
Randomized Incremental Constructions of Three-Dimensional

Convex Hulls and Planar Voronoi Diagrams, and Approximate

Range Counting∗

Haim Kaplan† Micha Sharir‡

August 17, 2005

Abstract

We present new algorithms for approximate range counting, where, for a specified ε > 0,
we want to count the number of data points in a query range, up to relative error of ε. We
first describe a general framework, adapted from Cohen [12], for this task, and then specialize
it to two important instances of range counting: halfspaces in R

3 and disks in the plane. The
technique reduces the approximate range counting problem to that of finding the minimum rank
of a data object in the range, with respect to a random permutation of the input.

A major technical step in our analysis, which we believe to be of independent interest, is a
bound of O(n log n) on the expected complexity of the overlay of all the Voronoi faces that are
generated during a randomized incremental construction of the Voronoi diagram of n points in
the plane. The same bound holds for the expected complexity of the overlay of all the faces of
the minimization diagram of the lower envelope of n planes in R

3, or for the expected complexity
of the overlay of all the normal (or Gaussian) diagram faces of the convex hull of n points in
R

3, that are generated during a randomized incremental construction of the lower envelope or
of the hull, respectively. All these bounds are tight in the worst case.

The first bound leads to an algorithm that, for a query point x ∈ R
2, efficiently retrieves

the sequence of nearest neighbors of x in P , over the random insertion process. A query takes
O(log n) expected time, and the expected storage size is O(n log n). Similarly, the other bounds
lead to an algorithm that, for a query direction ω ∈ S

2, efficiently retrieves the sequence of the
convex hull vertices that are touched by the planes with outward direction ω that support the
convex hull during the random insertion process. Again, a query takes O(log n) expected time,
and the expected storage size is O(n log n).

These algorithms are used as the main component in the approximate range counting tech-
nique that we present, for ranges that are halfspaces in R

3 or disks in the plane. Our algorithms
have the best performance known to date; they slightly improve upon the previous technique of
Aronov and Har-Peled [5], and appear to be conceptually simpler.

∗Work by Haim Kaplan was partially supported by the German Israeli Foundation (GIF) grant no. 2051-1156-
6/2002. Work by Micha Sharir was partially supported by NSF Grant CCR-00-98246, by a grant from the U.S.-Israeli
Binational Science Foundation, by a grant from the Israel Science Fund, Israeli Academy of Sciences, for a Center of
Excellence in Geometric Computing at Tel Aviv University, and by the Hermann Minkowski–MINERVA Center for
Geometry at Tel Aviv University.

†School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: haimk@post.tau.ac.il
‡School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute of Mathematical

Sciences, New York University, New York, NY 10012, USA. E-mail: michas@post.tau.ac.il

1

1 Introduction

Approximate range counting. Let P be a finite set of points in R
d, and R a set of ranges

(certain subsets of R
d, e.g., halfspaces, balls, etc.). The range counting problem for (P,R) is to

preprocess P into a data structure that supports efficient queries of the form: Given a range r ∈ R,
count the number of points in r ∩ P .

Unfortunately, the best algorithms for solving the exact range counting problem are not very
efficient. For example, consider the case where the ranges are halfspaces in R

d. If we wish to answer
queries in logarithmic or polylogarithmic time, the best solution requires O(nd) storage, and if we
allow only linear or near-linear storage, the best known query time is O(n1−1/d) [23]. The case
d = 3, addressed in this paper, thus requires O(n2/3) time for a counting query, with near-linear
storage.

It is therefore desirable to find improved algorithms that can answer approximate range counting
queries, in which we specify the maximum relative error ε > 0 that we allow, and, for any range
r ∈ R, we want to quickly estimate nr = |r ∩ P |, so that the answer n′ that we produce satisfies

(1 − ε)nr ≤ n′ ≤ (1 + ε)nr.

In particular, if nr < 1
ε , it has to be counted exactly by the algorithm. Specializing this still further,

the case where nr = 0 (range emptiness) has to be detected exactly by the algorithm.

Using ε-approximations. There is a simple well-known method that almost achieves this goal.
That is, choose a random sample E of c

ε2 log 1
ε points of P , for some sufficiently large absolute

constant c (that depends on the so-called VC-dimension of the problem [9]). Then, with high
probability, E is an ε-approximation for P (see, e.g., [9]), in the sense that, with high probability,
we have, for each r ∈ R,

∣

∣

∣

∣

|E ∩ r|

|E|
−

|P ∩ r|

|P |

∣

∣

∣

∣

≤ ε.

This allows us to approximate |P ∩ r| by |E ∩ r| · |P |
|E| , where |E ∩ r| is obtained by brute force,

in O(|E|) time. However, the additive error bound is ε|P |, rather than ε|P ∩ r|. If |P ∩ r| is
proportional to |P |, then an appropriate re-scaling of ε turns this absolute error into the desired
relative error. However, if |P ∩ r| is small, the corresponding re-scaling of ε will require |E| to grow
significantly to ensure relative error of ε, and the approach will become inefficient. In particular,
range emptiness cannot be detected exactly by this method, unless we take E = P .

Cohen’s technique. In this paper we present a different approach to approximate range count-
ing, and demonstrate it on two instances: halfspace range counting in R

3, and disk range counting
in the plane. Our technique is an adaptation of a general method, introduced by Cohen [12], which
estimates the number of data objects in a given range S as follows. One assigns to each data object,
independently, a random weight, drawn from an exponential distribution with density function e−x,
sorts the objects by their weights into a random permutation, and then finds the minimum rank in
that permutation of the objects in the query range S. One then repeats this experiment O

(

1
ε2 log n

)

times, computes the average µ of the weights of the minimum elements, and approximates |S| by
1/µ. (Cohen [12] also proposes several other estimators that have similar properties.) As shown
in [12], this approximate count lies, with high probability, within relative error ε of |S|. If only 1

ε2

experiments are conducted, the expected relative error remains at most ε. See [12] for more details.

1

To apply this machinery for approximate halfspace range counting in R
3, say, we need to solve

the following problem: Let P be a set of n points in R
3 in general position,1 and let π be a random

permutation of P . (It is easily verified that the sorted order of the points of P according to their
randomly drawn weights is indeed a random permutation; see [12].) We want to construct a data
structure that can answer efficiently halfspace-minimum range queries of the form: Given a query
halfspace h, find the point of p ∈ P ∩ h of minimum rank in π (i.e., minimum value of π(p)).

Similarly, for approximate disk range counting in the plane, we need to solve an analogous
problem, for a set P of n points in the plane, where each query specifies a disk, and seeks the point
of P of minimum rank that lies in the disk.

Our results. We present efficient algorithms that perform these minimum-rank range searching
tasks. The expected storage that they use is O(n log n), a query takes O(log n) expected time,
and the expected preprocessing time is O(n log n). Plugging these algorithms into the general
approximate range counting framework of Cohen [12], we obtain algorithms that use O

(

1
ε2 n log2 n

)

expected storage and preprocessing time, and answer a query in O
(

1
ε2 log2 n

)

expected time. (This

should be compared to the O(n2/3) cost of exact range counting queries with near-linear storage.)
If the approximate count only has to hold in expectation, we can improve each of these bounds by
a factor of log n. Moreover, a simple modification of the algorithm that we detail below brings the
storage down to O

(

1
ε2 n log n

)

, without affecting the bound on the query time.

The overlay of minimization diagrams. A major technical step in our analysis, which we
believe to be of independent interest, is a bound of O(n log n) on the expected complexity of the
overlay of all the Voronoi faces that are generated during a randomized incremental construction of
the Voronoi diagram of n points in the plane (as in [18]). The same bound holds for the expected
complexity of the overlay of all the normal (or Gaussian) diagram faces that are generated on the
unit sphere S

2 during a randomized incremental construction of the 3-dimensional convex hull of a
set of n points in R

3, or for the expected complexity of the overlay of all the faces of the minimization
diagram that are generated during a randomized incremental construction of the lower envelope of
a set of n planes in R

3. (We note that Voronoi diagrams are a special case of such minimization
diagrams [16].) In all these cases, the O(n log n) bound is tight in the worst case.

