µ )

m−⌊ρn⌋

)

(
n

⌊ρn⌋

)

.

Thus, Gλ,µ(m, n) ≤ Gλ,µ(m, n) with

Gλ,µ(m, n) :=







λmµ⌊m/ρ⌋−m

(
n

n−⌊m/ρ⌋

)

(
n−2m

n−⌊m/ρ⌋

)

(⌊m/ρ⌋
m

)

, for m
n ≤ ρ, and

λmµn−m

( n
2 −⌊ρn⌋

m−⌊ρn⌋

)

(m−n
2 (1− 1

µ )

m−⌊ρn⌋

)

(
n

⌊ρn⌋

)

, for m
n > ρ.

Next we work out a number of properties of the upper
bound Gλ,µ.

Estimates up to a polynomial factor. In the
following derivations, we sometimes use “≈n” to denote
equality up to a polynomial factor in n.

We will frequently use the following estimate (im-
plied by Stirling’s formula, cf. [26, Chapter 10, Corollary
9])

(
αn

⌈βn⌉

)

≈n

(
αn

⌊βn⌋

)

≈n

(
αα

ββ(α − β)α−β

)n

, for α, β ∈ R, α ≥

Big m. We note that for m−1
n ≥ ρ

Gλ,µ(m, n) =
λ(s + 2)

n − µs
Gλ,µ(m−1, n) with s := n − 2m.

Since λ(s+2)
n−µs < 1 ⇔ s < n−2λ

λ+µ ⇔ m > (λ+µ−1)n+2λ
2(λ+µ) ,

the function Gλ,µ(m, n) maximizes for integers m in the
range ρn ≤ m ≤ n

2 at
(3.16)

m∗ :=

⌊
(λ + µ − 1)n + 2λ

2(λ + µ)

⌋

=

⌊
n

2
− n − 2λ

2(λ + µ)

⌋

,

unless this value is not in the provided range. However,
m∗ ≤ n

2 unless n is very small (n < 2λ). And m∗ ≥ ρn
unless λ < µ − 1.

Small m. With the identity indicated in (3.12) we
have, for m

n ≤ ρ, that G can also be written as
(3.17)

Gλ,µ(m, n) = λmµ⌊m/ρ⌋−m

(
2m
m

)

(
⌊m/ρ⌋−m

m

)

(
n

2m

)

≈m (4λ(µ−1))m

(

2

This bound peaks (up to an additive constant) at

m∗∗ :=

⌊ √

λ(µ − 1)

1 + 2
√

λ(µ − 1)
n

⌋

.

We observe that m∗∗ ≤ ρn for λ ≤ µ − 1.

We can summarize, that the function Gλ,µ(m, n)
attains its maximum—up to a poly(n)-factor—over m
at

m =

{
m∗∗ if λ ≤ µ − 1, and
m∗ otherwise.

(3.18)

In all applications in this paper we have λ > µ − 1, so
the peak occurs at m∗.

4 Matching Bounds

4.1 Perfect Matchings For perfect matchings we
consider the case where n is even, m = n

2 , and s = 0.
We note that in this case m/n = 1/2 > ρ, for any
value of µ. Hence, the second bound of Lemma 3.2



applies. We first calculate n
2 − n

2 (1 − 1
µ ) = 1

2µ n, and

n
2 − ⌊ρn⌋ =

⌈
n
2 − µ−1

2µ−1 n
⌉

=
⌈

1
2(2µ−1) n

⌉

. Hence,

Gλ,µ

(n

2
, n
)

= (λµ)n/2

( 1
2µ n

⌈
1

2(2µ−1) n
⌉

)−1(
n⌊

µ−1
2µ−1 n

⌋

)

≈n (λµ)n/2







(
1

2(2µ−1)

) 1
2(2µ−1)

(
µ−1

2µ(2µ−1)

) µ−1
2µ(2µ−1)

(
1
2µ

) 1
2µ
(

µ−1
2µ−1

) µ−1
2µ−1

(
µ

2µ−1

) µ
2µ−1







n

= (λµ)n/2
(

µ
1

2(2µ−1)−
µ

2µ−1 (µ − 1)
µ−1

2µ(2µ−1)−
µ−1
2µ−1 (2µ − 1)−

1
2µ +1

)n

= (λµ)n/2
(

(µ − 1)−
µ−1
2µ µ− 1

2 (2µ − 1)
2µ−1
2µ

)n

=
(

λ
1
2 (µ − 1)−

µ−1
2µ (2µ − 1)

2µ−1
2µ

)n

.

