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tWe show that the number of in
iden
es between m distin
t points and n distin
t 
ir
les inRd, for any d � 3, is O(m6=11n9=11�(m3=n)+m2=3n2=3+m+n), where �(n) = (logn)O(�2(n)),and where �(n) is the inverse A
kermann fun
tion. The bound 
oin
ides with the re
entbound of Aronov and Sharir [5℄, as slightly improved by Agarwal et al. [1℄, for the planar 
ase.We also show that the number of in
iden
es between m points and n arbitrary 
onvex plane
urves, no two in a 
ommon plane, is O(m4=7n17=21 +m2=3n2=3 +m+ n), in any dimensiond � 3. Our results improve the upper bound on the number of 
ongruent 
opies of a �xedtetrahedron in a set of n points in 4-spa
e, and the lower bound for the number of distin
tdistan
es in a set of n points in 3-spa
e.1 Introdu
tionIn the main result of this paper, we obtain an improved upper bound for the number of in
iden
esbetween m points and n arbitrary 
ir
les in three dimensions.1 The study of the number ofin
iden
es between points in the plane and 
urves of various types has an extensive history, anda variety of nontrivial upper (and, more rarely, lower) bounds have been obtained:� For lines and pseudolines, the maximum number of in
iden
es between m points and nsu
h 
urves is �(m2=3n2=3 +m+ n) [9, 15, 16℄.� For unit 
ir
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onsistently assume that the various 
olle
tions of obje
ts (points, 
ir
les, et
.)
onsidered 
onsist of distin
t obje
ts. 1



� For arbitrary 
ir
les, the number of in
iden
es is at mostO(m2=3n2=3+m6=11n9=11�(m3=n)+m + n), where �(n) = (log n)O(�2(n)), and where �(n) is the inverse A
kermann fun
-tion [1,5℄. This improves an older bound of O(m3=5n4=5+m+n), due to Clarkson et al. [9℄.In a re
ent study [1℄, the new bound is extended to 
ertain 
lasses of pseudo-
ir
les, i.e.,
losed Jordan 
urves, any two of whi
h interse
t at most twi
e, and of pseudo-parabolas,i.e., graphs of 
ontinuous totally de�ned fun
tions, any two of whi
h interse
t at mosttwi
e. In parti
ular, this in
ludes the 
ases of parabolas and of homotheti
 
opies of any�xed 
onvex 
urve of 
onstant des
ription 
omplexity.� Finally, in one of the most general situations 
onsidered in the plane, for 
urves with `ddegrees of freedom' (as de�ned in [12℄; lines have d = 2 and 
ir
les d = 3), the numberof in
iden
es is at most O(md=(2d�1)n(2d�2)=(2d�1) +m + n) [12℄. This has been re
entlyimproved for the spe
ial 
ase of graphs of polynomials of maximum degree d� 1 [5, 7℄.Among the te
hniques developed so far for obtaining upper bounds on in
iden
e problems, thesimplest and most elegant is due to Sz�ekely [15℄, and is based on 
rossing numbers of graphsdrawn in the plane (see [11℄ for details). It yields dire
tly the bounds for lines, pseudolines, andunit 
ir
les, and is also used in a less dire
t manner in the derivation of the bounds for arbitrary
ir
les, for pseudo-
ir
les, and for 
urves with d degrees of freedom; see [1, 5, 12℄.Only re
ently, the study of in
iden
es between points and 
urves has extended to threedimensions [4, 13℄. In general, we 
onje
ture that the number of in
iden
es in three dimensionsis never larger than the 
orresponding bound in the plane: If the 
urves are plane 
urves andall lie in a 
ommon plane, then one a
hieves the planar bound. However, if the 
urves are not
oplanar (in a sense that needs to be made more pre
ise) then one expe
ts that the number ofin
iden
es be smaller than in the planar 
ase.This has been substantiated by Sharir and Welzl [13℄, who have studied in
iden
es betweenpoints and lines in three dimensions. By proje
ting the 
on�guration onto some generi
 plane,they obtain a planar 
on�guration of points and lines with the same number of in
iden
es, sothe planar bound always serves as an upper bound for the three-dimensional 
ase as well. Sharirand Welzl have shown that, if all the lines form the same angle with the z-dire
tion, then oneobtains a smaller upper bound on the number of in
iden
es. Without the above 
ondition onthe angles, improved bounds 
an also be obtained, e.g., when ea
h point is in
ident to at leastthree non-
oplanar lines; see [13℄ for details.The 
ase of 
ir
les is quite di�erent, be
ause a proje
tion of the 
ir
les onto a generi
 planeyields a 
olle
tion of ellipses, whi
h 
an interse
t at four points per pair. The re
ent bound of [5℄,and its extension in [1℄, rely on the fa
t that any two 
urves under 
onsideration interse
t atmost twi
e. Hen
e, the best known planar bound does not extend trivially to higher dimensions.In a previous version of this paper [4℄, we obtained a weaker bound of O(m4=7n17=21 +m2=3n2=3+m+n) for the number of in
iden
es between m points and n 
ir
les in any dimensiond � 3. Moreover, this bound also applies to in
iden
es between m points and n arbitrary 
onvexplane 
urves, no two of whi
h lie in a 
ommon plane, in any dimension d � 3.In this version we retain the derivation of the above bound, be
ause it remains the 
urrentlybest upper bound for in
iden
es involving pairwise non-
oplanar 
onvex plane 
urves in anydimension d � 3. However, for the 
ase of 
ir
les in three and higher dimensions, we improvethe in
iden
e bound further, and redu
e it to the aforementioned planar bound of [1, 5℄. Thenew bound is optimal for m � n5=4�
(n), for an appropriate 
onstant 
, be
ause it is then equalto O(m2=3n2=3+m), whi
h 
an be attained when all 
ir
les lie in a 
ommon plane or sphere, as2