The first bound leads to an algorithm that, for a query point x ∈ R
2, efficiently retrieves

the entire sequence of nearest neighbors of x in P , over the random insertion process. A query
takes O(log n) expected time, and the expected storage size and preprocessing time is O(n log n).
Similarly, the bounds in R

3 lead to (a) an algorithm that preprocesses a set P of n points in R
3 and,

for a query direction ω ∈ S
2, efficiently retrieves the sequence of the convex hull vertices that are

touched by the planes with outward direction ω that support the convex hull during the random
insertion process; and (b) an algorithm that preprocesses a set H of n planes in R

3 and, for a query
point x ∈ R

2, efficiently retrieves the sequence of the planes that attain the lower envelope at x
during the random insertion process. Again, in both cases, a query takes O(log n) expected time,
and the expected storage size and preprocessing time is O(n log n). Using this machinery, finding
the minimum rank of a point in a query disk, in the first case, or the minimum rank of a point in
a query halfspace, in the second case, can easily be done, using the same resources.

Our new bound on the complexity of the overlay of diagrams of these kinds is related to the work
of Guibas et al. [18] on randomized incremental construction of Voronoi diagrams. They build a

1To simplify the presentation, we assume throughout the paper that the data objects (points or planes) are in
general position, in the sense discussed, e.g., in [7].

2

data structure containing the Voronoi regions that are generated during a randomized incremental
construction of the diagram, such that one can efficiently obtain the entire sequence of Voronoi
regions that contain a query point. The time it takes to answer a query, using their structure, is
O(log2 n) (we briefly discuss below the difficulty in reducing this cost). Guibas et al. [18] pose it as
an open problem to improve the query time to O(log n). As far as we know, almost 15 years since
this problem has been posed, it is still open.

The main technical result of our paper provides a partial solution to this problem. Namely, we
modify the structure, so that it can answer a point location query of this kind in O(log n) time, at
the cost of increasing the expected storage size to O(n log n).

Background. Except for the alternative approach that uses ε-approximations, as discussed ear-
lier, there are two recent results that present other alternative solutions to the approximate range
counting problem. The first result is due to Aronov and Har-Peled [5], who reduce the problem to
range emptiness. Since their result competes with ours, we describe it in some detail.

First, one may assume that |P ∩ r| = Ω(1/ε). Otherwise we can find |P ∩ r| exactly, using a
range reporting mechanism, for disks in the plane or for halfspaces in R

3, in O
(

log n + 1
ε

)

time,
using O(n log n) preprocessing time, and O(n log n) space. For this purpose we can use a recent
algorithm of Chan [8] that preprocesses n points in O(n log n) expected time into a data structure
of size O(n log n), such that a range reporting query can be answered in O(log n+k) expected time,
where k is the number of points reported. An improved data structure of Ramos [27] reduces the
space bound to O(n log log n) and makes the query time worst case.

For larger values of |P ∩ r|, Aronov and Har-Peled perform binary search on this quantity. At
each step, they draw a random sample R of P , with the property that, for |P ∩ r| in the middle
of the current size range I (which is known to contain |P ∩ r|), the expected number of points of
P ∩ r that are chosen in the sample is 1. They then test R ∩ r for emptiness, and repeat this step
for O

(

1
ε2 log n

)

different random samples (drawn and preprocessed in advance). If the range turns
out to be empty (resp., nonempty) in most trials, then the high (resp., low) quarter portion of the
size range I can be eliminated (with high probability), and the algorithm keeps iterating, until the
size of I becomes sufficiently small to guarantee a relative error of ε.

In more detail, this step is implemented as follows. The main routine is a random sampling
scheme that, given a possible range I = [a, b] for |P ∩ r| where b ≥ (1 + ε)a, returns, with high
probability, (i) UP, if |P ∩ r| ≥ a+3b

4 (i.e., it lies in the upper quarter of the range), (ii) DOWN, if

|P ∩ r| ≤ 3a+b
4 (the lower quarter of I), and (iii) either UP or DOWN, when |P ∩ r| lies between

these two thresholds. This scheme works by sampling O
(

1
ε2 log n

)

random subsets of P , each of
expected size 2n

a+b , and building a data structure for range emptiness queries over each subset. To
perform the binary search step for a query r, one queries each of the emptiness data structures,
and if most subsets have empty intersection with r the answer is DOWN, and otherwise the answer
is UP.

Aronov and Har-Peled apply this sampling scheme for the intervals [ai, bi], where a1 is Θ(1/ε),
b1 = (1 + ε)a1, and, for i ≥ 1, ai+1 = bi and bi+1 = (1 + ε)ai. The last interval is the first one
for which bi ≥ n, and it is then truncated to fit inside the range [1, n]. It is easy to check that the
number of intervals is O

(

1
ε log n

)

. To approximate the count in a range r where |P ∩ r| = Ω(1/ε),
we perform binary search over the intervals [ai, bi], querying the data structure of each interval
[ai, bi] that we access, and returning the left endpoint of the interval with the smallest index for
which the answer is DOWN (which is also the right endpoint of the largest interval for which the
answer is UP).

In the two cases that we consider (which are also the two cases to which Aronov and Har-Peled

3

apply their technique), they show that their data structure uses O
(

1
ε3 n log2 n

)

storage, and answers

a query in O
(

1
ε2 log2 n log

(

1
ε log n

))

time: One has to perform O
(

log
(

1
ε log n

))

binary search steps,
each involving O

(

1
ε2 log n

)

range emptiness queries, each of which takes O(log n) time (in the special
cases of disks in the plane or halfspaces in R

3).
It seems however that their analysis can be tightened and that their data structure in fact

requires only O
(

1
ε2 n log n

)

space: At the i-th interval [ai, bi], one has to sample an expected number
of

2n

ai + bi
=

2n
1
ε (1 + ε)i−1(2 + ε)

elements, and then preprocess them into a linear-size range emptiness data structure. Since this
has to be repeated O

(

1
ε2 log n

)

times at each interval, the total storage is

O

(

1

ε2
log n

)

· O

(

∑

i

nε

(1 + ε)i

)

= O

(

1

ε2
log n

)

· O

(

nε

1 − 1
1+ε

)

= O

(

1

ε2
n log n

)

.

This makes their space bound asymptotically the same as ours, for the enhanced version of our
algorithm.

Our data structure improves the query time of Aronov and Har-Peled by a O
(

log
(

1
ε log n

))

factor, which seems a rather marginal improvement. Nevertheless we believe that the main merit
of our work is in (a) the technique that we develop (which is in fact Cohen’s technique, but it is
the first time, as far as we know, that it is being applied in a geometric context), and (b) the tight
O(n log n) bound on the complexity of the overlay of Voronoi and minimization diagrams. We also
strongly believe that these findings will find additional geometric applications.

Another recent result is due to Aronov and Sharir [6]. In this work in progress, they take
the partition-tree data structure of Matoušek [22], or its recent extension by Sharir and Shaul [29],
which facilitates efficient range emptiness or range reporting queries for shallow ranges,2 and modify
the structure by adding to each node of the tree an ε-approximation subset of the set that it stores.
The query range is then fed into the structure, and visits some of its nodes. As long as it is shallow,
with respect to the subset stored at the current node, the query proceeds in the standard recursive
(and efficient) manner. When the query range is detected not to be shallow, the algorithm counts
it approximately, using the ε-approximation stored at the current node. (Recall from the earlier
discussion that ε-approximations produce good relative error when the ranges are large.) By fine-
tuning the relevant parameters, one obtains a performance that is comparable with that of the
corresponding range-emptiness or range-reporting algorithms, and is significantly faster than that
of exact range counting. (The analysis in [6] caters mainly to approximate range counting in higher
dimensions, and thus does not directly compete with our technique.)

Another result related to our complexity bound for the overlay of minimization diagrams is due
to Agarwal et al. [3], who have developed a kinetic binary space partitioning (BSP) technique for a
set of moving interior-disjoint segments in the plane. To obtain this result, they consider the overlay
of the vertical decompositions of prefixes of a random insertion sequence of the segments. They
give a very simple proof that the expected complexity of this overlay is O(n log n): Let σ1, . . . , σk

be the segments that intersect the vertical ray ρ emanating upwards from an endpoint of a segment
s, in increasing order of their y-coordinates. Then σi crosses (a portion of) ρ in the overlay if and
only if s is inserted before σ1, . . . , σi. Since we add the segments in random order, the probability
that ρ crosses σi is 1/(i + 1). Therefore the expected number of segments crossing ρ is at most

2That is, more efficient than the partition-tree structure for range counting, which handles arbitrary ranges.

4

∑n
i=1 1/(i + 1) = O(log n), and repeating it for each segment endpoint and each incident vertical

ray yields the asserted bound.
However, in our case, a crossing in the overlay of, say, Voronoi regions is determined by four

of the inserted points, whereas a crossing of the kind studied by [3] is determined by only two
segments. This tends to make the analysis considerably more intricate.