Substituting (λ, µ) = (12, 3) and (16, 7
3 ), as suggested

by Lemma 2.4, we obtain the following upper bounds
for the number of crossing-free perfect matchings:

G12,3

(n

2
, n
)

≈n

(

2
2
3 · 3 1

2 · 5 5
6

)n

= O(10.5129n) , and

G16, 7
3

(n

2
, n
)

≈n

(

2
10
7 · 3− 1

2 · 11
11
14

)n

= O(10.2264n) .

While the second bound is obviously superior, we re-
member that the recurrence with (λ, µ) = (12, 3) is bet-
ter for m > 2n

5 (or s < n
5 ). This observation leads to

the following better bound for P a set of n points and
for k = ⌊n

2 − 2n
5 ⌋ = ⌊ n

10⌋, where we expand as in the
first inequality of Lemma 2.3.

pm(P ) ≤
(

k−1∏

i=0

12(2i + 2)

n − 6i

)

man/2−k(P ) ≤ 4k

(n
6

k

)−1

G16,7/3(n/2 − k, n)

≈n

(

220/21 3−2/7 51/21 1111/14
)n

= O(10.0438n).

Perfect versus all matchings. Recall from

Lemma 2.3 that mam(P ) ≤ 12(s+2)
n−3s mam−1(P ). Note

that 12(s+2)
n−3s < 1 for m > 7n

15 + 4
5 (and in this range

the factor 12(s+2)
n−3s is smaller than the alternative of-

fered in Lemma 2.3). That is, there are always fewer
perfect matchings than there are

⌊
7n
15 + 4

5

⌋
-matchings.

More specifically, for sets P with n := |P | even, and for

k = n
2 −

⌊
7n
15 + 4

5

⌋
=
⌈

n
30 − 4

5

⌉
, we have

pm(P ) = man/2(P ) ≤
k−1∏

i=0

12(2i + 2)

n − 6i
man/2−k(P )

=

(
12 · 2

6

)k (n
6

k

)−1

man/2−k(P )

≈n 4n/30

((
1

5

)1/5(
4

5

)4/5
)n/6

ma⌊7n/15+4

=
(

21/3 5−1/6
)n

ma⌊7n/15+4/5⌋(P ) .

This implies that pm(P ) ≤
(
21/3 5−1/6

)n
ma(P ) poly(n) = O(0.9635n)ma(P ).

In every point set there are exponentially (in the size
of the set) more crossing-free matchings than there are
crossing-free perfect matchings.

4.2 All Matchings Our considerations in the deriva-
tion of the bound for perfect matchings imply the fol-
lowing upper bound for matchings with m segments.
(4.19)

mam(P ) ≤







G16,7/3(m, n) , m ≤ 2n
5 , and

G12,3(m, n)
G16,7/3( 2n

5 ,n)

G12,3( 2n
5 ,n)

, otherwise.

To determine where the expression (4.19) maxi-
mizes, we note that G16,7/3 does not peak in its “small

m”-range (m ≤ 4
11 ) since 16 > 7

3 − 1 (recall (3.18)).
In the “big m”-range, it peaks at roughly 26n

55 (see
(3.16)), which exceeds 2

5 . Therefore, the maximum

occurs when G12,3 comes into play, which peaks at
roughly 7n

15 . For that value the upper bound evaluates

to ≈n (213/21 3−2/7 53/14 1111/14)n = O(10.4244n).
We summarize in the following main theorem.

Theorem 4.1. Let P be a set of n points in the plane.
Then

(1) pm(P ) ≤
(
220/21 3−2/7 51/21 1111/14

)n
poly(n) =

O(10.0438n).

(2) pm(P ) ≤
(
21/3 5−1/6

)n
ma(P ) poly(n) =

O(0.9635n)ma(P ).

(3) ma(P ) ≤
(
213/21 3−2/7 53/14 1111/14

)n
poly(n) =

O(10.4244n).

We note, by the way, that the first inequality in
the theorem is a direct consequence of the other two
inequalities.



4.3 Random Point Sets Let P be any set of N ∈ N

points in the plane, no three on a line, and let r ∈ N

with r ≤ N . If R is a subset of P chosen uniformly at
random from

(
P
r

)
, then, for λ = 16, µ = 7

3 , and provided

m ≤ µ−1
2µ−1N = 4

11N , and that r ≥ 2m, we have, using

(3.17),12

E[mam(R)] =






∑

R∈(P
r)

mam(R)




 /

(
N

r

)

= mam(P )

(
N − 2m

r − 2m

)

/

(
N

r

)

≤ (4λ(µ − 1))m

(
N

2m

)((
N − 2m

r − 2m

)

/

(
N

r

))

poly(N)

= (4λ(µ − 1))m

(
r

2m

)

=
(
28 3−1

)m
(

r

2m

)

.

