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Abstract

We show that the number of incidences between m distinct points and n distinct circles in
RY, for any d > 3, is O(mS/ 11?1 k(m3 /n) +m2/3n2/3 +m+n), where £(n) = (logn)°@” (M)
and where a(n) is the inverse Ackermann function. The bound coincides with the recent
bound of Aronov and Sharir [5], as slightly improved by Agarwal et al. [1], for the planar case.
We also show that the number of incidences between m points and n arbitrary convex plane
curves, no two in a common plane, is O(m*™n'7/?' + m?/3p?/3 4 m +n), in any dimension
d > 3. Our results improve the upper bound on the number of congruent copies of a fixed
tetrahedron in a set of n points in 4-space, and the lower bound for the number of distinct
distances in a set of n points in 3-space.

1 Introduction

In the main result of this paper, we obtain an improved upper bound for the number of incidences
between m points and n arbitrary circles in three dimensions.! The study of the number of
incidences between points in the plane and curves of various types has an extensive history, and
a variety of nontrivial upper (and, more rarely, lower) bounds have been obtained:

e For lines and pseudolines, the maximum number of incidences between m points and n
such curves is ©(m?/3n?/? 4 m +n) [9,15,16].

e For unit circles, the number of incidences is at most O(m?/3n?/3 + m +n) [9,14,15].
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e For arbitrary circles, the number of incidences is at most O(m?/3n2/34m8/ " n9/1 i (m3 /n)+
m + n), where r(n) = (logn)?@ ™) and where a(n) is the inverse Ackermann func-
tion [1,5]. This improves an older bound of O(m3/°n*5+m+n), due to Clarkson et al. [9].
In a recent study [1], the new bound is extended to certain classes of pseudo-circles, i.e.,
closed Jordan curves, any two of which intersect at most twice, and of pseudo-parabolas,
i.e., graphs of continuous totally defined functions, any two of which intersect at most
twice. In particular, this includes the cases of parabolas and of homothetic copies of any
fixed convex curve of constant description complexity.

e Finally, in one of the most general situations considered in the plane, for curves with ‘d
degrees of freedom’ (as defined in [12]; lines have d = 2 and circles d = 3), the number
of incidences is at most O(m®/(24=1p(24=2)/(2d=1) 4y 1 ) [12]. This has been recently
improved for the special case of graphs of polynomials of maximum degree d — 1 [5,7].

Among the techniques developed so far for obtaining upper bounds on incidence problems, the
simplest and most elegant is due to Székely [15], and is based on crossing numbers of graphs
drawn in the plane (see [11] for details). It yields directly the bounds for lines, pseudolines, and
unit circles, and is also used in a less direct manner in the derivation of the bounds for arbitrary
circles, for pseudo-circles, and for curves with d degrees of freedom; see [1,5,12].

Only recently, the study of incidences between points and curves has extended to three
dimensions [4,13]. In general, we conjecture that the number of incidences in three dimensions
is never larger than the corresponding bound in the plane: If the curves are plane curves and
all lie in a common plane, then one achieves the planar bound. However, if the curves are not
coplanar (in a sense that needs to be made more precise) then one expects that the number of
incidences be smaller than in the planar case.

This has been substantiated by Sharir and Welzl [13], who have studied incidences between
points and lines in three dimensions. By projecting the configuration onto some generic plane,
they obtain a planar configuration of points and lines with the same number of incidences, so
the planar bound always serves as an upper bound for the three-dimensional case as well. Sharir
and Welzl have shown that, if all the lines form the same angle with the z-direction, then one
obtains a smaller upper bound on the number of incidences. Without the above condition on
the angles, improved bounds can also be obtained, e.g., when each point is incident to at least
three non-coplanar lines; see [13] for details.

The case of circles is quite different, because a projection of the circles onto a generic plane
yields a collection of ellipses, which can intersect at four points per pair. The recent bound of [5],
and its extension in [1], rely on the fact that any two curves under consideration intersect at
most twice. Hence, the best known planar bound does not extend trivially to higher dimensions.

In a previous version of this paper [4], we obtained a weaker bound of O(m*™n!'7/2! 4
m?/3n2/3 4 m+n) for the number of incidences between m points and n circles in any dimension
d > 3. Moreover, this bound also applies to incidences between m points and n arbitrary convex
plane curves, no two of which lie in a common plane, in any dimension d > 3.

In this version we retain the derivation of the above bound, because it remains the currently
best upper bound for incidences involving pairwise non-coplanar convex plane curves in any
dimension d > 3. However, for the case of circles in three and higher dimensions, we improve
the incidence bound further, and reduce it to the aforementioned planar bound of [1,5]. The
new bound is optimal for m > n5/4,%7(n), for an appropriate constant 7, because it is then equal
to O(m2/3n2/3 + m), which can be attained when all circles lie in a common plane or sphere, as



a variant of the known lower-bound construction for the case of lines [5,10].