Agarwal, Ericksen, and Guibas [2], still in the context of developing kinetic BSP structures,
extend the result of Agarwal et al. [3] to intersecting segments. In this case the bound on the
complexity of the overlay of the vertical decomposition of the segments is O(n log n + k), where k
is the number of segment intersections. In three dimensions, they prove a bound of O(n log2 n + k)
on the complexity of the overlay of the vertical decomposition of n triangles, where k is the number
of intersections between the projections of the edges of the triangles onto the xy-plane.

2 Problem Definition and Main Results

Consider the following minimum range searching problem. Given a random permutation π of a set
H of n planes in R

3, and a query point κ∗ = (ξ, η, ζ) ∈ R
3, we want to find the plane p ∈ H of

minimum rank π(p) that passes below κ∗. For this, we insert the planes of H one at a time, in order
of increasing rank, maintaining their lower envelope after each insertion. The goal is then to extract
from this construction a data structure that, given the projection (ξ, η) ∈ R

2 of the query point,
can report the sequence of planes that attain the lower envelope at (ξ, η) during the incremental
construction. The heights of these planes become progressively lower at (ξ, η), and the first plane
whose height at (ξ, η) is lower than the height of κ∗ is the desired plane of minimum rank. Our
main result is stated in the following theorem. (In all the results stated below, the expectation is
with respect to the random choice of π.)

Theorem 2.1 Let π = (h1, . . . , hn) be a random permutation of a set H of n nonvertical planes
in R

3. Let Hi := {h1, . . . , hi}, for i = 1, . . . , n, and let LE(Hi) denote the lower envelope of Hi.
We can preprocess H and π in O(n log n) expected time and build a data structure of expected size
O(n log n), such that, given a query point κ = (ξ, η) ∈ R

2, we can retrieve the sequence of all planes
hi ∈ H that attain LE(Hi) at κ, for some i = 1, . . . , n, in O(log n) expected time.

As a corollary, we obtain:

Corollary 2.2 Let H be a set of n nonvertical planes in R
3, and let π be a random permutation

of these planes. We can preprocess H and π in O(n log n) expected time and build a data structure
of expected size O(n log n), such that, given a query point κ∗ = (ξ, η, ζ) ∈ R

3, we can find the plane
h ∈ H of minimum rank π(p) that passes below κ∗, in O(log n) expected time.

Using standard duality in R3, as in [15], we obtain the following corollary of Theorem 2.1.

Corollary 2.3 Let π = (p1, . . . , pn) be a random permutation of a set P of n points in R
3. Let

Pi := {p1, . . . , pi}, for i = 1, . . . , n, and let CH(Pi) denote the convex hull of Pi. We can preprocess
P and π in O(n log n) expected time and build a data structure of expected size O(n log n), such
that, given a direction ω in R

3, we can retrieve the sequence of all vertices pi ∈ P that are touched
by the planes with outward direction ω that support CH(Pi), for some i = 1, . . . , n, in O(log n)
expected time.

5

One can also prove Corollary 2.3 explicitly, employing a proof analogous to the proof of Theorem
2.1 that uses the normal (or Gaussian) diagram of the convex hull [19] rather than minimization
diagrams of lower envelopes of planes. Corollary 2.3 can now be used to obtain the following result.

Corollary 2.4 Let P, π, Pi and CH(Pi) be as in Corollary 2.3. We can preprocess P and π in
O(n log n) expected time and build a data structure of expected size O(n log n), such that, given a
plane h in R

3, we can find the point of minimum rank in P that lies above (or below) h, in O(log n)
expected time.

We next specialize Theorem 2.1 and Corollary 2.2 to the following setup.

Corollary 2.5 Let π = (p1, . . . , pn) be a random permutation of a set P of n points in R
2. Let

Pi = {p1, . . . , pi}, for i = 1, . . . , n, and let V or(Pi) denote the Voronoi diagram of Pi. We can
preprocess P and π in O(n log n) expected time and build a data structure of expected size O(n log n),
such that, given a query point κ = (ξ, η) ∈ R

2, we can retrieve the sequence of all points pi ∈ P ,
for i = 1, . . . , n, whose Voronoi cells in the corresponding partial diagrams V or(Pi) contain κ, in
O(log n) expected time.

Proof: Map each point pi = (ai, bi) ∈ P to the plane hi : zi = −2aix − 2biy + a2
i + b2

i . Let
Hi := {h1, . . . , hi}, for i = 1, . . . , n. It is well known that the xy-projection of LE(Hi) is equal to
V or(Pi) [7, 16]. We can therefore take our data structure to be the data structure of Theorem 2.1
for the set H = {h1, . . . , hn}. 2

Note that the algorithm of Corollary 2.5 effectively produces the sequence of the distinct nearest
neighbors of κ in the prefix sets Pi.

Using the property that the lifting transformation in the proof of Corollary 2.5 maps disks in
the plane to halfspaces in R

3, we have the following additional corollary.

Corollary 2.6 Let π = (p1, . . . , pn) be a random permutation of a set P of n points in R
2. We

can preprocess P and π in O(n log n) expected time and build a data structure of expected size
O(n log n), such that, given a disk D ⊂ R

2, we can compute the point of minimum rank in P ∩ D,
in O(log n) expected time.

Remark. Note that Theorem 2.1, Corollary 2.3, and Corollary 2.5 implicitly imply that the
expected size of the sequences that are being output is O(log n); this property is well known and
follows from the standard analysis of randomized incremental constructions; see [7].

Here is an outline of the remainder of this paper. Section 3 reviews the randomized incremental
construction of minimization diagrams (which is dual to the explicit construction given in [7]).
Section 4 describes the algorithm that establishes Theorem 2.1. Section 5 establishes an upper
bound of O(n log n) on the expected complexity of the overlay of minimization diagrams, and
shows it to be worst-case tight. We conclude in Section 6 by applying the machinery to obtain
efficient algorithms for the approximate range counting problems discussed in the introduction.

3 Randomized Incremental Construction of Minimization Dia-

grams

In this section we review the randomized incremental construction of minimization diagrams of
planes in R

3 (which is dual to the explicit construction presented in [7]). Let H be a set of n
non-vertical planes in R

3 in general position, and let π = (h1, h2, . . . , hn) be a random permutation

6

of H. The minimization diagram M(H) of H is the xy-projection of the lower envelope LE(H).
We insert the planes one at a time, in their order in π, and update, after each insertion, the
minimization diagram M(Hi) for the prefix set Hi of planes inserted so far.

Suppose we have constructed M(Hi). When the next plane hi+1 is added, we obtain M(Hi+1)
from M(Hi) as follows. If hi+1 lies fully above LE(Hi), we do nothing. Otherwise, we find the
intersection ϕhi+1

of hi+1 with LE(Hi). This is a convex polygon in R
3, whose edges also lie on

adjacent faces of LE(Hi), where each such edge cuts the corresponding old face of LE(Hi) into two
portions, one of which appears on LE(Hi+1), and the other is hidden from this envelope by hi+1.
The same behavior shows up on the minimization diagram M(Hi). We trim each of the affected
old faces of M(Hi), and “glue in” the xy-projection ϕ∗

hi+1
of ϕhi+1

.
An illustration of this process, for the special case of Voronoi diagrams, is given in Figure 1.

(The figure also illustrates a disk range query of the sort addressed in Corollary 2.6. Each time
the center of the disk “moves” to a new Voronoi face, its nearest neighbor in the prefix set changes
(and gets closer), until this neighbor enters the disk; this is point 7 in the figure.)

The actual implementation of this update step uses conflict lists that store, for each plane
hj , for j > i, the list of all vertices of LE(Hi) that lie above hj , with reverse pointers from the
vertices to the future planes that will hide them from the envelope. Using this information, it
is straightforward to construct LE(Hi+1) from LE(Hi) (or, actually, M(Hi+1) from M(Hi)), in
time proportional to the number of new vertices plus the number of removed vertices. Revising
the conflict lists after insertion of a plane is also routine; see [7]. As is well known, the expected
number of vertices generated by the algorithm is O(n), and the expected running time, dominated
by the cost of updating the conflict lists, is O(n log n). (This is dual to the construction of the
lower convex hull of the points dual to the planes of H, as described, e.g., in [7].)