a variant of the known lower-bound 
onstru
tion for the 
ase of lines [5, 10℄.Besides being an interesting and natural extension of the analogous two-dimensional question,there are additional motivations for studying in
iden
es between points and 
ir
les in three andhigher dimensions:(i) The problems of bounding the number of 
ongruent 
opies of a �xed triangle in a set of npoints in 3-spa
e, or of a �xed tetrahedron in a set of n points in 4-spa
e, 
all for boundingthe number of in
iden
es between points and 
ongruent 
ir
les in the respe
tive spa
es [2℄.The 3-dimensional 
ase is handled in a spe
ial manner, but the 4-dimensional 
ase doesrely on su
h an in
iden
e bound, and 
urrently uses the bound O(m3=5n4=5+m+n) (whi
h,as noted in [2, 3℄, holds in any dimension), to derive the bound O(n9=4+") on the numberof 
ongruent tetrahedra in a 4-dimensional n-element point set. Our improved in
iden
ebound yields the stronger bound of O(n20=9+").(ii) Re
ently, we have obtained an improved lower bound for the number of distin
t distan
esin a set of n points in 3-spa
e [6℄. The analysis needs and exploits a bound on the number ofin
iden
es between points and 
ir
les in three dimensions. Our improved in
iden
e boundyields stronger bounds for the 3-dimensional distin
t distan
es problem, showing that thenumber of distin
t distan
es in an n-element point set P in R3 is 
(n0:542), improving theprevious bound 
(n0:5408) in [6℄. We also show that there always exists a point in P thatdetermines at least 
(n0:529) distin
t distan
es to the other points of P , improving theprevious bound of 
(n0:526) in [6℄.2 Cir
les in Three Dimensions2.1 An initial boundLet C be a set of n 
ir
les and P a set of m points in 3-spa
e. Let I(P;C) denote the numberof in
iden
es between P and C; that is, the number of pairs (p; 
) 2 P � C with p 2 
.We �rst apply an inversion of R3 about a point o, whi
h does not lie on any 
ir
le of C oron any sphere or plane that 
ontains more than one 
ir
le of C. Spe
i�
ally, we take o to be theorigin, and identify a point with its radius-ve
tor x from the origin. Then the inversion is themapping x 7! x= jxj2. It maps o to the \sphere at in�nity," all points at the \sphere at in�nity"to o, a sphere avoiding o to another su
h sphere, a plane missing o to a sphere through o andvi
e versa, and a plane through o to itself. Consequently, the inversion maps a 
ir
le missing oto another su
h 
ir
le. After the transformation, we obtain a new set of m points and n 
ir
les,where no two resulting 
ir
les are 
oplanar. Indeed, any su
h 
oplanar pair would have had tolie, before the transformation, on a 
ommon sphere or plane that passes through o, 
ontrary tothe 
hoi
e of o. Hen
e, throughout the remainder of this se
tion, we assume that no two 
ir
lesof C are 
oplanar.We may also assume that ea
h 
ir
le of C 
ontains at least three points of P , sin
e theremaining 
ir
les 
ontribute at most 2n to the in
iden
e 
ount. After making this assumption,the notion of the ar
 of a 
ir
le delimited by a pair of 
onse
utive points of P on the 
ir
le isunambiguous. We will 
all su
h an ar
 elementary.We represent the in
iden
e stru
ture by a multigraph G embedded in 3-spa
e as follows:verti
es of G are the points of P themselves and any two points of P 
onse
utive along a 
ir
le3




 2 C are 
onne
ted by an ar
 of G, drawn as the 
orresponding elementary ar
 along 
. Inthis manner a pair of points might be 
onne
ted by multiple ar
s|abstra
tly we think of it asa single multi-edge (i.e., an edge with multipli
ity) in G. Note that we reserve the term \ar
(of G)" for a geometri
 obje
t|an (elementary) ar
 of some 
ir
le 
onne
ting two 
onse
utivepoints of P , while the term \edge (of G)" will mean the abstra
t (multi)edge of G, i.e., a pairof points with one or more elementary ar
s between them. The number of edges in G, 
ountedwith multipli
ity, is exa
tly the number of ar
s in G, whi
h is pre
isely I(P; C).An edge fp; qg of G is 
alled light if it has multipli
ity one, i.e., p and q are 
onse
utivealong a single 
ir
le; otherwise we 
all it heavy. The 
orresponding elementary ar
 or ar
s arealso referred to as light or heavy, respe
tively.The number of light ar
s is easy to bound. Indeed, proje
t C and P onto some generi
 plane�. Consider the 
olle
tion G0 of the proje
tions of all the light ar
s of G onto �. G0 is a simplegraph drawn in the plane, with m verti
es and at most 4�n2� = O(n2) edge 
rossings (any su
h
rossing is an interse
tion between the proje
tions of the two respe
tive 
ir
les; these proje
tionsare ellipses, whi
h may interse
t ea
h other in at most four points per pair). Applying Sz�ekely'ste
hnique [15℄, we 
on
lude that the total number of light ar
s is O(m2=3n2=3 +m+ n). It thusremains to bound the number of heavy ar
s.Fix a threshold parameter k. We apply the following iterative pruning pro
ess to the 
ir
lesof C. Suppose that there exists a 
ir
le 
0 2 C with at least k other 
ir
les meeting it at twopoints ea
h (
ir
les that tou
h 
0 at only one point do not form elementary ar
s along it). LetK(
0) denote the set of these 
ir
les, and let � � k denote its 
ardinality.Consider the set of all spheres that 
ontain 
0 and at least one additional 
ir
le of C. Let�1; �2; : : : ; �s denote the sequen
e of these spheres, enumerated in the order of their 
entersalong the axis of 
0, whi
h is the line orthogonal to the plane 
ontaining 
0 and passing throughits 
enter; 
learly, s � �. For ea
h i = 1; : : : ; s, let C(�i) denote the set of 
ir
les that lie on�i; one of them is 
0, and some of them might not interse
t 
0 at all. Put �i = jC(�i)j, and�0 = Psi=1 �i. Note that �0 � � + 1 > k. Put K 0(
0) = Ssi=1 C(�i); this set 
ontains 
0, the
ir
les in K(
0), and also possibly some 
ir
les that happen to lie on some sphere �i, withoutinterse
ting 
0.Within ea
h �i, 
onsider the set C(�i), whi
h, by an appropriate stereographi
 proje
tion,is mapped to a set of 
oplanar 
ir
les. The results of [1, 5℄ imply that the number of heavyelementary ar
s inA(C(�i)) is O(�3=2i �(�i)). Indeed, a multi-edge ofG that has j > 1 elementaryar
s along �i indu
es bj=2
 pairwise non-overlapping lenses (in the terminology of [1,5℄), and themaximum size of a family of pairwise non-overlapping lenses in a planar arrangement of �i 
ir
lesis O(�3=2i �(�i)) (see [1, Theorem 5.1℄). The number of elementary ar
s under 
onsideration isat most three times the number of these lenses. Note however that this only 
ounts elementaryar
s on 
ir
les of C(�i), whose endpoints are shared by at least one additional 
ir
le from C(�i),where they also delimit an elementary ar
. Any other heavy elementary ar
 on a 
ir
le in C(�i)has a 
ompanion elementary ar
, with the same endpoints, on a 
ir
le 
 that is transversal to�i (that is, 
 interse
ts �i at two points, whi
h are the endpoints of the elementary ar
 being
onsidered). Elementary ar
s of this latter kind will be 
ounted momentarily.Suppose that 
; 
0 6= 
0 are two 
ir
les that lie on di�erent respe
tive spheres �i; �j , andmeet ea
h other at two points p; q, so that p and q delimit elementary ar
s along both 
 and
0. This intera
tion between 
 and 
0 is not re
orded in the bounds just mentioned, but we 
anbound the number of these ar
s as follows: Note that p and q must lie on 
0. This implies that4