We see that if we sample r points from a large enough
set, then the expected number of crossing-free match-
ings observes for all m the upper bound derived for the
range of small m.

Suppose now that, for n even, we sample n i.i.d.
points from an arbitrary distribution, for which we
only require that two sampled points coincide with
probability 0. Then we can first sample a set P of
N > 11

8 n points, and then choose a subset of size n
uniformly at random from the family of all subsets of
this size. We obtain a set R of n i.i.d. points from
the given distribution. If P is in general position, by
the argument above the expected number of perfect
crossing-free matchings is at most ≈n (28 3−1)n/2. If P
exhibits collinearities, we perform a small perturbation
yielding a set P̃ and the subset R̃. Now the bound
applies to R̃, and also to R since a sufficiently small
perturbation cannot decrease the number of crossing-
free perfect matchings.

Theorem 4.2. For any distribution in the plane for
which two sampled points coincide with probability 0,
the expected number of crossing-free perfect matchings
of n i.i.d. points is at most

(

24 3−1/2
)n

poly(n) = O(9.2377n) .

4.4 Red-Blue Perfect Matchings We next con-
sider several variants of crossing-free bipartite match-
ings, for which better upper bounds can be derived.

Here we assume that the given set P of n points is
the disjoint union R

.
∪ B of two subsets, and each edge

in the matching has to connect a point of R with a point

12There is a small subtlety in that the second identity in the
derivation relies on the fact that P is in general position. For that
consider three points on a line.

of B. We refer to the points of R as red points, and to
those of B as blue.

We repeat the preceding analysis, but we modify the
definition of the degree d(p) of a point: If p is a matched
point in R, say the left endpoint of its edge e, then d(p) is
equal to the number of left endpoints plus the number of
blue isolated points that are vertically visible from (the
relative interior of) e. A symmetric definition holds for
right endpoints and for points p ∈ B. (Intuitively, a blue
isolated point q has to contribute only to the degrees of
red points, because, when we insert an edge emanating
from a blue point p, it cannot connect to q, and it does
not matter whether it passes above or below q; that is,
q does not cause any bifurcation in the ways in which p
can be connected.)

In this case we have
∑

p∈P

d(p) ≤ 4m + 2s,

because each isolated point contributes to the degree of
only two matched points. This changes the bounds in
Lemma 2.1 to

2n ≤ 4v0 + 3v1 + 2v2 + v3 + 4s , and

3n ≤ 5v0 + 4v1 + 3v2 + 2v3 + v4 + 5s .

The rest of the analysis continues verbatim, except that

now the recurrence (2.8) involves the factors 12(s+2)
n−2s

and 16(s+2)
n−5s/3 , or, in other words, (λ, µ) = (12, 2) (with

ρ = 1/3) and (16, 5
3 ) (with ρ = 2/7), respectively. The

first factor is superior for s < n
3 , i.e., m > n

3 .
We thus obtain, with k = ⌊n

6 ⌋, a bound of
(

k−1∏

i=0

12(2i + 2)

n − 4i

)

G16,5/3(n/2 − k, n)

for the number of perfect red-blue matchings. Manipu-
lating it, as above, yields:

Theorem 4.3. Let P be a set of n points in the plane
each one colored red or blue. Then the number of red-
blue perfect crossing-free matchings in P is at most

(

26/5 3−3/20 77/10
)n

poly(n) = O(7.6075n) .

4.5 Left-Right Perfect Matchings Here we as-
sume that P is partitioned into two disjoint subsets L, R
and consider bipartite matchings in L×R such that, for
each edge of the matching, its left endpoint belongs to
L and its right endpoint to R.

We modify the definition of the degrees of the
points, as in the red-blue case, and have, as above,

∑

p∈P

d(p) ≤ 4m + 2s.



The analysis further improves, because when we insert
an edge emanating from a point p ∈ L, say, the
corresponding numbers hi must be equal to ℓi, since
p can only be the left endpoint of the edge. A similar
improvement holds for points q ∈ R. Hence, we can
bound the sum 4h0 + 3h1 + 2h2 + h3 by 12, rather than
24; similarly, we have 5h0 + 4h1 + 3h2 + 2h3 + h4 ≤ 24.
That is, we have the two options (λ, µ) = (6, 2) and
(8, 5

3 ). We thus obtain the bound

(
k−1∏

i=0

6(2i + 2)

n − 4i

)

G8,5/3(n/2 − k, n) , for k = ⌊n
6 ⌋,

which leads to the following result.