Using an approach that extends the one of Guibas et al. [18], one can link together the faces of
the minimization diagram, as they are constructed by the algorithm, so that, roughly speaking, old
modified faces point to the new faces that “step on them”, and assemble these links into a point
location data structure that locates the face of the final diagram that contains a query point. In
fact, the faces are linked in such a way, that one obtains not just the final face containing the query,
but the entire sequence of faces that contain it, which is exactly what is needed for establishing
Theorem 2.1 or the analogous Corollaries 2.3 and 2.5.

Unfortunately, as mentioned in the introduction, the time it takes to answer a query, using this
structure, is O(log2 n); see Guibas et al. [18] for the special case of Voronoi diagrams, which also
extends to more general minimization diagrams.3 Using our technique we can reduce the expected
query time to O(log n), at the cost of increasing the expected storage size to O(n log n).

4 Overlaying Incremental Minimization Diagrams

During the incremental construction, we collect the edges of the newly generated faces of all the
versions M(Hi) of the minimization diagram into a “global” set E. Once the incremental construc-
tion is over, we compute the arrangement A(E) in the xy-plane, and preprocess it for efficient point
location [7]. Clearly, each face f of A(E) is contained in a single face of each of the minimization
diagrams M(Hi). See Figure 2 for an illustration. In Section 5 we prove (in Theorem 5.1) that the

3Informally, since faces of the Voronoi (or minimization) diagram need not have constant complexity, the algorithm
has to maintain a triangulation of each face, to ensure the expected behavior of the point-location mechanism.
However, this incurs a penalty of having to locate the new triangle that contains the query point whenever the point
“moves” to a new face of the diagram. This takes O(log n) time per face change, for a total of O(log2 n) expected
cost; see [18].

7

1
2

3

1
2

3

4

1
2

3

4

5

1
2

3

4

5

6

1
2

3

4

5

6

7

1
2

3

4

5

6

7
8

1
2

3

4

5

6

7
8

9

1
2

3

4

5

6

7
8

9

10

Figure 1: Randomized incremental construction of the Voronoi diagram of 10 points in the plane.

8

expected complexity of A(E) is O(n log n). Therefore if we preprocess A(E) to build either the
point location data structure of Mulmuley [25], or the data structure of Chazelle and Edelsbrunner
[10], we consume O(n log n) space in expectation, and can locate the face f of A(E) containing a
query point in O(log n) expected time.

1

2

3

4

5

6

7

8

9

10

Figure 2: The overlay arrangement A(E) for the special case of the Voronoi diagram of the point
set in Figure 1. As above, the sites are drawn as empty circles and are labeled by their ranks in π.
The query disk from the preceding figure is also shown. For the face f of the overlay containing its
center, we have PM(f) = (1, 4, 6, 7, 9).

Let PM(x) denote the sequence of prefix minima of the permutation π of H at the point x ∈ R
2.

That is, we add a plane hi to PM(x) if hi attains LE(Hi) at x; i.e., it is the lowest plane of Hi at
x. Note that this implies that hi changes the lower envelope when it is inserted, and that x ∈ ϕ∗

hi
.

It now follows that, for each face f of A(E), all the sequences PM(x), for x ∈ f , are identical,
and we denote this common sequence by PM(f). Moreover, by construction, the sequence PM(f)
coincides with the sequence of faces that contain f in the dynamic minimization diagram.

For each face f of A(E), the algorithm constructs the sequence PM(f), and stores it with
f . The actual details of this construction will be provided in Section 4.1. This completes the
description of the data structure.

We use this data structure in the proofs of Theorem 2.1 and Corollary 2.2. For Theorem 2.1,
given a query point (a, b), we locate the face f of A(E) that contains it, and retrieve the sequence
PM(f). This is done in O(log n) time, using the point location data structure for A(E), and the
fact that the expected size of PM(f) is O(log n); see also Section 4.1. The list PM(f) is the answer
to the query as specified in Theorem 2.1.

To answer a query as specified in Corollary 2.2, where the query is now a point (a, b, c) ∈ R
3

and the goal is to find the minimum-rank plane that lies below (a, b, c), we query the data structure
with (a, b), locate the face f of A(E) that contains (a, b), and retrieve the sequence PM(f). We
then traverse PM(f) to find the highest plane h∗ ∈ PM(f) that lies below (a, b, c). Note that the
planes in PM(f) do not intersect over f , and their order in PM(f) coincides with the decreasing
order of their heights over f .

Notice that since the expected size of PM(f) is O(log n), we can use any simple, and even
unordered, list representation of PM(f), and still answer queries efficiently. To find h∗ with such

9

a representation, we scan all elements in PM(f) sequentially, maintaining the highest plane that
lies below the query point, in O(log n) expected time.

4.1 Constructing and maintaining the sequences PM(f).

The construction is incremental, and proceeds as follows. We form the dual graph G of A(E),
where the faces of A(E) are its nodes, and each pair of adjacent faces are connected by an edge
in G. We pick an initial face f0, pick any point x ∈ f0, and construct PM(f0) = PM(x), by
scanning all the planes of H, in O(n) time. We now apply a BFS to G, and, for each edge (f ′, f)
that connects a processed face f ′ to an unprocessed face f , we construct PM(f) from PM(f ′), as
follows. The faces f and f ′ are separated in A(E) by a single edge e that bounds the face ϕ∗

hi
in

M(Hi), for some i (this is the new face of M(Hi), of its last inserted plane). Suppose that f is
contained in ϕ∗

hi
while f ′ is not. Then, as noted above, all we have to do is to insert hi into PM(f ′)

to obtain PM(f). Similarly, if f ′ is contained in ϕ∗
hi

while f is not, we obtain PM(f) by deleting
hi from PM(f ′).

The preprocessing time and space of our data structure depends on the size of G and on the
time and additional storage it takes to obtain PM(f) from PM(f ′). If we represent PM(f ′) as
an unordered list, then we can produce PM(f) by first copying the list, and then by inserting or
deleting the appropriate plane from the new copy. This takes O(log n) expected time and space
per update, and, combined with Theorem 5.1, leads to O(n log2 n) overall expected preprocessing
time and storage.

We can reduce the space required by the data structure by using fully persistent lists rather
than regular lists [14, 28]. This allows us to delete or insert an element from/into PM(f), without
destroying the previous list, in O(log n) expected time and O(1) additional space. This results
in a data structure that requires O(n log n) expected space, but the expected preprocessing time
remains O(n log2 n).

We can reduce the preprocessing time as well by using an implicit representation of PM(f). In
this representation we use two persistent lists,4 the first of which is called the inserted list and the
second is called the deleted list. When we have to insert a plane in order to obtain PM(f) from
PM(f ′), we insert it in the front of the inserted list. When we have to delete a plane in order to
obtain PM(f) from PM(f ′), we insert it in the front of the deleted list. When the size of the deleted
list becomes log n, we rebuild the lists so that the inserted list contains all the planes in PM(f)
and the deleted list is empty. We do the rebuilding by creating a new inserted list that contains
each plane whose number of occurrences in the inserted list is larger by one than its number of
occurrences in the deleted list. We reset the deleted list of PM(f) to the empty list.

Clearly the preprocessing time is constant per face of A(E), plus the total time required by the
rebuildings. Since the expected size of PM(f) is O(log n) and the size of the deleted list is log n at
the time we do a rebuilding, it follows that the expected size of the inserted list at the time of the
rebuilding is also O(log n). Therefore the expected time of a rebuilding is O(log n) which can be
charged to the log n deleted items. Since each deleted item is charged a constant amount of time
exactly once and the expected number of deleted items is O(n log n), we obtain that the expected
preprocessing time is O(n log n). An analogous argument shows that the expected amount of space
remains O(n log n).

We can still answer queries using the implicit representation of PM(f) in O(log n) expected
time. Indeed we can convert on the fly the implicit representation to an explicit one in O(log n)

4In fact here we only need stacks, whose persistent implementation is easier, since we only insert at the front of
each list.

10

time as we did above during rebuildings.

5 The Complexity of the Overlay of the Minimization Diagrams

The actual incremental construction of the minimization diagram [7] uses O(n) expected storage,
and takes O(n log n) expected time. This implies that the expected size of E is O(n). However,
apriori, the complexity of A(E) could be quadratic in |E|. Our main combinatorial result is that
the expected complexity of A(E) is only O(n log n). This is asserted in the following main technical
contribution of the paper.

Theorem 5.1 Let H be a set of n planes in R
3, and let π = (h1, . . . , hn) be a random permutation

of H. Let E be the set of edges of the newly generated faces of all the minimization diagrams
M(Hi) that arise when the planes are inserted in their order in π. Then the expected complexity of
the arrangement A(E) is O(n log n). There exist arbitrarily large sets of hyperplanes H for which
this bound is tight.