Besides being an interesting and natural extension of the analogous two-dimensional question,
there are additional motivations for studying incidences between points and circles in three and
higher dimensions:

(i) The problems of bounding the number of congruent copies of a fixed triangle in a set of n
points in 3-space, or of a fixed tetrahedron in a set of n points in 4-space, call for bounding
the number of incidences between points and congruent circles in the respective spaces [2].
The 3-dimensional case is handled in a special manner, but the 4-dimensional case does
rely on such an incidence bound, and currently uses the bound O(m?3/°>n*/®+m+n) (which,
as noted in [2,3], holds in any dimension), to derive the bound O(n°/4*%) on the number
of congruent tetrahedra in a 4-dimensional n-element point set. Our improved incidence
bound yields the stronger bound of O(n20/9+¢).

(ii) Recently, we have obtained an improved lower bound for the number of distinct distances
in a set of n points in 3-space [6]. The analysis needs and exploits a bound on the number of
incidences between points and circles in three dimensions. Our improved incidence bound
yields stronger bounds for the 3-dimensional distinct distances problem, showing that the
number of distinct distances in an n-element point set P in R3 is Q(n%5*2), improving the
previous bound Q(n%54%%) in [6]. We also show that there always exists a point in P that
determines at least Q(n°%29) distinct distances to the other points of P, improving the
previous bound of Q(n%%2%) in [6].

2 Circles in Three Dimensions

2.1 An initial bound

Let C be a set of n circles and P a set of m points in 3-space. Let I(P,C') denote the number
of incidences between P and C'; that is, the number of pairs (p,c) € P x C with p € c.

We first apply an inversion of R? about a point o0, which does not lie on any circle of C' or
on any sphere or plane that contains more than one circle of C'. Specifically, we take o to be the
origin, and identify a point with its radius-vector x from the origin. Then the inversion is the
mapping x — x/ |x|2. It maps o to the “sphere at infinity,” all points at the “sphere at infinity”
to 0, a sphere avoiding o to another such sphere, a plane missing o to a sphere through o and
vice versa, and a plane through o to itself. Consequently, the inversion maps a circle missing o
to another such circle. After the transformation, we obtain a new set of m points and n circles,
where no two resulting circles are coplanar. Indeed, any such coplanar pair would have had to
lie, before the transformation, on a common sphere or plane that passes through o, contrary to
the choice of 0. Hence, throughout the remainder of this section, we assume that no two circles
of C' are coplanar.

We may also assume that each circle of C' contains at least three points of P, since the
remaining circles contribute at most 2n to the incidence count. After making this assumption,
the notion of the arc of a circle delimited by a pair of consecutive points of P on the circle is
unambiguous. We will call such an arc elementary.

We represent the incidence structure by a multigraph G' embedded in 3-space as follows:
vertices of G are the points of P themselves and any two points of P consecutive along a circle



¢ € C' are connected by an arc of GG, drawn as the corresponding elementary arc along c. In
this manner a pair of points might be connected by multiple arcs—abstractly we think of it as
a single multi-edge (i.e., an edge with multiplicity) in G. Note that we reserve the term “arc
(of G)” for a geometric object—an (elementary) arc of some circle connecting two consecutive
points of P, while the term “edge (of G)” will mean the abstract (multi)edge of G, i.e., a pair
of points with one or more elementary arcs between them. The number of edges in GG, counted
with multiplicity, is exactly the number of arcs in G, which is precisely I(P, C').

An edge {p,q} of G is called light if it has multiplicity one, i.e., p and ¢ are consecutive
along a single circle; otherwise we call it heavy. The corresponding elementary arc or arcs are
also referred to as light or heavy, respectively.

The number of light arcs is easy to bound. Indeed, project C' and P onto some generic plane
7. Consider the collection G’ of the projections of all the light arcs of G onto 7. G’ is a simple
graph drawn in the plane, with m vertices and at most 4(3) = O(n?) edge crossings (any such
crossing is an intersection between the projections of the two respective circles; these projections
are ellipses, which may intersect each other in at most four points per pair). Applying Székely’s
technique [15], we conclude that the total number of light arcs is O(m?/3n?/3 +m +n). It thus
remains to bound the number of heavy arcs.

Fix a threshold parameter k. We apply the following iterative pruning process to the circles
of C. Suppose that there exists a circle ¢y € C with at least k other circles meeting it at two
points each (circles that touch ¢y at only one point do not form elementary arcs along it). Let
K (cp) denote the set of these circles, and let p > k denote its cardinality.