; 
0 2 K(
0), and there 
an be at most one su
h ar
 along ea
h 
ir
le 
 2 K(
0). Hen
e, thenumber of these ar
s is at most �.Let 
 be a 
ir
le that is not 
ospheri
al with 
0. Then 
meets ea
h of the spheres �i in at mosttwo points. We wish to bound the number of heavy elementary ar
s along 
 whose endpointslie on some 
ir
le 
0 2 K 0(
0) (where they also delimit an elementary ar
). We 
laim that thenumber of su
h ar
s is at most two. Indeed, suppose 
0; 
00; 
000 are three 
ir
les, lying on threedistin
t respe
tive spheres �0; �00; �000 through 
0, so that ea
h of them meets 
 at two points,denoted respe
tively as fp0; q0g; fp00; q00g; fp000; q000g. What is the order of these six points along 
?If 
 forms a link with 
0, i.e., the disk bounded by 
 interse
ts 
0, then, up to relabeling 
0; 
00; 
000and inter
hanging the p's and q's, the order must be p0; p00; p000; q0; q00; q000 (see Figure 1(a)), andotherwise it must be p0; p00; p000; q000; q00; q0 (see Figure 1(b)). However, neither order is 
onsistentwith the requirement that p0q0; p00q00; p000q000 be distin
t elementary ar
s on 
; spe
i�
ally, they arenot disjoint: they must partially overlap in 
ase (a), and nest in 
ase (b). This establishes the
laim.Hen
e, any 
ir
le 
 not in K 0(
0) 
ontains at most two elementary ar
s of the type under
onsideration, for a total of at most 2n additional ar
s. It is possible that su
h an elementaryar
 
 along 
 has only one 
ompanion elementary ar
 
0 with 
ommon endpoints on just one
ir
le 
0 2 K 0(
0). Ar
s 
0 of this type have not yet been 
ounted, but there 
an be at most twosu
h 
ompanion ar
s for ea
h transversal 
ir
le 
, for a total of at most 2n additional ar
s, givinga total of at most 4n additional heavy elementary ar
s that 
an be formed by these transversal
ir
les.

(b)(a) 
 
 p0p00q000q0q000p0p00 q0 q00p000 p000q00
0�0 �0�00 �000 �00 �000 
0

Figure 1: Elementary ar
s along a 
ir
le 
 that is not 
ospheri
al with 
0; the 
ross se
tion ofthe s
ene by the plane 
ontaining 
 is shown. The dash-dotted segment is the interse
tion of theplane with the disk bounded by 
0.Note that, at this point, any heavy multi-edge of G that has at least one elementary ar
 ona 
ir
le in K 0(
0) has been 
ounted with its multipli
ity. Combining the bounds obtained abovefor the several possible types of heavy elementary ar
s that we 
ount while analyzing 
0, we
5




on
lude that the number of su
h ar
s is at mostO�n+ sXi=1 �3=2i �(�i)� = O�n+� sXi=1 �i� � (�0)1=2�(�0)�= O �(�0)3=2�(�0) + n� : (1)We now remove 
0 and all the 
ir
les in K 0(
0) from C. Note that the number � of 
ir
lesthat are removed may be smaller than �0. Spe
i�
ally, we have � = �0 � s + 1, be
ause 
0 ismultiply 
ounted in �0. However, sin
e ea
h sphere �i 
ontains at least one 
ir
le other than 
0,and all these 
ir
les are distin
t, it follows that �0 � 2�.We then pi
k a new 
ir
le 
1 from the remaining 
ir
les, su
h that 
1 has at least k 
ir
lesmeeting it at two points ea
h. If there is no su
h 
ir
le, our pruning pro
ess terminates. Oth-erwise, we repeat the above 
onsiderations with respe
t to 
1, remove the 
olle
tion K 0(
1) of
ir
les, and pro
eed to the next iteration of the pro
ess.Let r be the overall number of iterations, and let �1; : : : ; �r denote the number of 
ir
lesremoved at ea
h iteration. We have Prj=1 �j � n, and �j > k for ea
h j. Thus r � n=k.Arguing as above, the total number of heavy ar
s 
ounted by our pro
edure is thusrXj=1O �n+ �3=2j �(�j)� = O(n3=2�(n) + nr) = O�n3=2�(n) + n2k � :We are left with a 
olle
tion C 0 of 
ir
les, so that ea
h 
 2 C 0 meets at most k other 
ir
les attwo points ea
h, and thus has at most k elementary ar
s, for a total of at most O(nk) additionalar
s. The grand total number of heavy elementary ar
s is thusO�n3=2�(n) + n2k + nk� :Choosing k = n1=2, and adding the number of light elementary ar
s, we 
on
lude:Theorem 2.1. The number of in
iden
es between m points and n 
ir
les in R3 isO �m2=3n2=3 + n3=2�(n) +m� : (2)2.2 Strengthening the boundThe bound in Theorem 2.1 is worst-
ase optimal when m � n5=4�3=2(n). For smaller values ofm, we apply the following problem de
omposition in dual spa
e. As in the pre
eding subse
tion,we assume that no pair of 
ir
les in C are 
oplanar.Let � denote the set of n planes 
ontaining the 
ir
les of C. Apply a standard dualitytransform that maps ea
h point p 2 P to a plane p� and ea
h plane � 2 � to a point ��, so thatin
iden
es between points and planes are preserved. In the dual spa
e, we have a set P � of mplanes, and a set �� of n points, where ea
h point �� 2 �� is asso
iated with the unique 
ir
lethat lies in the primal plane �. Clearly, if a point p is in
ident to a 
ir
le 
 
ontained in a plane�, then �� 2 p�.Fix a parameter 1 � r � m, to be determined below, and 
onstru
t a (1=r)-
utting of thedual spa
e into O(r3) simpli
es, so that the interior of ea
h simplex is interse
ted by at most6