Clearly, to establish Theorem 5.1 it suffices to bound the expected number of crossings between
the edges of E.

Let us analyze the geometric configuration encoded by such a crossing. Let e1, e2 be two edges
in E that cross at some point x. For i = 1, 2, let ai, bi ∈ H be the planes such that ei is the edge of
ϕ∗

ai
, at the time ai was inserted, that separates it from ϕ∗

bi
, which already existed in the diagram,

and got shrunk when ai was inserted. (Note the asymmetric roles of a1, b1 and of a2, b2 in this
definition.) Suppose, without loss of generality, that a2 has been inserted after a1. We cannot have
a1 = a2, because different edges of the same newly created face ϕ∗

a1
do not cross each other. It is

also impossible that b2 = a1, because then the edge e2 must be fully contained in the interior of the
original version of ϕ∗

a1
(this face can only shrink during the construction), and thus cannot cross

e1, which is an edge of that original face. Finally, b1 = b2 is also impossible: When a1 is added,
it shrinks ϕ∗

b1
, and when a2 is added later, the edge e2 that is formed between ϕ∗

a2
and ϕ∗

b1
must

be fully contained in the interior of that shrunk face. Note also that b2 cannot be inserted before
a1: If this were the case, then ϕ∗

b1
and ϕ∗

b2
are already disjoint before any of a1, a2 are inserted, so

the edges e1, e2 would also have to be disjoint. To summarize, the four planes a1, b1, a2, b2 are all
distinct, and they are inserted in the order b1, a1, b2, a2.

By construction, for i = 1, 2, when ai is inserted, the intersection line ai ∩ bi contains the edge
ei of the lower envelope, whose xy-projection contains x. Let λx denote the vertical line at x. Let
k denote the number of planes of H that cross the portion of λx between e1 and e2, and let ℓ
denote the number of planes of H that cross λx below e2; see Figure 3. We say that the quadruple
(a1, b1, a2, b2) has weight (k, ℓ). This definition applies to any quadruple (a1, b1, a2, b2) of distinct
planes of H, for which the line a1 ∩ b1 passes above the line a2 ∩ b2. Indeed, assuming general
position, the xy-projection of these two lines meet at a unique point x. We then take k (resp.,
ℓ) to be the number of planes that cross λx between a1 ∩ b1 ∩ λx and a2 ∩ b2 ∩ λx (resp., below
a2 ∩ b2 ∩ λx), and (k, ℓ) is then the weight of the quadruple.

Let (a1, b1, a2, b2) be a quadruple with weight (k, ℓ). We next analyze the probability of the
event that this quadruple gives rise to a crossing between two edges of E, in the manner discussed
above. For this event to occur, the following conditions are necessary and sufficient, as is easily
verified.

(i) The four planes a1, a2, b1, b2 are inserted in the order b1, a1, b2, a2.

11

x

a1

b1

a2

b2

{k

{

ℓ

Figure 3: The weight of a quadruple (a1, b1, a2, b2).

(ii) The k planes that cross λx between a1 ∩ b1 ∩ λx and a2 ∩ b2 ∩ λx are all inserted after a1.

(iii) The ℓ planes that cross λx below a2 ∩ b2 ∩ λx are all inserted after a2.

Consider the random sub-permutation consisting of these k+ℓ+4 planes. There are (k+ℓ+4)!
such permutations. To obtain a permutation that satisfies (i)–(iii), we put b1 in the first place and
put a1 second. We then choose the locations of the first k conflicting planes, in

(k+ℓ+2
k

)

ways. Then
b2 has to be placed at the first free location, and a2 at the second free location, and the remaining
ℓ planes at the remaining free locations. Finally, we permute the first k planes in their locations,
and similarly for the last ℓ planes. Hence, the number of permutations that satisfy (i)–(iii) is

(

k + ℓ + 2

k

)

k!ℓ!,

so the probability of our event is

qk,ℓ =

(k+ℓ+2
k

)

k!ℓ!

(k + ℓ + 4)!
=

1

(ℓ + 1)(ℓ + 2)(k + ℓ + 3)(k + ℓ + 4)
.

Let Nk,ℓ = Nk,ℓ(H) denote the number of quadruples (a1, b1, a2, b2) with weight (k, ℓ). Then
the expected number of crossings between the edges of E is

X :=
∑

k≥0, ℓ≥0, k+ℓ≤n−4

qk,ℓNk,ℓ.

Let N≤k,≤ℓ = N≤k,≤ℓ(H) denote the number of quadruples (a1, b1, a2, b2) with weights (ξ, η) that
satisfy ξ ≤ k, η ≤ ℓ. We have

Nk,ℓ = N≤k,≤ℓ − N≤k−1,≤ℓ − N≤k,≤ℓ−1 + N≤k−1,≤ℓ−1.

Substituting in the expression for X, we obtain

X =
∑

k≥0, ℓ≥0, k+ℓ≤n−4

(

qk,ℓ − qk+1,ℓ − qk,ℓ+1 + qk+1,ℓ+1

)

N≤k,≤ℓ,

12

where probabilities qk,ℓ with k + ℓ > n − 4 are taken to be 0. Put

∆2qk,ℓ = qk,ℓ − qk+1,ℓ − qk,ℓ+1 + qk+1,ℓ+1.

If k + ℓ ≤ n − 6 then

∆2qk,ℓ =
1

(ℓ + 1)(ℓ + 2)(k + ℓ + 3)(k + ℓ + 4)
−

1

(ℓ + 1)(ℓ + 2)(k + ℓ + 4)(k + ℓ + 5)

−
1

(ℓ + 2)(ℓ + 3)(k + ℓ + 4)(k + ℓ + 5)
+

1

(ℓ + 2)(ℓ + 3)(k + ℓ + 5)(k + ℓ + 6)
=

2

(ℓ + 1)(ℓ + 2)(k + ℓ + 3)(k + ℓ + 4)(k + ℓ + 5)
−

2

(ℓ + 2)(ℓ + 3)(k + ℓ + 4)(k + ℓ + 5)(k + ℓ + 6)
=

2(ℓ + 3)(k + ℓ + 6) − 2(ℓ + 1)(k + ℓ + 3)

(ℓ + 1)(ℓ + 2)(ℓ + 3)(k + ℓ + 3)(k + ℓ + 4)(k + ℓ + 5)(k + ℓ + 6)
=

4k + 10ℓ + 30

(ℓ + 1)(ℓ + 2)(ℓ + 3)(k + ℓ + 3)(k + ℓ + 4)(k + ℓ + 5)(k + ℓ + 6)
.

If k + ℓ = n − 5 then

∆2qk,ℓ =
1

(ℓ + 1)(ℓ + 2)(n − 1)(n − 2)
−

1

(ℓ + 1)(ℓ + 2)n(n − 1)
−

1

(ℓ + 2)(ℓ + 3)n(n − 1)
=

n(ℓ + 3) − (n − 2)(ℓ + 3) − (n − 2)(ℓ + 1)

(ℓ + 1)(ℓ + 2)(ℓ + 3)n(n − 1)(n − 2)
=

2(ℓ + 3) − (n − 2)(ℓ + 1)

(ℓ + 1)(ℓ + 2)(ℓ + 3)n(n − 1)(n − 2)
.

Finally, if k + ℓ = n − 4 then

∆2qk,ℓ =
1

(ℓ + 1)(ℓ + 2)n(n − 1)
.

We thus have,

X =
∑

k≥0, ℓ≥0, k+ℓ≤n−6

(

4k + 10ℓ + 30

)

N≤k,≤ℓ

(ℓ + 1)(ℓ + 2)(ℓ + 3)(k + ℓ + 3)(k + ℓ + 4)(k + ℓ + 5)(k + ℓ + 6)

+
∑

k≥0, ℓ≥0, k+ℓ=n−5

2(ℓ + 3) − (n − 2)(ℓ + 1)

(ℓ + 1)(ℓ + 2)(ℓ + 3)n(n − 1)(n − 2)
N≤k,≤ℓ

+
∑

k≥0, ℓ≥0, k+ℓ=n−4

N≤k,≤ℓ

(ℓ + 1)(ℓ + 2)n(n − 1)
.