Consider the set of all spheres that contain ¢y and at least one additional circle of C'. Let
01,09,...,0s denote the sequence of these spheres, enumerated in the order of their centers
along the axis of ¢g, which is the line orthogonal to the plane containing ¢y and passing through
its center; clearly, s < u. For each i = 1,...,s, let C'(0;) denote the set of circles that lie on
o;; one of them is ¢y, and some of them might not intersect ¢y at all. Put p; = |C(0;)|, and
W =37 . Note that ¢/ > p+1 >k Put K'(cg) = |J;_; C(0); this set contains cg, the
circles in K (cp), and also possibly some circles that happen to lie on some sphere o;, without
intersecting cg.

Within each o;, consider the set C'(o;), which, by an appropriate stereographic projection,
is mapped to a set of coplanar circles. The results of [1,5] imply that the number of heavy

elementary arcs in A(C'(0;)) is O(u?ﬂ/{(ui)). Indeed, a multi-edge of G that has j > 1 elementary
arcs along o; induces |j/2] pairwise non-overlapping lenses (in the terminology of [1,5]), and the
maximum size of a family of pairwise non-overlapping lenses in a planar arrangement of p; circles
is O(uf/ ZH(ﬂi)) (see [1, Theorem 5.1]). The number of elementary arcs under consideration is
at most three times the number of these lenses. Note however that this only counts elementary
arcs on circles of C'(0;), whose endpoints are shared by at least one additional circle from C(o;),
where they also delimit an elementary arc. Any other heavy elementary arc on a circle in C'(o;)
has a companion elementary arc, with the same endpoints, on a circle ¢ that is transversal to
o; (that is, ¢ intersects o; at two points, which are the endpoints of the elementary arc being
considered). Elementary arcs of this latter kind will be counted momentarily.

Suppose that ¢, # ¢ are two circles that lie on different respective spheres 0,05, and
meet each other at two points p, ¢, so that p and ¢ delimit elementary arcs along both ¢ and
c’. This interaction between ¢ and ¢’ is not recorded in the bounds just mentioned, but we can
bound the number of these arcs as follows: Note that p and ¢ must lie on ¢y. This implies that



¢, € K(cp), and there can be at most one such arc along each circle ¢ € K(cp). Hence, the
number of these arcs is at most pu.

Let ¢ be a circle that is not cospherical with ¢g. Then ¢ meets each of the spheres o; in at most
two points. We wish to bound the number of heavy elementary arcs along ¢ whose endpoints
lie on some circle ¢ € K’'(¢p) (where they also delimit an elementary arc). We claim that the
number of such arcs is at most two. Indeed, suppose ¢, c”, " are three circles, lying on three
distinct respective spheres o', 0", ¢’ through cy, so that each of them meets ¢ at two points,
denoted respectively as {p', ¢'}, {p”, ¢"}, {p"",¢""}. What is the order of these six points along ¢?
If ¢ forms a link with cg, i.e., the disk bounded by ¢ intersects cg, then, up to relabeling ¢, ¢, ¢’
and interchanging the p’s and ¢’s, the order must be p',p”, p", ¢, ¢", ¢" (see Figure 1(a)), and
otherwise it must be p',p", "', ¢".q¢", ¢ (see Figure 1(b)). However, neither order is consistent
with the requirement that p'q’, p"q", p"'¢""’ be distinct elementary arcs on c; specifically, they are
not disjoint: they must partially overlap in case (a), and nest in case (b). This establishes the
claim.

Hence, any circle ¢ not in K'(¢p) contains at most two elementary arcs of the type under
consideration, for a total of at most 2n additional arcs. It is possible that such an elementary
arc 7 along ¢ has only one companion elementary arc o' with common endpoints on just one
circle ¢/ € K'(¢g). Arcs +' of this type have not yet been counted, but there can be at most two
such companion arcs for each transversal circle ¢, for a total of at most 2n additional arcs, giving
a total of at most 4n additional heavy elementary arcs that can be formed by these transversal
circles.

Figure 1: Elementary arcs along a circle ¢ that is not cospherical with ¢g; the cross section of
the scene by the plane containing ¢ is shown. The dash-dotted segment is the intersection of the
plane with the disk bounded by cp.

Note that, at this point, any heavy multi-edge of G' that has at least one elementary arc on
a circle in K'(cg) has been counted with its multiplicity. Combining the bounds obtained above
for the several possible types of heavy elementary arcs that we count while analyzing ¢y, we



conclude that the number of such arcs is at most
S S
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We now remove ¢y and all the circles in K'(cp) from C. Note that the number v of circles
that are removed may be smaller than p'. Specifically, we have v = u’ — s + 1, because ¢y is
multiply counted in u/. However, since each sphere o; contains at least one circle other than ¢,
and all these circles are distinct, it follows that u' < 2v.