m=r planes of P �. The 
utting is obtained in two stages, as in Chazelle and Friedman [8℄. Inthe �rst stage, we 
hoose a random sample R of r dual planes, 
onstru
t the arrangement A(R)of R, and triangulate ea
h 
ell, using bottom-vertex triangulation. Simpli
es that are 
rossedby at most m=r planes are part of the �nal output. Simpli
es � that are 
rossed by a set P ��of m�=r planes, for � > 1, are further re�ned into sub
ells, by 
hoosing a random sample R� of
� log � planes from P �� , for some absolute 
onstant 
, 
onstru
ting a triangulation of A(R� ), asabove, and 
lipping its 
ells to within � . As shown in [8℄, there exist 
hoi
es for the sets R, R� ,that result in a (1=r)-
utting of A(P �) 
onsisting of O(r3) 
ells.Consider �rst dual points in �� that lie in 
ell interiors. We 
an further subdivide the 
ellsof the 
utting into sub
ells, say, by a set of parallel planes in some �xed generi
 orientation, sothat ea
h sub
ell 
ontains at most n=r3 points, and so that the number of new 
ells is still O(r3).For ea
h 
ell � , apply Theorem 2.1 to bound the number of in
iden
es between the 
ir
les whosedual points lie in the interior of � , and the points whose dual planes 
ross � . The total numberof su
h indi
es, over all 
ells � , isO X� ��mr �2=3 � nr3�2=3 + mr + � nr3�3=2 �� nr3��!= O r3 �mr �2=3 � nr3�2=3 +mr2 + n3=2r3=2 �� nr3�!= O m2=3n2=3r1=3 +mr2 + n3=2r3=2 �� nr3�! :We next bound the number of in
iden
es involving points �� that lie on 
ell boundaries. If apoint �� lies in the relative interior of a 2-dimensional fa
e f of a 
ell � , we assign it to � (there
an be at most two su
h 
ells � , and we assign �� to just one of them). Any dual plane in
identto ��, other than the one 
ontaining f , if any su
h plane exists, will interse
t the interior of � ,so the in
iden
es between the unique 
ir
le 
ontained in � and the points dual to the planesin
ident to ��, will then be 
ounted within � . In addition, we may miss at most one in
iden
efor ea
h of these 
ir
les (with the point whose dual plane 
ontains f). Summed over all fa
es f ,these missed in
iden
es number at most n.Consider next points �� that lie in the interior of an edge e of some 
ell � (and not in theinterior of any two-dimensional fa
e of another 
ell). Any plane that is in
ident to su
h a point�� 2 e and that does not 
ontain e meets the interior of � , so by assigning �� to � , we will
apture in the pre
eding analysis ea
h in
iden
e of this type involving �� (here the number of
ells � may be large, but, as above, we assign �� to only one of them, 
hosen arbitrarily). Theplanes that 
ontain e 
onstitute, in primal spa
e, a set of 
ollinear points, and no 
ir
le 
anbe in
ident to more than two of them. Hen
e, the number of in
iden
es between the 
ir
lesrepresented by points �� 2 e and the points dual to the planes 
ontaining e is at most twi
e thenumber of these 
ir
les. Summed over all edges e, we obtain a total of at most 2n in
iden
es ofthis type.Finally, 
onsider points �� that are verti
es of the 
ells (and do not lie in the relative interiorof any fa
e or edge of another 
ell). Any vertex �� is either a vertex of the �rst de
ompositionstage, or a vertex of the se
ond stage, 
onstru
ted within a 
ell of the �rst stage.In the former 
ase, �� is the interse
tion point of three planes of R that do not pass througha 
ommon line. Fix one su
h plane p�0. Then �� is a vertex of the planar 
ross-se
tion of the7



arrangement A(R) within p�0. Any dual plane p� that is in
ident to �� interse
ts p�0 in a line` that passes through ��. The number of su
h in
iden
es within p�0 is at most r, sin
e ` must
ross one of the planes of R at ��. In total, this yields a bound of O(mr2) on the number ofin
iden
es under 
onsideration.In the latter 
ase, �� is an interse
tion point of a triple of planes of R� [ �� that do notshare a line, for some simplex � of the �rst de
omposition stage, whi
h is 
rossed by m��=r dualplanes, for some �� > 1; here �� is the set of four planes bounding � . At least one of the planesof the triple belongs to R� , or else �� would be a vertex of the �rst de
omposition stage. Letp�0 be su
h a plane. Applying and adapting the analysis used in the former 
ase, we obtain atotal of O �(m��=r) � (�� log �� )2� in
iden
es, involving all verti
es �� of the 
utting in � , and allplanes p� 2 P �� . Summing this bound over all 
ells � with �� > 1, we obtain a total ofO X� mr �3� log2 ��! :It has been shown in [8℄ that the expe
ted number of 
ells � of the initial triangulation of A(R),for whi
h �� > t, is O(r3 � 2�t). This implies that, with an appropriate 
hoi
e of R and R� , thesum just obtained is at most O(mr2).We sum up the bounds obtained so far, to 
on
lude thatI(P;C) = O m2=3n2=3r1=3 + n3=2r3=2 �� nr3�+mr2 + n! :We now 
hoose r = n5=11�6=11(m3=n)=m4=11, and note that 1 � r � m when n1=3 � m �n5=4�3=2(n). If m > n5=4�3=2(n), we use the bound O(m2=3n2=3+m), yielded by Theorem 2.1. Ifm < n1=3 then I(P; C) = O(n), whi
h follows, e.g., from the general weaker bound O(m3=5n4=5+m+ n) observed in [2, 3℄. We thus obtainI(P; C) = O �m6=11n9=11�2=11(m3=n) +m2=3n2=3 +m3=7n6=7 +m+ n� :(We have used the fa
t that n=r3 = O((m3=n)4=11), whi
h implies that �(n=r3) = O(�(m3=n)).)The �rst term dominates the third one when m � n1=3. For the sake of notational simpli
ity, werewrite �2=11(�) as �(�), sin
e both of these fun
tions have the same asymptoti
 expression, witha di�erent 
onstant of proportionality in the exponent. Hen
e, we obtain the �rst main resultof the paper:Theorem 2.2. The number of in
iden
es between m points and n 
ir
les in R3 isO(m6=11n9=11�(m3=n) +m2=3n2=3 +m+ n);where �(n) = (log n)O(�2(n)).3 Cir
les in Higher DimensionsInterestingly, Theorem 2.2 
an be extended to any dimension d � 4, employing a variant of thete
hnique used in the pre
eding se
tion. Spe
i�
ally, we �rst extend Theorem 2.1.8