By rearranging the last two terms we obtain that

X =
∑

k≥0, ℓ≥0, k+ℓ≤n−6

(

4k + 10ℓ + 30

)

N≤k,≤ℓ

(ℓ + 1)(ℓ + 2)(ℓ + 3)(k + ℓ + 3)(k + ℓ + 4)(k + ℓ + 5)(k + ℓ + 6)

13

+

n−5
∑

ℓ=0

[2(ℓ + 3) − (n − 2)(ℓ + 1)]N≤n−5−ℓ,≤ℓ + (n − 2)(ℓ + 3)N≤n−4−ℓ,≤ℓ

(ℓ + 1)(ℓ + 2)(ℓ + 3)n(n − 1)(n − 2)

+
N0,≤n−4

n(n − 1)(n − 2)(n − 3)
.

By substituting N≤n−4−ℓ,≤ℓ = Nn−4−ℓ,≤ℓ + N≤n−5−ℓ,≤ℓ in the middle summation, we get

X =
∑

k≥0, ℓ≥0, k+ℓ≤n−6

(

4k + 10ℓ + 30

)

N≤k,≤ℓ

(ℓ + 1)(ℓ + 2)(ℓ + 3)(k + ℓ + 3)(k + ℓ + 4)(k + ℓ + 5)(k + ℓ + 6)
(1)

+
n−5
∑

ℓ=0

(

2N≤n−5−ℓ,≤ℓ

(ℓ + 1)(ℓ + 2)n(n − 1)(n − 2)
+

2N≤n−5−ℓ,≤ℓ

(ℓ + 1)(ℓ + 2)(ℓ + 3)n(n − 1)

)

+
n−4
∑

ℓ=0

Nn−4−ℓ,≤ℓ

(ℓ + 1)(ℓ + 2)n(n − 1)
.

We next derive an upper bound for N≤k,≤ℓ in two stages, as follows.

Estimating N≤t,0.

Lemma 5.2 Let H be a set of n planes in R
3 in general position, and let t ≤ n−2 be a parameter.

Then there are at most O(n(t + 1)2) quadruples (a, b, c, d) of distinct planes of H that satisfy the
following property: Let x be the intersection of the xy-projections of the lines a∩ b and c∩ d. Then
c ∩ d attains LE(H) at x, and at most t planes of H cross the vertical line λx between a ∩ b and
c ∩ d. 5

Proof: We first claim that the number of pairs (a, b) that participate in such a quadruple (a, b, c, d),
over all possible planes c, d ∈ H, is O(n(t+1)). Indeed, let (a, b, c, d) be such a quadruple, and let x

be the corresponding intersection point in the xy-plane. Then the portion of λx below a∩b is crossed
by at most t + 2 planes of H. Define the shallowness of the line a ∩ b to be the minimum number
of planes of H that cross a downward directed vertical ray that emanates from a ∩ b; see Figure 4.
Clearly, the shallowness of a∩b is at most t+2. It is then a routine application of the Clarkson-Shor
technique [11] to show that the number of such pairs (a, b) is O((t + 2)2 · n/(t + 2)) = O(n(t + 1)).

c ∩ d

Figure 4: The shallowness of the line c ∩ d is 1, as indicated.

5When t = Θ(n) the argument is easy: There are O(n2) intersection lines a ∩ b, and only O(n) intersection lines
c∩ d (which contain edges of the lower envelope). So the number of quadruples (a, b, c, d) that satisfy the theorem is
O(n3).

14

We next claim that, for a fixed pair (a, b), the set Q of pairs (c, d) that form with (a, b) a
quadruple that satisfies the property in the lemma has size at most O(t + 1). The proof considers
the vertical plane V through a∩b and the arrangement within V of the lines c∩V , for c ∈ H \{a, b}.
Any pair (c, d) in Q defines a vertex vc,d = (c ∩ V) ∩ (d ∩ V) in that arrangement, such that the
downward vertical ray from a ∩ b through vc,d meets no other line below vc,d, and meets at most t
lines above vc,d (and below a∩ b). We call a line c∩V positive (resp., negative), if it lies below a∩ b
to the left (resp., right) of its intersection with a ∩ b (with respect to some appropriate coordinate
frame in V).

We note that no line c ∩ V can be incident to more than two vertices vc,d with (c, d) ∈ Q.
Indeed, Assume that it is incident to three such vertices, which are the intersections of c ∩ V with
three respective lines d1 ∩V , d2 ∩V , and d3 ∩V , and which appear in this order along c∩V . Then
the middle line d2 ∩V has to pass below one of the other two vertices, contrary to our assumption.

Set M := |Q|, and consider the middle M/3 vertices vc,d, for (c, d) ∈ Q, when ordered according
to the order of their vertical projections on a ∩ b. The preceding argument implies that they are
formed by at least M/3 distinct lines. Either at least half of these lines are positive, or at least half
of them are negative. Assume, without loss of generality, that at least half of them are positive.
Then, for any vertex vc,d among the M/3 leftmost vertices that are formed by members of Q, at least
M/6− 2 of these lines must pass above vc,d and below a∩ b; this is because, by construction, none
of these lines can pass below v, at most two pass through v (by the general position assumption),
and all the positive lines must pass below a ∩ b over vc,d. This implies that M/6 − 2 ≤ t, or that
M ≤ 6(t + 2), as asserted. 2

Estimating N≤k,≤ℓ. Based on the preceding lemma, we obtain an upper bound for N≤k,≤ℓ(n),
which is the maximum possible value of N≤k,≤ℓ, over all sets H of n planes in R

3 in general position.
We do this by applying the Clarkson-Shor technique [11], in the following somewhat nonstandard
manner.

Let H be a set of n planes in general position in R
3, and let k ≥ 0, ℓ ≥ 0, k + ℓ ≤ n − 4, be

given. If ℓ = 0, we pass directly to the second stage of the analysis (which just applies Lemma 5.2),
so we assume for now that ℓ > 0. We draw a random sample R ⊂ H, by choosing each plane of
H independently, with probability p = 1/ℓ. The expected size of R is np. Put t := ⌈k/ℓ⌉. Let
(a, b, c, d) be a quadruple with weight (ξ, η), with ξ ≤ k and η ≤ ℓ. The probability that (a, b, c, d)
appears in R and that its R-weight (ξR, ηR) satisfies ηR = 0 and ξR ≤ 2t, is p4 (which is the
probability of choosing a, b, c, d) times (1− p)η (the probability of not choosing any of the η planes
that contribute to the second component of the weight) times the probability F (p, ξ, 2t) of choosing
at most 2t planes of the ξ planes that contribute to the first component of the weight. The number
of these planes in the sample is a binomial random variable whose expectation is ξ/ℓ ≤ t. Hence,
by Markov’s inequality, the probability of choosing more than 2t of these planes is at most 1/2, so
F (p, ξ, 2t) ≥ 1/2. In summary, the overall desired probability is at least

p4(1 − p)ηF (p, ξ, t) ≥ p4(1 − p)ℓF (p, ξ, t) ≥ cp4,

for an appropriate constant c ≈ 1
2e . Hence,

E[N≤2t,0(R)] ≥ cp4
∑

ξ≤k, η≤ℓ

Nξ,η(H),

which is easily seen to imply that, for ℓ > 0,

N≤k,≤ℓ(H) = O(ℓ4N≤2t,0(n/ℓ)).

15

Substituting the bound in Lemma 5.2, we get

N≤k,≤ℓ(n) = O
(

ℓ4 (⌈k/ℓ⌉ + 1)2 (n/ℓ)
)

= O(n(k + ℓ + 1)2(ℓ + 1)),

where we have replaced the last factor ℓ by ℓ + 1, to cater also to the case ℓ = 0, for which the
above bound is simply what Lemma 5.2 asserts. That is, we have shown:

Lemma 5.3 Let H be a set of n non-vertical planes in general position in R
3, and let k ≥ 0, ℓ ≥ 0,

k + ℓ ≤ n − 4, be given. Then N≤k,≤ℓ(H) = O(n(k + ℓ + 1)2(ℓ + 1)).

Note that analogous versions of Lemma 5.3 exist for point sets in R
3, in the context of normal

diagrams, and in R
2, in the context of Voronoi diagrams.

Wrapping up. Returning to Equation (1), we now obtain

X = O









∑

k≥0, ℓ≥0, k+ℓ≤n−6

(

4k + 10ℓ + 30

)

n(k + ℓ + 1)2(ℓ + 1)

(ℓ + 1)(ℓ + 2)(ℓ + 3)(k + ℓ + 3)(k + ℓ + 4)(k + ℓ + 5)(k + ℓ + 6)
(2)

+

n−5
∑

ℓ=0

n(n − 4 − ℓ)2(ℓ + 1)

(ℓ + 1)(ℓ + 2)(ℓ + 3)n(n − 1)
+

n−4
∑

ℓ=0

Nn−4−ℓ,≤ℓ

(ℓ + 1)(ℓ + 2)n(n − 1)

)

.