Theorem 4.4. Let P be a set of n points in the plane
and assume that the points are classified as left end-
points or right endpoints. Then the number of left-right
perfect crossing-free matchings in P that obey this clas-
sification is at most

(

27/10 3−3/20 77/10
)n

poly(n) = O(5.3793n) .

4.6 Matchings Across a Line Consider next the
special case of crossing-free bipartite perfect matchings
between two sets of n

2 points each that are separated
by a line. Here we can obtain an upper bound that is
smaller than the one in Theorem 4.4.

Theorem 4.5. Let n be an even integer. The number
of crossing-free perfect bipartite matchings between two
separated sets of n

2 points each in the plane is at

most Cn/2
2 < 4n; (recall that Cm is the mth Catalan

number).

Proof . Let L and R be the given separated sets.
Without loss of generality, take the separating line λ
to be the y-axis, and assume that the points of L lie
to the left of λ and the points of R lie to its right.
Let M be a crossing-free perfect bipartite matching in
L × R. For each edge e of M , let eL (resp., eR) denote
the portion of e to the left (resp., right) of λ, and refer
to them as the left half-edge and the right half-edge of
e, respectively. We will obtain an upper bound for
the number of combinatorially different ways to draw
the left half-edges of a crossing-free perfect matching in
L×R. The same bound will apply symmetrically to the
right half-edges, and the final bound will be the square
of this bound.

In more detail, we ignore R, and consider collections
S of n

2 pairwise disjoint segments, each connecting a
point of L to some point on λ, so that each point of L is
incident to exactly one segment. For each segment in S,
we label its λ-endpoint by the point of L to which it is

connected. The increasing y-order of the λ-endpoints of
the segments thus defines a permutation of L, and our
goal is to bound the number of different permutations
that can be generated in this way. (In general, this is a
strict upper bound on the quantity we seek—see below.)

We obtain

L R

λ

p1

p2

p3

p4

p5

p6

p7

Figure 8: Recursively counting
permutations induced on λ by left
half-edges.

this bound in the
following recursive
manner. Write
m := |L| = n

2 .
Sort the points
of L from left to
right (we may
assume that there
are no ties—they
can be eliminated
by a slight rota-
tion of λ), and
let p1, p2, . . . , pm

denote the points
in this order. Con-
sider the half-edge e1 emanating from the leftmost
point p1. Any other point pj lies either above or below
e1. By rotating e1 about p1, we see that there are
at most m (exactly m, if we assume general position)
ways to split {p2, . . . , pm} into a subset L+

1 of points
that lie above e1 and a complementary subset L−

1

of points that lie below e1, where in the i-th split,
|L+

1 | = i − 1 and |L−
1 | = m − i. Note that, in any

crossing-free perfect bipartite matching that has e1 as a
left half-edge incident to p1, all the points of L+

1 (resp.,
of L−

1 ) must be incident to half-edges that terminate
on λ above (resp., below) the λ-endpoint of e1; see
Figure 8.

Hence, after having

L R

λ

Figure 9: A left and a
right permutation which are
not compatible.

fixed i, we can proceed
to bound recursively and
separately the number
of permutations induced
by L+

1 , and the number
of those induced by L−

1 .
In other words, denoting
by Π(m) the maximum
possible number of dif-
ferent permutations induced in this way by a set L of
m points (in general position), we get the following re-
currence

Π(m) ≤
m∑

i=1

Π(i − 1)Π(m − i),

for m ≥ 1, where Π(0) = 1. However, this is the
recurrence that (with equality) defines the Catalan
numbers, so we conclude that Π(m) ≤ Cm.



A (probably weak) upper bound for the number of
crossing-free perfect bipartite matchings in L×R is thus
Cm

2. Indeed, for any permutation πL of L and any
permutation πR of R, there is at most one crossing-
free perfect bipartite matching in L × R that induces
both permutations. Namely, it is the matching that
connects the j-th point in πL to the j-th point in πR, for
each j = 1, . . . , m. See Figure 9 for an example of two
such permutations that do not yield a (straight-edge)
crossing-free matching.

We thus obtain the asserted upper bound Cm
2 =

Cn/2
2 < 4n.

5 Two Implications

5.1 Spanning Cycles

Theorem 5.1. Let P be a set of n points in the plane.
Then the number of crossing-free spanning cycles satis-
fies

sc(P ) ≤ (27/5 37/10 77/5)npoly(n) = O(86.8089n) .