3.1 An initial boundTheorem 3.1. The number of in
iden
es between m points and n 
ir
les in Rd, for any d � 4,is O �m2=3n2=3 + n3=2�(n) +m� : (3)Proof. Let P be a set of m points, and let C be a set of n 
ir
les in Rd.By applying an appropriate inversion to Rd, in 
omplete analogy to the 3-dimensional 
ase,we may assume that no two 
ir
les of C lie in a 
ommon 2-plane.The notions of elementary ar
s, of the multigraph G, and of light and heavy edges and ar
s,
arry over to higher dimensions verbatim. In parti
ular, the number of light ar
s is O(m2=3n2=3+m+n), whi
h is shown exa
tly as in the 3-dimensional 
ase, by proje
ting the 
olle
tions C andP onto a generi
 2-plane.The analysis of the number of heavy ar
s pro
eeds by indu
tion on d. Spe
i�
ally, we show:Lemma 3.2. The number of heavy elementary ar
s in an arrangement of n 
ir
les in Rd isO(n3=2�(n)).Proof. The proof pro
eeds by indu
tion on d � 3. The base 
ase d = 3 follows from the proofof Theorem 2.1. Let d � 4. Suppose the lemma holds in all dimensions d0 < d.Fix a threshold parameter k. We again apply an iterative pruning pro
ess to the 
ir
les ofC. Suppose that there exists a 
ir
le 
0 2 C with at least k other 
ir
les meeting it at two pointsea
h. Let K(
0) denote the set of these 
ir
les, and let � � k denote its 
ardinality.Let �0 be the 2-plane that 
ontains 
0. Choose some (d � 2)-
at g0 that 
ontains �0, sothat g0 n �0 does not 
ontain any 
enter of a 
ir
le of C or any interse
tion point of two su
h
ir
les. Consider the set H of all ((d� 1)-dimensional) hyperplanes that 
ontain g0 and at leastone 
ir
le of C besides 
0. Note that su
h a hyperplane 
ontains a 
ir
le in K(
0) if and onlyif it 
ontains its 
enter. All the hyperplanes that 
ontain g0 form a 1-dimensional family|theirnormals tra
e the 
ir
le 
0 of ve
tors perpendi
ular to g0 on the ((d�1)-dimensional) unit sphereof dire
tions. Let h1; h2; : : : ; hs denote the (
ir
ular) sequen
e of the hyperplanes in H, orderedin the order of their normals along 
0; 
learly, s � �. For ea
h i = 1; : : : ; s, let C(hi) denote theset of 
ir
les that lie on hi; one of them is 
0, and some of them might not interse
t 
0 at all.Put �i = jC(hi)j, and �0 =Psi=1 �i. Note that �0 � �+ 1 > k. Put K 0(
0) = Ssi=1 C(hi); thisset 
ontains 
0, the 
ir
les in K(
0), and also possibly some 
ir
les that happen to lie on somehyperplane hi, without interse
ting 
0. (Note that, sin
e no two 
ir
les of C are 
oplanar, no
ir
le in K(
0) 
an have its 
enter on �0, be
ause any su
h 
ir
le has to be 
oplanar with 
0.)Fix a hyperplane hi, 
onsider the set C(hi), and asso
iate with it the multigraph G(hi)that is formed by all elementary ar
s on the 
ir
les in C(hi). The indu
tion hypothesis impliesthat the number of heavy elementary ar
s in G(hi) is O(�3=2i �(�i)). (Note that, similar to thesituation for d = 3, this only 
ounts elementary ar
s on 
ir
les of C(hi), whose endpoints areshared by at least one additional 
ir
le from C(hi), where they also delimit an elementary ar
.)Suppose that 
; 
0 6= 
0 are two 
ir
les that lie on di�erent respe
tive hyperplanes hi; hj , andmeet ea
h other at two points p; q, so that p and q delimit elementary ar
s along both 
 and
0. This intera
tion between 
 and 
0 is not re
orded in the bounds just mentioned, but we 
anbound the number of these ar
s, exa
tly as in the 3-dimensional 
ase, as follows: Note that pand q must lie on �0 (they lie in g0, and the 
hoi
e of g0 ensures that they 
annot lie in g0 n �0).9



Sin
e any 
ir
le in C n f
0g interse
ts �0 in at most two points, it follows that there 
an be atmost one su
h elementary ar
 along ea
h 
ir
le 
 2 K 0(
0). Hen
e, the number of these ar
s isat most �0.

(b)(a)
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Figure 2: Elementary ar
s along a 
ir
le 
 that does not lie in any hyperplane hi (as seen whenproje
ted onto a 2-plane orthogonal to g0).Let 
 be a 
ir
le that does not lie in any of the hyperplanes hi. Then 
 meets ea
h of thehyperplanes hi in at most two points. We wish to bound the number of heavy elementary ar
salong 
 that have 
ommon endpoints with some 
ir
le 
0 2 K 0(
0) (where they also delimit anelementary ar
). We 
laim that the number of su
h ar
s is at most two; the proof is identi
al tothe analogous proof in three dimensions. Spe
i�
ally, suppose 
0; 
00; 
000 are three 
ir
les, lying onthree distin
t respe
tive hyperplanes h0; h00; h000 through g0, so that ea
h of them meets 
 at twopoints, denoted respe
tively as fp0; q0g; fp00; q00g; fp000; q000g. To determine the order of these sixpoints along 
, we proje
t the set of 
ir
les orthogonally onto a 2-plane orthogonal to g0. If thedisk bounded by 
 meets g0 then, up to relabeling 
0; 
00; 
000 and inter
hanging the p's and q's, theorder must be p0; p00; p000; q0; q00; q000 (see Figure 2(a)); otherwise, it must be p0; p00; p000; q000; q00; q0 (seeFigure 2(b)). However, neither order is 
onsistent with the requirement that p0q0; p00q00; p000q000 bedistin
t elementary ar
s on 
; spe
i�
ally, they are not disjoint, as they partially overlap in 
ase(a), and are nested in 
ase (b). This establishes the 
laim. Hen
e, any 
ir
le 
 not in K 0(
0)
ontains at most two elementary ar
s of the type under 
onsideration, for a total of at most2n additional ar
s. Adding the 
ompanion elementary ar
s along 
ir
les in K 0(
0), if needed,as in the 3-dimensional 
ase, we obtain at most 2n more ar
s. The overall number of heavyelementary ar
s that we 
ount while analyzing 
0 is thus at mostO� sXi=1 �3=2i �(�i) + n� = O�� sXi=1 �i� � (�0)1=2�(�0) + n� = O�(�0)3=2�(�0) + n�:We now remove 
0 and all the 
ir
les in K 0(
0) from C. Clearly, any heavy multi-edge of G thathas at least one elementary ar
 on a 
ir
le in K 0(
0), is 
ounted, with its multipli
ity, in thebound just given.The des
ribed iterative pro
ess is repeated until no 
ir
le 
00 2 C has k or more other 
ir
lesmeeting it in two points ea
h. Let �1; : : : ; �r denote the number of 
ir
les removed at ea
h step10