The second sum is easily seen to be O(n). As for the third sum, another routine application of the
Clarkson-Shor technique [11] shows that Nn−4−ℓ,≤ℓ is bounded by O((ℓ + 1)4) times the maximum
number of configurations (a, b, c, d) in a sample R of expected size n/(ℓ + 1), such that a segment
of the line a ∩ b is on the upper envelope of R and a segment of the line c ∩ d is on the lower
envelope of R. Since the expected complexities of the upper and of the lower envelope of R are

both O(n/(ℓ + 1)), we obtain that Nn−4−ℓ,≤ℓ = O
(

(ℓ + 1)4 · n2

(ℓ+1)2

)

= O(n2(ℓ + 1)2), Therefore

the third sum in Equation (2) is O(n). We thus have

X = O





∑

k≥0, ℓ≥0, k+ℓ≤n−6

n(k + ℓ + 1)3(ℓ + 1)

(k + ℓ + 1)4(ℓ + 1)3



+ O(n) =

O



n ·
∑

k≥0, ℓ≥0, k+ℓ≤n−6

1

(k + ℓ + 1)(ℓ + 1)2



+ O(n) =

O(n log n) ·





∑

0≤ℓ≤n−6

1

(ℓ + 1)2



+ O(n) = O(n log n).

We have thus shown that the expected number of crossings between the edges of E, and thus
the expected complexity of A(E), is O(n log n). The derivation of this bound indicates that the
significant contribution to this bound is from quadruples with weight (k, ℓ) where ℓ = O(log n).
Quadruples with higher values of ℓ contribure only O(n) to X, and thus to the complexity of A(E),
as is easily verified from the last expression.

As argued above, the bound on A(E) also bounds the expected overall size of the data struture
that establishes Theorem 2.1. The expected preprocessing time is O(n log n), using, e.g., the
randomized incremental algorithm of Mulmuley [25] to construct A(E) or the algorithm of Chazelle
and Edelsbrunner [10].

16

A lower bound for the overlay complexity. To complete the proof of Theorem 5.1, we next
provide a construction where the expected complexity of the overlay is Θ(n log n).

Consider a set H of 2(n + 1) planes, partitioned into two sets U and L. The set U consists of
n+1 planes {u1, . . . un+1}, all tangent from above to a sufficiently small cylinder around the x-axis,
so that the directions of their normals span a sufficiently small angle. The set U has the property
that, for any subset U ′ ⊆ U , all the planes in U ′ appear on the lower envelope of U ′, which consists
of |U ′| strips parallel to the x-axis, separated by |U ′| − 1 lines parallel and very close to the x-axis.

The set L consists of n + 1 planes {q1, . . . qn+1}, all parallel to the y-axis. It is simpler to
present the construction of L by describing the cross-section of their arrangement within the xz-
plane, which is depicted in Figure 5. The line representing q1 emanates from the origin and has a
slightly negative slope. Suppose that the lines representing q1, . . . , qi have already been constructed.
We then construct the line representing qi+1 so that it emanates from a point on the x-axis that
lies to the right of the intersection point of qi−1 and qi (or of the origin, for i = 1), and its slope is
slightly smaller (more negative) than that of qi.

ξ1

ξ2

ξ3

ξ4

q3

q2

q1

q4

q5

Figure 5: The lower bound construction.

Let ξk, for k = 1, . . . , n, denote the intersection line of qk and qk+1. Clearly, ξk appears on the
lower envelope of any subset U ′ ∪L′, with U ′ ⊆ U , L′ ⊆ L, such that L′ contains both qk and qk+1.
Let ξ∗k denote the xy-projection of ξk.

Let Xk be a random variable that is equal to the number of intersections of ξ∗k in the overlay of
the minimization diagrams that are constructed during a randomized incremental construction of
LE(H), at the step when ξk first appears on the lower envelope. That is, let (h1, . . . , h2(n+1)) be
a random permutation of H. Let i be the index such that either hi = qk and qk+1 = hj for some
j < i, or hi = qk+1 and qk = hj for some j < i. Then when hi is added, ξk first appears as an edge
sk of the lower envelope of LE(Hi), and Xk counts the number of intersections of the projection
s∗k of sk with edges of the minimization diagrams M(Hj), for j < i.

Clearly s∗k can intersect only projections of intersections between planes in U . Moreover, s∗k
intersects the projection of the intersection between ui and uj , for i < j, if and only if (i) ui and
uj are inserted before any of the planes ui+1, . . . , uj−1, and (ii) the first inserted plane among
q1, . . . , qk+1 is inserted after both ui and uj .

Let Aj , for j = 1, . . . , n, be the event that exactly j + 1 of the planes in U have been inserted
before the first plane among q1, . . . , qk+1 has been inserted. As just argued, if Aj happens then s∗k
intersects at least j lines in the overlay of the minimization diagrams.

The event Aj happens if and only if the planes of U and the planes q1, . . . , qk+1 appear in the

17

permutation in the following order. First appear j + 1 of the planes of U , then any single one of
the planes q1, . . . , qk+1, and then all other planes in U ∪ {q1, . . . , qk+1} in an arbitrary order. Let
pj be the probability that Aj happens. We thus have

pj =

(n+1
j+1

)

(j + 1)!(k + 1)(n + k − j)!

(n + k + 2)!
,

and we have the following lower bound on the expectation E(Xk):

E(Xk) ≥
n
∑

j=1

jpj

=

n
∑

j=1

j

(n+1
j+1

)

(j + 1)!(k + 1)(n + k − j)!

(n + k + 2)!

=
n
∑

j=1

j
(n + 1)!(k + 1)(n + k − j)!

(n − j)!(n + k + 2)!

=
(n + 1)!(k + 1)

(n + k + 2)!

n
∑

j=1

j
(n + k − j)!

(n − j)!

=
(n + 1)!(k + 1)!

(n + k + 2)!

n
∑

j=1

j

(

n + k − j

k

)

=
1

(n+k+2
k+1

)

n
∑

j=1

j

(

n + k − j

k

)

=

(

n+k+1
k+2

)

(n+k+2
k+1

) (3)

=
(n + 1)n

(k + 2)(n + k + 2)

≥
n

2(k + 2)
.

The equality (3) follows as a special case of the binomial identity (5.26) in [17].6 Now clearly

n
∑

k=1

E(Xk) ≥
n
∑

k=1

n

2(k + 2)
= Ω(n log n)

is a lower bound on the total expected number of intersections in the overlay of the minimization
digrams. This completes the proof of Theorem 5.1. 2

Discussion. Since, with high probability, the size of each of the prefix minima sequences PM(f)
is O(log n), it follows that, under the random insertion order, the overlay of the faces of the
minimization diagram, normal diagram, or Voronoi diagram is shallow: Each point in S

2 or in
R

2 lies in at most k = O(log n) expected number of faces. Using the Clarkson-Shor technique,

6One can see it directly by counting the number of ways to choose a subset of size k+2 from a set of size n+k+1,
by enumerating over the possible choices of the second largest item in the sample.

18

it follows that the complexity of A(E) is O(k2) times the expected complexity of the union of a
random sample of O(n/k) faces. If we could prove a general linear bound on the complexity of the
union of such faces, then we would have obtained an alternative proof that the complexity of A(E)
is O(n log n) (this time with high probability). One possible line of attack would suggest itself if
one could argue that the faces of the minimization diagram were pseudodisks (i.e., each pair of
boundaries intersect at most twice) [21]. However, this is not the case in general, as is illustrated
in Figure 6. The figure depicts two Voronoi faces whose boundaries intersect at four points. By
creating arbitrarily many appropriate copies of these points, we obtain a construction where the
overlay has quadratic complexity. Of course, this cannot be attained in expectation in a random
insertion order, as we have just shown. Nevertheless, since there is a constant positive probability
that the six points shown in Figure 6 are inserted in an order that makes the Voronoi faces of a and
of b intersect at four points, it follows that the generated Voronoi faces need not be pseudodisks,
even under a random insertion order.

a b

Figure 6: Two Voronoi faces whose boundaries intersect at four points. The point a and the two
points near it are inserted first, and then b and the two points near it are inserted.