Proof. Let P be a given set of n points. We construct
a new set P ′ of 2n points by creating two copies p+, p−

of each point p ∈ P , and by placing these copies co-
vertically very close to the original location of p, with
p+ lying above p−.

Let π be a cycle in P . We map π to a perfect
matching in P ′ as follows. For each p ∈ P , let q, r be its
neighbors in π. (i) If both q, r lie to the left of p, with
the edge qp lying above rp, we connect p+ to either q+

or q−, and connect p− to either r+ or r− (the actual
choices will be determined at q and r by similar rules).
(ii) The same rule applies in the case where both q, r lie
to the right of p. (iii) If q lies to the left of p and r lie to
the right of p, then we connect p+ to either q+ or q−,
and connect p− to either r+ or r−. It is clear that the
resulting graph π∗ is a crossing-free perfect matching in
P ′, assuming general position of the points of P , if we
draw each pair of points p+, p− sufficiently close to each
other. See Figure 10 for an illustration.

We

Figure 10: A cycle in P induces a left-right
perfect matching in P ′.

assign
to each
point
p ∈ P
a label
that
de-
pends

on π. A point whose two neighbors in π lie to its left is
labeled as a right point, a point whose two neighbors in
π lie to its right is labeled as a left point, and a point

having one neighbor in π to its right and one to its left
is labeled as a middle point.

We assign the cycle π to the pair (π∗, λ), where π∗

is the resulting perfect matching on P ′ and λ is the
labeling of P , as just defined.

Each pair (π∗, λ) can be realized by at most one
cycle π in P , by simply merging each pair p+, p− back
into the original point p. (The resulting graph need not
be a cycle; in general it is a collection of pairwise disjoint
cycles.) It therefore suffices to bound the number of
such pairs (π∗, λ).

A given labeling λ of P uniquely classifies each
point of P ′ as being either a left point of an edge
of the matching or a right endpoint of such an edge.
Hence, the number of crossing-free perfect matchings π′

on P ′ that respect this left-right assignment is at most
(27/10 3−3/20 77/10)2npoly(n). The number of labellings
of P is 3n. Hence, the number of crossing-free cycles in
P is at most (27/5 37/10 77/5)npoly(n), as asserted.

Clearly, it follows from the proof that the bound
holds for the number of crossing-free spanning paths as
well, and also for the number of cycle covers (or path
covers) of P .13

5.2 Crossing-free Partitions We now relate
crossing-free partitions of a point set P to matchings,
thereby establishing an upper bound on cfp(P ).

To

Spines, isolated ( ), top ( ),

and bottom ( ) points.

Figure 11: Encoding a crossing-free partition.

this
end,
ev-
ery
crossing-
free
par-
ti-
tion
of
P
is
mapped
to
a
tu-
ple

(M, S, I+, I−) where (see Figure 11)

(i) M is the matching in P , whose edges connect the
leftmost point to the rightmost point of each set in the
partition with at least two elements (we refer to each
such segment as the spine of its set),
(ii) S is the set of all points that form singleton sets in

13A slight improvement can be obtained by noting that when
a cycle has j middle points, we can derive from it 2j distinct
matchings in P ′, by flipping the connections to some of the pairs
of P ′ that represent middle points. The improvement is tiny,
and we omit it here, since we aim at a much more substantial
improvement in our work in progress [33].



the partition, and
(iii) I+ (resp., I−) is the set of points in P \ S that are
neither the leftmost nor the rightmost in their set, and
which lie above (resp., below) the spine of their set.

We observe that M is crossing-free, and that the
partition is uniquely determined by (M, S, I+, I−).
Therefore, any upper bound on the number of such
tuples will establish an upper bound on the number
of crossing-free partitions. For every crossing-free
matching M on P there are 3n−2|M| triples (S, I+, I−)
which form a 4-tuple with M (clearly, not all of them
have to come from a crossing-free partition, so we
overcount). Therefore

∑

m 3n−2mmam(P ) is an upper
bound on the number of crossing-free partitions.

Ignoring the 3n-factor for the time being, we have to
determine an upper bound on 3−2mmam(P ), for which
we employ the bound from (4.19). We observe that
3−2mGλ,µ(m, n) = Gλ/9,µ(m, n), and therefore
(5.20)

3−2mmam(P ) ≤







G16/9,7/3(m, n) , m ≤ 2n
5 , and

G4/3,3(m, n)
G16,7/3(

2n
5 ,n)

G12,3( 2n
5 ,n)

, otherwise.