in the pro
ess. We have Prj=1 �j � n, and �j > k for ea
h j. Therefore r � n=k. Arguing asabove, the total number of heavy ar
s in G is thusrXj=1O ��3=2j �(�j) + n� = O(n3=2�(n) + nr) = O�n3=2�(n) + n2k � :We are left with a 
olle
tion C 0 of 
ir
les, so that ea
h 
 2 C 0 meets at most k other 
ir
les attwo points ea
h, and thus has at most k elementary ar
s, for a total of at most O(nk) ar
s. Thegrand total number of heavy elementary ar
s is thusO�n3=2�(n) + n2k + nk� :Choosing k = n1=2 yields the bound asserted in the lemma. This 
ompletes the indu
tion step,and thus also the proof of the lemma.We return to the estimation of I(P; C). Using the bound of Lemma 3.2 on the number ofheavy elementary ar
s, and adding the number of light elementary ar
s noted above, we obtain:I(P;C) = O �m2=3n2=3 + n3=2�(n)� ;thus 
ompleting the proof of the theorem.3.2 Strengthening the boundTo improve the bound of Theorem 3.1, we proje
t P and C onto some generi
 3-spa
e. The
ir
les of C are mapped to ellipses, and in
iden
es between points of P and 
ir
les of C aremapped to in
iden
es between the 
orresponding proje
ted points and ellipses. Let P̂ and Ĉdenote, respe
tively, the proje
ted sets of points and 
ir
les. By using a generi
 proje
tion, wemay assume that no two ellipses in Ĉ are 
oplanar.We pass to the dual 3-spa
e, and map the points of P̂ to planes and the ellipses of Ĉ topoints, dual to the planes 
ontaining the ellipses. From this point on, we 
an repeat the analysisof Se
tion 2.2 almost verbatim, ex
ept for the following items: (i) Within ea
h 
ell of the 
uttingwe apply Theorem 3.1 to bound the number of in
iden
es between the 
orresponding originalpoints and 
ir
les in d-spa
e. (ii) When we 
onsider dual points �� that lie on an edge e of the
utting, we note that, sin
e the proje
tion onto 3-spa
e is generi
, the primal points p whoseduals 
ontain e must be 
ollinear not only in the proje
ted 3-spa
e but also in the original Rd,so the analysis of this 
ase 
arries over easily to d dimensions as well. Omitting further easydetails we obtain the improved bound, whi
h is asymptoti
ally identi
al to the bound in threedimensions:Theorem 3.3. The number of in
iden
es between m points and n 
ir
les in Rd isO(m6=11n9=11�(m3=n) +m2=3n2=3 +m+ n):
11



4 Convex Non-
oplanar Plane Curves4.1 The three-dimensional 
ase4.1.1 An initial boundLet C be a set of n arbitrary 
onvex plane 
urves, no two in a 
ommon plane, and let P be aset of m points in 3-spa
e. Let I(P; C) denote the number of in
iden
es between P and C.As above, we also assume that ea
h 
urve of C 
ontains at least three points of P , sin
ethe remaining 
urves only 
ontribute at most 2n to the in
iden
e 
ount. The notions of anelementary ar
, of light and heavy ar
s, and of the multigraph G that represents the in
iden
estru
ture, are de�ned in 
omplete analogy to the 
ase of 
ir
les. Our analysis also allows (someof) the given 
urves to be unbounded. In this 
ase, jGj � I(P; C) � n. Thus, bounding jGjsuÆ
es in this 
ase too.As in the 
ase of 
ir
les, the number of light ar
s is O(m2=3n2=3 +m + n). It thus remainsto bound the overall number of heavy ar
s.We start with some de�nitions. A 
on�guration 
onsists of four 
urves 
; 
1; 
2; 
3 2 C andthree pairs fp1; q1g, fp2; q2g, and fp3; q3g of points from P , su
h that (refer to Figure 3):

 
2q1 q3p1

p2 q2 p3
1 
3
Figure 3: A 
on�guration.(i) The 
urves 
i and 
 interse
t at the two points pi; qi, for i = 1; 2; 3.(ii) The six points p1; q1; p2; q2; p3; q3 of P are distin
t (making the three 
urves 
1; 
2; 
3 distin
tas well).(iii) For i = 1; 2; 3, pi and qi are 
onse
utive points of P both along 
i and along 
; thus allthree edges fpi; qig are heavy edges of G.We do not distinguish 
on�gurations that di�er only by a permutation of the indi
es 1; 2; 3. Sin
ea 
on�guration, when it exists, is 
ompletely determined by its four 
urves, we will sometimesrefer to it as (
; 
1; 
2; 
3), instead of the somewhat more awkward, even if more a

urate notation(
; 
1; 
2; 
3; p1; q1; p2; q2; p3; q3). The main te
hni
al tool used in our analysis is the followinglemma.Lemma 4.1. Let 
1; 
2; 
3 be three distin
t 
urves in C. There are at most 128 
urves 
 2 Cforming a 
on�guration with 
1; 
2; 
3, for any 
hoi
e of points p1; q1; p2; q2; p3; q3.12



Proof. Let 
1; 
2; 
3 be a �xed triple of 
urves in C. By our non-
oplanarity assumption, the
urves 
1; 
2; 
3 lie in three distin
t respe
tive planes �1; �2; �3, and no 
urve 
 that forms a
on�guration with this triple is 
oplanar with any of them. Let A denote the arrangement ofthese three planes. A has a single vertex o, unless the three planes are parallel to a 
ommonline. Consider �rst the 
ase where the vertex o exists. In this 
ase, A has eight 3-dimensional
ells, ea
h being an in�nite trihedral wedge with its apex at o.Suppose to the 
ontrary that there are at least 129 
urves 
 2 C that form a 
on�gu-ration with 
1; 
2; 
3, as above. Let 
 be a 
urve that forms a 
on�guration of the form(
; 
1; 
2; 
3; p1; q1; p2; q2; p3; q3) with 
1; 
2; 
3. Consider the elementary ar
 p1q1 along 
. Itsendpoints lie on �1, and it 
annot meet any of the planes �2; �3, be
ause any su
h interse
tionmust be a point of P where 
 meets 
2 or 
3. Hen
e, p1 and q1 lie in the same 2-fa
e of A, andsimilarly for p2; q2, and for p3; q3.This is easily seen to imply that, if we remove from 
 the three (
losed) elementary ar
s piqi,for i = 1; 2; 3, the remainder of 
, whi
h we denote by �
, is fully 
ontained in a single (open)3-dimensional 
ell of A. See Figure 4. Sin
e there are eight su
h 
ells, at least one of them, 
all�1
�3
2 �
�o