6 Approximate Range Counting

In this section we exploit the machinery developed in the preceding sections for our main applica-
tion, stated in Corollary 2.4, to approximate half-space range counting in R

3. Recall that in this
application we are given a set P of n points in R

3, which we want to preprocess into a data struc-
ture, such that, given a lower halfspace h− bounded by a plane h, we can efficiently approximate
the number of points in P ∩ h− to within a relative error of ε, with high probability (i.e., the error
probability should go to zero as 1/poly(n)).

We present two solutions. The first is a straightforward consequence of the machinery developed
above, and the other combines it with a simple trick that reduces the storage cost by a factor of
O(log n).

The first solution proceeds as follows. As explained in the introduction, following the framework
of Cohen [12], we construct O

(

1
ε2 log n

)

copies of the data structure provided in Corollary 2.4, each
based on a different random permutation of the points, obtained by sorting the points according
to the random weights that they are assigned (see the introduction and [12] for details). We now
query each of the structures with the query plane h, retrieve in O(log n) time the point of minimum
rank in P ∩ h−, and record its weight. We output the reciprocal of the average of these weights as

19

an estimator for the desired count.
The same technique applies to the problem of approximate range counting of points in a query

disk in the plane (which, as noted above, is a special case of the problem just discussed).
To reduce the storage cost we employ the following technique. Let P be the given set of n

points in R
3. Consider the process that draws one of the O

(

1
ε2 log n

)

random permutations π of
P . In this process, each point p ∈ P is independently assigned a random weight w(p) from the
exponential distribution, and π sorts the points in the order of increasing weight. Let R denote the
set of the first t := n/ log n points in π. Since the weights are i.i.d., R is a random sample of P of
size t, where each t-element subset is equally likely to arise. Moreover, conditioned on R assuming
a fixed value, the prefix πt of the first t elements of π is a random permutation of R.

We now construct our data structure for R only, inserting the points of R in their order in
πt, and maintaining the overlay of the resulting normal diagrams, as above. Since πt is a random
permutation of R, the conditional expectation of the complexity of the overlay is O(t log t) = O(n),
which is thus also the value of the unconditional expectation. Repeating this for O

(

1
ε2 log n

)

permutations, the total expected storage is O
(

1
ε2 n log n

)

.
A query half-space h− is processed as follows. For each permutation π and associated prefix R,

we find the point of R of minimum rank that lies in h−. If there exists such a point, it is also the
minimum-rank point of P ∩ h− and we proceed as above. Suppose however that R ∩ h− = ∅. In
this case, since R is a random sample of P of size t, the ε-net theory [20] implies that, with high
probability, |P ∩ h−| = O

(

n
t log t

)

= O(log2 n). In this case, we can afford to report the points in
P ∩h− in time O(log2 n), using the range reporting data structures mentioned in the introduction.
For example, the algorithm of Chan [8] uses O(n log n) expected storage, and reports the k points
of P ∩ h− in time O(log n + k) = O(log2 n). We then count the number of reported points exactly,
by brute force. We proceed in this way if R ∩ h− is empty for at least one of the samples R.
Otherwise, we correctly collect the minimum-rank elements in each of the permutations, and can
obtain the approximate count as above.

In summary, we thus have:

Theorem 6.1 Let P be a set of n points in R
3, and let ε > 0 be given. Then we can preprocess P

into a data structure of expected size O
(

1
ε2 n log n

)

, in O
(

1
ε2 n log n

)

expected time, so that, given a
query halfspace h−, we can approximate, with high probability, the count |P ∩h−| to within relative
error ε, in O

(

1
ε2 log2 n

)

expected time. The same performance parameters hold for the case of a
planar point set, where the queries are disks.

Discussion. (i) As already discussed, compared with the technique of Aronov and Har-Peled [5],
the storage and preprocessing bounds are asymptotically the same in both cases, but the query
time is smaller by a factor of O

(

log
(

1
ε log n

))

.
(ii) We remark that the general machinery of Cohen [12] can be applied to any range space. However,
it requires a black-box procedure for efficiently finding the minimum rank of the data elements in
a query range, according to a random permutation. It is an interesting open challenge to design
data structures of this kind for other approximate geometric (and non-geometric) range counting
problems. Some solutions to this problem are suggested by Aronov and Sharir [6].

References

[1] P.K. Agarwal and J. Erickson, Geometric range searching and its relatives, in Advances in
Discrete and Computational Geometry (B. Chazelle, J. E. Goodman and R. Pollack, Eds.), AMS

20

Press, Providence, RI, 1998, pp. 1–56.

[2] P.K. Agarwal, J. Erickson, and L. Guibas, Kinetic binary space partitions for intersecting
segments and disjoint triangles, Proc. 9th Annu. ACM-SIAM Sympos. Discrete Algo., 1998, 107–
116.

[3] P.K. Agarwal, L.J. Guibas, T.M. Murali, and J.S. Vitter, Cylindrical static and kinetic binary
space partitions, Comput. Geom. Theory Appl. 16 (2000), 103–127.

[4] P.K. Agarwal and J. Matoušek, On range searching with semialgebraic sets, Discrete Comput.
Geom. 11 (1994), 393–418.

[5] B. Aronov and S. Har-Peled, On approximating the depth and related problems, Proc. 16th
Annu. ACM-SIAM Sympos. Discrete Algo., 2005, 886–894.

[6] B. Aronov and M. Sharir, Approximate range counting, in preparation.

[7] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry:
Algorithms and Applications, 2nd Edition, Springer verlag, Heidelberg, 2000.

[8] T. M. Chan, Random Sampling, Halfspace Range Reporting, and Construction of (≤ k)-Levels
in Three Dimensions, SIAM J. on Comput. 30 (2000), 561–575.

[9] B. Chazelle, The Discrepancy Method, Cambridge University Press, Cambridge, UK, 2000.

[10] B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line segments in the
plane, J. Assoc. Comput. Mach., 39 (1992), 1–54.

[11] K. Clarkson and P. Shor, Applications of random sampling in computational geometry, II,
Discrete Comput. Geom. 4 (1989), 387–421.

[12] E. Cohen, Size-estimation framework with applications to transitive closure and reachability,
J. Comput. Syst. Sci. 55 (1997), 441–453.

[13] E. Cohen and H. Kaplan, Spatially-decaying aggregation over a network: model and algo-
rithms, SIGMOD ’04: Proc. 2004 ACM SIGMOD Internat. Conf. on Management of Data,
2004, 707–718.

[14] J. R. Driscoll, N. Sarnak, D. D. Sleator and R E Tarjan, Making data structures persistent, J.
Comput. System Sci. 38 (1989), 86–124.

[15] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.

[16] H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete Comput. Geom.
1 (1986), 25–44.

[17] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, Read-
ing, MA, 1994.

[18] L. Guibas, D. E. Knuth, and M. Sharir, Randomized incremental construction of Voronoi and
Delaunay diagrams, Algorithmica 7 (1992), 381–413.

[19] M. E. Houle and G. T. Toussaint, Computing the width of a set, IEEE Trans. Pattern Anal.
Mach. Intell. 10 (1988), 761–765.

21

[20] D. Haussler and E. Welzl, Epsilon-nets and simplex range queries, Disc. Comput. Geom. 2
(1987), 127-151.

[21] K. Kedem, R. Livne, J. Pach and M. Sharir, On the union of Jordan regions and collision-free
translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1 (1986), 59–71.

[22] J. Matoušek, Reporting points in halfspaces, Comput. Geom. Theory Appl. 2 (1992), 169–186.

[23] J. Matoušek, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom. 10
(1993), 157–182.

[24] J. Matoušek, Geometric Discrepancy, Algorithms and Combinatorics, Vol. 18, Springer Verlag,
Heidelberg, 1999.

[25] K. Mulmuley, A fast planar partition algorithm I, J. of Symbolic Computation, 10 (1990),
253-280.

[26] J. Pach and P.K. Agarwal, Combinatorial Geometry, Wiley Interscience, New York, 1995.

[27] E. A. Ramos, On range reporting, ray shooting and k-level construction, Proc. 15th Annu.
ACM Sympos. Comput. Geom., (1999), 390–399.

[28] N. Sarnak and R.E. Tarjan, Planar point location using persistent search trees, Comm. ACM
29 (1986), 669–679.

[29] M. Sharir and H. Shaul, Ray shooting amid balls, farthest point from a line, and range empti-
ness searching, Proc. 16th Annu. ACM-SIAM Sympos. Discrete Algo., 2005, 525–534.

22