Since 16
9 ≥ 7

3 − 1 (see (3.18)) the peak will not occur in

the “small m”-range of G16/9,7/3. In its “big m”-range,

the maximum occurs at m roughly 14n
37 (see (3.16))

which lies in the interval [ 4
11 , 2

5 ]. Also, G4/3,3 peaks

for m ≤ 2n
5 since 4

3 ≤ 3 − 1 (consult (3.18)). Therefore,
the bound peaks at m roughly 14n

37 with the value

3n G16/9,7/3(⌊ 14n
37 ⌋, n) ≈n (24/7 3−1/2 1111/14 373/14)n .

Note that we could have estimated the number of
4-tuples by first choosing a subset Q, which is the union
of S and the endpoints of M , then choose a matching
in Q, and then partition P \Q into I+ ∪ I−. This leads
to a bound of ≈n

∑

k

(
n
k

)
ck2n−k = (c + 2)n, where c is

the constant in the bound for all matchings. This yields
a bound of O(12.43n) which falls short of our bound
obtained above.

Theorem 5.2. Let P be a set of n points in the plane.
Then the number of crossing-free partitions satisfies

cfp(P ) ≤
(

24/7 3−1/2 1111/14 373/14
)n

poly(n) = O(12.2388n) .

6 Lower Bounds

In this section we briefly derive the lower bounds
mentioned in Table 1. Most of them rely on an analysis
of the so-called double chain, as it was first considered
by Garćıa, Noy, and Tejel [19] in the context of crossing-
free graphs. For matchings across a line (and left-right
matchings) we use a different configuration.

Given m ∈ N, the double chain D2m consists
of n := 2m points. There is an upper half Um of

m points on the parabola y = x2+1
2 with their x-

coordinates in [−1, +1], and there is a lower half Lm

of m points on the parabola y = −x2+1
2 in the same

x-range. The important property is that Um and Lm

are in convex position, and the relative interior of each
segment connecting a point from Um with a point from
Lm is disjoint from the convex hulls of Um and of Lm,
and thus cannot cross any segment connecting points
within these sets.

Garćıa et
U9

L9

Figure 12: The double chain
D18.

al. [19] show,
among others, that
sc(D2m) = Ω(4.64n)
and that
(6.21)

pm(D2m) =

⌊m/2⌋
∑

k=0

(
m

2k

)2

Ck
2 ≈n 3n .

We wish to reca-
pitulate the argument
for the latter bound.
A crossing-free perfect
matching with k inner edges within Um leaves m − 2k
points in Um to be matched to the same number of
points in Lm. So within Lm, we also have k inner
edges. If we choose the 2k endpoints in Um for the inner
edges (

(
m
2k

)
choices) then we have Ck possibilities to con-

nect them in a perfect crossing-free matching; the same
bound applies to Lm. The remaining points from Um

and Lm allow exactly one crossing-free perfect match-
ing from the upper set to the lower set. This gives the
bound in (6.21). (The estimate for the sum builds on

the observation that
∑N

i=0 ai
2 ≈N

(
∑N

i=0 ai

)2

for non-

negative real numbers ai.)
In a similar fashion we can argue now for

ma(D2m) =

m∑

k=0

(
m

k

)2

Mk
2 ≈n 4n ,

where Mk =
∑

i

(
k
2i

)
Ci = Θ(k−3/23k) is the kth

Motzkin number that counts the number of all match-
ings of k points in convex position [28].

Crossing-free partitions. Along similar lines we
easily get a lower bound of

cfp(D2m) ≥
m∑

k=0

(
m

k

)2

Ck
2 ≈n 5n .

This bound for crossing-free partitions counts only a
restricted class of such partitions, namely those com-



posed of a matching between m − k points in Um with
m − k points in Lm, together with crossing-free parti-
tions among the remaining k points in Um and among
the remaining k points in Lm.

Let us perform an exhaustive counting of crossing-
free partitions of the double chain. Here are the
ingredients.

Recall first that for N ∈ N0, i ∈ N, the number
N can be written as an ordered sum of i nonnegative
integers in

(
N+i−1

i−1

)
ways, and as an ordered sum of i

positive integers in
(
N−1
i−1

)
ways.

Now we “prepare” the upper half Um for a crossing-
free partition as follows. We specify the number k of
parts that extend to the lower half, and we also specify
which k contiguous nonempty subsequences of points of
Um form the upper portions of these extended parts; we
refer to these sequences as docking places. If the overall
size of these docking places is k + ℓ, we have to specify
numbers ai ∈ N0, 0 ≤ i ≤ k, which are the sizes of
intermediate non-docking parts, and numbers bi ∈ N,
1 ≤ i ≤ k, which are the sizes of docking parts, so that
m = a0 + b1 + a1 + · · · bk + ak, with

∑
ai = m − k − ℓ

(and so
∑

bi = k + ℓ).