�2 
1

3Figure 4: A 3-dimensional 
ell � , bounded by the planes �1; �2; �3 
ontaining 
1; 
2; 
3, respe
-tively. A `
lipped' 
urve �
 within � is shown.it � , must 
ontain the trun
ations �
 of at least 17 of the 
urves 
.Consider one su
h 
urve 
. The plane � 
ontaining 
 meets ea
h 
i, for i = 1; 2; 3, at thetwo respe
tive points pi; qi. We say that 
i lies on the near side (resp., the far side) of � if theelementary ar
 piqi along 
i lies on the side of � that does not 
ontain (resp., 
ontains) o. (Notethat � 
annot pass through o.) There are 8 = 23 possible 
ombinations of sides for any plane� 
ontaining su
h a 
urve 
 (one of two sides for ea
h of 
1; 
2; 
3), so there exists at least onesu
h 
ombination that arises for at least three out of the 17 
urves 
 as above. We denote these
urves by 
; 
0; 
00, and their 
ontaining planes by �; �0; �00. We 
onsider the following 
ases:(i) All three sides are of the same kind, say all are far sides. For ea
h i = 1; 2; 3, remove from 
ithe three elementary ar
s that it forms with 
; 
0; 
00. Denote the portion of the remainder of 
ithat lies on �� by �
i. Note that ea
h �
i is nonempty, be
ause 
i meets ea
h of 
; 
0; 
00 at a pairof points that lie on �� . Then �
1, �
2, �
3 are all 
ontained in the interse
tion of the three 
losedhalfspa
es that are bounded by �; �0; �00 and do not 
ontain o, and of the three 
losed halfspa
esthat are bounded by �1; �2; �3 and interse
t in � . Let K be the 
onvex polyhedron formed bythe interse
tion of these six halfspa
es. Then K has six fa
ets, and ea
h of the three (
losed)fa
ets that lie on the planes �; �0; �00 meets ea
h of the three (
losed) fa
ets that lie on the planes�1; �2; �3. To see this, 
onsider, for example, the two points p1; q1 of interse
tion of 
 and 
1.13



Then: (a) Sin
e p1 and q1 lie on �� , they lie in the appropriate halfspa
es that are bounded by�1; �2; �3. (b) Both points lie on �. (
) The halfspa
e under 
onsideration h0 that is boundedby �0 
ontains all of 
1, ex
ept for the elementary ar
 of 
1 delimited by its interse
tions with
0. Sin
e p1 and q1 do not lie in this ar
, they lie in h0, and, similarly, also in the appropriatehalfspa
e bounded by �00. This implies that p1; q1 lie on an edge of K where � and �1 meet, andsimilarly for all other relevant pairs of 
urves (nine pairs in total). In other words, �K yieldsan impossible plane drawing of K3;3 
ontained in its dual graph. That is, we �x a point insideea
h of the six fa
ets, and 
onne
t, say, the point on the fa
et of �1 to the point on the fa
etof � by an appropriate path, 
onsisting of two segments, within the union of the two fa
ets,and similarly for all other relevant pairs of fa
ets. This 
ontradi
tion rules out this 
ase. (Thesituation where all sides are near is argued in exa
tly the same manner.)(ii) Two sides are of the same kind, and the third is of the opposite kind. Without loss ofgenerality, assume that 
1 and 
2 lie on the far side of �; �0; �00, and that 
3 lies on the near sideof �; �0; �00. Denote by �+ (resp., ��) the halfspa
e bounded by � and 
ontaining o (resp., not
ontaining o), and de�ne similarly the halfspa
es �0+, �0�, �00+, and �00�. Assume that �; �0; �00meet at a single point q. Then Q+ = �+ \ �0+ \ �00+ and Q� = �� \ �0� \ �00� are 
omplementarytrihedral wedges with a 
ommon apex q. De�ne the trun
ated 
urves �
1, �
2, �
3 as above; againthey must be non-empty. Note that � must meet both Q+ and Q�, be
ause �
1; �
2 � Q�, and�
3 � Q+. Note that this implies that the point q does exist. Indeed, if it does not exist then�; �0; �00 are all parallel to some dire
tion, whi
h implies that at least one of Q+; Q� is a dihedralwedge, bounded by only two of these planes. However, this wedge 
ontains at least one of thetrun
ated 
ir
les �
1; �
2; �
3, whi
h meets ea
h of �; �0; �00 at two distin
t points, a 
ontradi
tionthat shows �; �0; �00 must meet in single point q.There are two sub
ases to 
onsider:(ii.a) � 
ontains q. See Figure 5(a). Consider the 
onvex polyhedron K� = Q� \ � . Arguingas in 
ase (i), K� has (at least) �ve fa
ets, bounded by the planes �1; �2; �; �0; �00, and three ofthem, those lying on the planes �; �0; �00, meet at the 
ommon vertex q. In this 
ase, we alsoobtain an impossible plane drawing of K3;3 along �K�, in whi
h the nodes of one vertex setare (points within) the fa
ets that lie on �; �0; �00, and the nodes of the se
ond vertex set arethe vertex q and (points within) the fa
ets that lie on �1; �2. The edges 
onne
ting the pointson the fa
ets of �; �0; �00 to the points on the fa
ets of �1; �2 are drawn as in 
ase (i); the edgesin
ident to q are trivial to draw. This 
ontradi
tion rules out this sub
ase.(ii.b) � does not 
ontain q. Draw through q a plane � that misses � ; � must 
ross both Q+ andQ�, or else � 
ould not meet both of them; see Figure 5(b). Consider the three lines `1 = �\�0,`2 = � \ �00, `3 = �0 \ �00. Ea
h line `j is split at q into two rays, one of whi
h, denoted `+j , isan edge of Q+, and the other, denoted `�j , is an edge of Q�. Consider the halfspa
e h boundedby � and 
ontaining � . Then either h 
ontains two of the rays `+j and one of the rays `�j , or theother way around. Suppose, say, that h 
ontains `+1 , `+2 , `�3 . Then the fa
et ' of Q� delimitedby `�1 and `�2 (this is the fa
et lying on �) is fully disjoint from h and thus also from � . However,
 and 
1, say, must meet ea
h other within � \Q� (sin
e 
1 lies in the far side of �; �0; �00), or,rather, within � \ '. Sin
e this interse
tion is empty, we obtain a 
ontradi
tion that rules outthis sub
ase too.Sin
e the planes �; �0; �00 play fully symmetri
 roles in the pre
eding argument, it applies alsoto any other 
ase where h 
ontains two `positive' rays and one `negative' ray. The 
ases where h
ontains two negative rays (say, `�1 ; `�2 ) and one positive ray (`+3 ) is handled by 
onsidering 
3,whi
h has to meet 
 within � \Q+, whi
h is impossible, sin
e the fa
et of Q+ that is bounded14
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q