There are
(m−k−ℓ+(k+1)−1

(k+1)−1

)
=

(
m−ℓ

k

)
ways to

choose the ai’s, and
(

k+ℓ−1
k−1

)
ways to choose the bi’s.

That is, the number of configurations with k docking
places (with the non-docking points already forming a
crossing-free partition within Um) is exactly

m−k∑

ℓ=0

(
m − ℓ

k

)(
k + ℓ − 1

k − 1

)

Cm−k−ℓ .

Hence, repeating the same analysis to the lower half Lm,
and observing that, as in the case of matchings, there
is a unique way to connect the upper and lower docking
places in a non-crossing manner, we obtain

cfp(D2m) = Cm
2+

m∑

k=1

(
m−k∑

ℓ=0

(
m − ℓ

k

)(
k + ℓ − 1

k − 1

)

Cm−k−ℓ

)2

.

So for an estimate up to a polynomial factor in m,
it remains to find k and ℓ so that f(m, ℓ, k) :=
(
m−ℓ

k

)(
k+ℓ−1

k−1

)
Cm−k−ℓ is large. We have

f(m, ⌊0.05m⌋, ⌊0.22m⌋) > 5.23mpoly(m) ,

which gives cfp(D2m) > (5.23mpoly(m))2 =
5.23npoly(n). (The coefficients 0.05 and 0.22 were cho-
sen via a numerical analysis.)

Red-blue matchings. It is worthwhile to notice
that if we color n points in convex position, n even,
alternately red and blue along the boundary of their
convex hull, then all perfect matchings on this set are

compatible with this coloring. That is, we have a
colored set of n points with Cn/2 ≈ 2n crossing-free
perfect red-blue matchings. Again, we will employ the
double chain for a better lower bound.

Assume m to be even, consider D2m, and color the
points in Um alternately red and blue, starting with red
at the leftmost point. Then color Lm alternately blue
and red, starting with blue at the leftmost point. Given
that coloring we generate perfect red-blue matchings as
follows.

• Choose some k, 0 ≤ k ≤ m
2 .

• Select k red points in Um (
(
m/2

k

)
possibilities).

• Select k blue points in Lm (
(
m/2

k

)
possibilities).

• Match the selected red points and their next (to the
right) blue neighbors in Um with the selected blue
points and their next (to the right) red neighbors
in Lm. This can be done in a unique crossing-free
manner, which is also red-blue compatible.

• Match the remaining m − 2k points in Um. By
the way points were selected, the remaining points
are still alternately red and blue and thus allow
Cm/2−k red-blue matchings, and the same holds for
the lower chain Lm.

This gives

m/2
∑

k=0

(
m/2

k

)2

Cm/2−k
2 ≈m

m/2
∑

k=0

(
m/2

k

)2

(4m/2−k)
2 ≈m 5m =

√
5

n
=

perfect crossing-free red-blue matchings as claimed in
Table 1. The above procedure does not catch all pos-
sible perfect crossing-free red-blue matchings—a more
accurate analysis might lead to a better bound.

Perfect matchings in random sets. Finally, let
us describe a distribution in the plane such that the
expected number of crossing-free perfect matchings of n
i.i.d. points, for n even, is at least 3n/poly(n). We draw
a random point p by first choosing an x uniformly at

random in [−1, +1], and then by letting p = (x, x2+1
2 )

or p = (x,−x2+1
2 ), each of the two possibilities with

probability 1
2 . A set P of n i.i.d. points from this

distribution is of the form Uk ∪ Ln−k with probability
1
2n

(
n
k

)
. Therefore,

E[pm(P )] =
1

2n

n∑

k=0

(
n

k

)

pm(Uk∪Ln−k) ≥ 1

2n

(
n

n/2

)

pm(Un/2 ∪ Ln/
︸ ︷︷

Dn



6.2 Matchings across a Line We present a simple
construction with about 2n different crossing-free per-
fect bipartite matchings across a line.

Assume that

2k

2k 2k

2k

A B

C

D

Figure 13: The lower bound con-
struction for crossing-free perfect
matchings across a line.

n = 8k, and refer
to Figure 13. Take
two disjoint hor-
izontal segments
that lie on the
x-axis to the left
of the y-axis, and
place on each of
them 2k points.
Denote by A
(resp., B) the set
of points on the
left (resp., right)
segment. The set L is A ∪ B. To form R, draw two
lines that separate A and B, one with positive slope
and one with negative slope. Place 2k points on each
of these lines to the right of the y-axis, and denote the
set on the line with positive (resp., negative) slope by
C (resp., D). The set R is C ∪ D.

In order to specify a crossing-free perfect bipartite
matching, we proceed as follows: Split A into two sets
AC and AD of size k each, split B into two sets BC and
BD of size k each, split C into two sets CA and CB of size
k each, and split D into two sets DA and DB of size k

each. The total number of choices is
(
2k
k

)4 ≈k 28k = 2n.
Now we match AC with CA, AD with DA, BC with CB ,
and BD with DB, which can always be done in a unique
way that is non-crossing; see Figure 13.

We have thus shown:

Theorem 6.1. The maximum number of crossing-free
perfect bipartite matchings between two separated sets,

each of n
2 points, is at least

(2⌊n/8⌋
⌊n/8⌋

)4 ≈n 2n.

Clearly, this serves also as a lower bound for the more
general case of perfect left-right matchings, for which
we were not able to improve over the 2n bound.

7 Discussion, Open Problems

Relating the basis-constants. For n ∈ N,
let pm(n) := max|P |=n pm(P ) and14 cpm :=

lim supn→∞
n
√

pm(n). In an analogous fashion, define
the constants cma, csc, ccfp, and clrpm for the correspond-
ing matching bounds. Also, define

rdpm(n) := sup
µ

E [pm(P ) |P a set of n i.i.d. points from distribution µ] ,

and put crdpm := lim supn→∞
n
√

rdpm(n).

14In fact, there is a unique limit for n over the even integers.

Apart from the absolute bounds that we derived for
these constants, we have shown a number of relations
among them, e.g.

cpm ≤ 21/3 5−1/6 cma (note also that cma ≤ cpm + 1),

csc ≤ 3 clrpm
2 (also csc ≤ cpm

2), and

ccfp ≤ cma + 2 (see the remark preceding Theorem 5.2).

We also derived a better upper bound on crdpm than
on cpm (while these constants still share the same lower
bound of 3). It would be interesting to know whether
that is an artifact of our proof. We believe not,
supported by the following observation: If we consider
four points, then in non-convex position they have three
crossing-free perfect matchings. If, however, we choose
four i.i.d. points from any distribution, then they are in
non-convex position with probability less than 5

8 [25],
and thus the expected number of crossing-free perfect
matchings is less than 5

8 · 3 + 3
8 · 2 = 2.625.

Conjecture 7.1. crdpm < cpm.

Also, can the bound for i.i.d. points be improved for
specific distributions, uniform distribution in a disk,
say?

Counting and enumeration. As far as we know,
the algorithmic complexity of computing the number
pm(P ) of crossing-free perfect matchings for a set P
of points is open—neither a polynomial algorithm is
known, nor any lower bounds, #P-complete, say. The
same is true for the numbers tr(P ), sc(P ), etc.

The situation looks somewhat more promising for
enumeration. For triangulations and crossing-free span-
ning trees of a point set, Avis and Fukuda [8] show how
to enumerate these objects in time poly(n) times the
size of the output (see [24] for an application for enu-
meration of crossing-free graphs on a point set).

Nothing of the kind is known for perfect crossing-
free matchings and spanning cycles. We mention on
the side that maximal crossing-free matchings can be
enumerated efficiently, due to a general result of that
kind for maximal cliques in graphs [10]. To see this,
define a graph for an n point set as follows. Let the
vertices be the

(
n
2

)
segments connecting pairs of points.

Two such segments are connected by an edge if they are
disjoint, i.e. they neither cross nor share an endpoint.
Now cliques in this graphs correspond to crossing-free
matchings of the point set.

For perfect crossing-free matchings, we would need
maximum cliques in the constructed graph. For these,
no efficient enumeration algorithms exist (and are un-
likely to exist at all), but it is still feasible that the
special geometric structure allows such an algorithm for
our problem.



Acknowledgment. We thank Andreas Razen for
reading a draft of the paper and for several helpful
comments.

References

[1] O. Aichholzer, T. Hackl, H. Krasser, C. Huemer, F.
Hurtado, and B. Vogtenhuber, On the number of
planar graphs, in preparation.

[2] O. Aichholzer, F. Hurtado, and M. Noy, On the number
of triangulations every planar point set must have,
Proc. 13th Canadian Conf. Comput. Geom. (2001), 13–
16.

[3] O. Aichholzer and H. Krasser, The point-set order-
type database: A collection of applications and results,
Proc. 13th Canadian Conf. Comput. Geom. (2001), 17–
20.
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