Figure 5: Case (ii) of the proof: (a) q 2 � , (b) q 62 � .by � is disjoint from � .If the planes �1; �2; �3 do not meet at a single point and do not share a 
ommon line, anear-identi
al argument applies, the only di�eren
e being that A has no verti
es, so � is a three-sided prism rather than a trihedral wedge. (The notions of near and far sides need now to berede�ned in a 
onsistent, though obvious, manner.) Finally, we need to 
onsider the 
ase where�1; �2; �3 share a 
ommon line. If there existed a 
urve 
 that formed a 
on�guration with
1; 
2; 
3, arguing as in the pre
eding analysis, we would 
on
lude that the trun
ated portion �
of 
 would have to lie fully within a single open 
ell of A. However, any su
h 
ell is bounded byonly two of the planes �1; �2; �3, so 
 
annot form an elementary ar
 with the 
urve that lies inthe remaining plane. Hen
e �1; �2; �3 
annot share a line.This 
ompletes the proof of the lemma.Continuing with our main argument, let Q denote the set of all 
on�gurations. Lemma 4.1implies that jQj = O(n3). A lower bound for jQj is obtained as follows. Fix a 
urve 
 2 C that
ontains M
 � 3 heavy ar
s that do not share endpoints. Any other 
urve 
ontributes at mostsix in
iden
es involving heavy ar
s, for a total of O(n). (The maximum number six is attainedwhen 
 
ontains two pairs of heavy ar
s, ea
h sharing a 
ommon endpoint. Together, these fourar
s have six endpoints.) Ea
h of the �M
3 � triples of those heavy ar
s on 
 generates a distin
t
on�guration in Q (in general, it may generate more than one 
on�guration). Hen
e, we havejQj � X
2CM
�3�M
3 �:15



In other words, the total number of heavy ar
s is at mostO(n) +O�XM
�3M
� = O(n) +O�X
 (M
 � 2)�= O(n) +O��X
 �M
3 ��1=3 � n2=3�= O(n5=3):The se
ond equation follows from H�older's inequality. We have thus shown:Theorem 4.2. Let C be a family of n arbitrary 
onvex plane 
urves in R3, no two in the sameplane. Let P be a set of m points in R3. Then I(P; C) = O(m2=3n2=3 +m+ n5=3).4.1.2 Strengthening the boundThe bound in Theorem 4.2 is worst-
ase optimal when m � n3=2. For smaller values of m, weapply an essentially identi
al analysis to the one given in Se
tion 2.2, whi
h 
onsiders the pointsof P and the (distin
t) planes 
ontaining the 
urves of C in dual spa
e. The main di�eren
esare: (i) Within ea
h 
ell of the 
utting we apply Theorem 4.2 to bound the number of in
iden
esbetween the 
orresponding original points and 
urves. (ii) When we 
onsider dual points �� thatlie on an edge e of the 
utting, we note that, as above, the primal points p whose duals 
ontaine are 
ollinear, and any 
onvex plane 
urve 
an be in
ident to at most two of them. Thus theanalysis of this 
ase 
arries over easily to the situation at hand.Thus the number of in
iden
es involving dual points �� that lie in the interiors of the 
ellsof the 
utting isO X� ��mr �2=3 � nr3�2=3 + mr + � nr3�5=3�! = O m2=3n2=3r1=3 +mr2 + n5=3r2 ! :As des
ribed above, dual points that lie on 
ell boundaries are handled as in Se
tion 2.2. Thatis, they are assigned to neighboring 
ells and/or 
ontribute O(n+mr2) additional in
iden
es.In total, we thus obtainI(P; C) = O m2=3n2=3r1=3 + n5=3r2 +mr2 + n! :We now 
hoose r = n3=7=m2=7, and note that 1 � r � m when n1=3 � m � n3=2. If m > n3=2,we use the bound O(m2=3n2=3 +m), yielded by Theorem 4.2. If m < n1=3 then I(P; C) = O(n).This follows sin
e the bipartite in
iden
e graph f(p; 
) 2 P � C j p 2 
g does not 
ontain K3;2,so, by extremal graph theory [11℄, the number of in
iden
es is O(mn2=3 + n) = O(n). We thusobtain I(P; C) = O �m4=7n17=21 +m2=3n2=3 +m3=7n6=7 +m+ n� :The �rst term dominates the third one when m � n1=3. Hen
e we obtain the main result of thisse
tion:Theorem 4.3. The number of in
iden
es between m points and n arbitrary 
onvex plane 
urvesin R3, no two in the same plane, is O(m4=7n17=21 +m2=3n2=3 +m+ n).16



4.2 Extension to higher dimensionsTheorem 4.4. Let C be a 
olle
tion of n 
onvex plane 
urves, no two of whi
h lie in a 
ommon2-plane, and let P be a set of m points in Rd, for any d � 4. Then I(P;C) = O(m4=7n17=21 +m2=3n2=3 +m+ n).Proof. We proje
t the 
urves and points onto some generi
 3-spa
e. In the proje
tion, the 
urvesof C remain 
onvex and planar, and no two of them are 
oplanar, so we 
an apply Theorem 4.3to obtain the bound.5 Appli
ationsAs already mentioned in the Introdu
tion, Theorems 2.2 and 3.3 
an be applied to improve thebound, obtained in [2℄, for the number of 
ongruent tetrahedra in a point set in four dimen-sions, and the bound, obtained in [6℄, for the number of distin
t distan
es in three dimensions.Spe
i�
ally, we have:Theorem 5.1. Let P be a set of n points in R4, and let � be a given tetrahedron. The numberof 
ongruent 
opies of � that are spanned by the points of P is O(n20=9+"), for any " > 0.Theorem 5.2. Let P be a set of n points in R3. Then (a) the number of distin
t distan
esdetermined by P is 
(n0:542), and (b) there always exists a point of P that determines 
(n0:529)distin
t distan
es to the other points of P .The proofs are immediate adaptations of the proofs in [2,6℄, where the bounds on the numberof point-
ir
le in
iden
es in 4-spa
e or 3-spa
e, are repla
ed, respe
tively, by the bounds inTheorems 2.2, 3.3.A
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