We then pick a new circle ¢; from the remaining circles, such that ¢y has at least k circles
meeting it at two points each. If there is no such circle, our pruning process terminates. Oth-
erwise, we repeat the above considerations with respect to ¢1, remove the collection K'(cy) of
circles, and proceed to the next iteration of the process.

Let r be the overall number of iterations, and let v4,...,v, denote the number of circles
removed at each iteration. We have Z§:1 vj < n, and v; > k for each j. Thus r < n/k.
Arguing as above, the total number of heavy arcs counted by our procedure is thus

jZT;O (n + V;/Zn(vj)) = O(n3/2,‘¢(n) +nr)=0 <n3/25(n) n %2> .

We are left with a collection C” of circles, so that each ¢ € C' meets at most k other circles at
two points each, and thus has at most k elementary arcs, for a total of at most O(nk) additional
arcs. The grand total number of heavy elementary arcs is thus

32 n’
O(n /@(n)ﬁ-k—i-nk .

Choosing k = n'/2, and adding the number of light elementary arcs, we conclude:

Theorem 2.1. The number of incidences between m points and n circles in R is

O <m2/3n2/3 + 0%k (n) + m) . (2)

2.2 Strengthening the bound

The bound in Theorem 2.1 is worst-case optimal when m > n%/*x3/2(n). For smaller values of
m, we apply the following problem decomposition in dual space. As in the preceding subsection,
we assume that no pair of circles in C' are coplanar.

Let IT denote the set of n planes containing the circles of C. Apply a standard duality
transform that maps each point p € P to a plane p* and each plane 7 € II to a point 7*, so that
incidences between points and planes are preserved. In the dual space, we have a set P* of m
planes, and a set IT* of n points, where each point 7* € IT* is associated with the unique circle
that lies in the primal plane 7. Clearly, if a point p is incident to a circle ¢ contained in a plane
m, then 7* € p*.

Fix a parameter 1 < r < m, to be determined below, and construct a (1/r)-cutting of the
dual space into O(r?) simplices, so that the interior of each simplex is intersected by at most



m/r planes of P*. The cutting is obtained in two stages, as in Chazelle and Friedman [8]. In
the first stage, we choose a random sample R of r dual planes, construct the arrangement A(R)
of R, and triangulate each cell, using bottom-vertex triangulation. Simplices that are crossed
by at most m/r planes are part of the final output. Simplices 7 that are crossed by a set P*
of m¢/r planes, for £ > 1, are further refined into subcells, by choosing a random sample R, of
c€log & planes from P}, for some absolute constant ¢, constructing a triangulation of A(R;), as
above, and clipping its cells to within 7. As shown in [8], there exist choices for the sets R, R,
that result in a (1/r)-cutting of A(P*) consisting of O(r?) cells.

Consider first dual points in IT* that lie in cell interiors. We can further subdivide the cells
of the cutting into subcells, say, by a set of parallel planes in some fixed generic orientation, so
that each subcell contains at most n/r® points, and so that the number of new cells is still O(r3).
For each cell 7, apply Theorem 2.1 to bound the number of incidences between the circles whose
dual points lie in the interior of 7, and the points whose dual planes cross 7. The total number
of such indices, over all cells 7, is

(S ()" (32 (3" (3)
S0 ()" (B e e (3)
3/2

0 <m2/3n2/3r1/3 ot 4 ;LBT,{ (ﬁ)) _

We next bound the number of incidences involving points 7* that lie on cell boundaries. If a
point 7* lies in the relative interior of a 2-dimensional face f of a cell 7, we assign it to 7 (there
can be at most two such cells 7, and we assign 7* to just one of them). Any dual plane incident
to 7, other than the one containing f, if any such plane exists, will intersect the interior of 7,
so the incidences between the unique circle contained in 7 and the points dual to the planes
incident to 7*, will then be counted within 7. In addition, we may miss at most one incidence
for each of these circles (with the point whose dual plane contains f). Summed over all faces f,
these missed incidences number at most n.

Consider next points 7* that lie in the interior of an edge e of some cell 7 (and not in the
interior of any two-dimensional face of another cell). Any plane that is incident to such a point
m* € e and that does not contain e meets the interior of 7, so by assigning 7 to 7, we will
capture in the preceding analysis each incidence of this type involving 7* (here the number of
cells 7 may be large, but, as above, we assign 7 to only one of them, chosen arbitrarily). The
planes that contain e constitute, in primal space, a set of collinear points, and no circle can
be incident to more than two of them. Hence, the number of incidences between the circles
represented by points 7 € e and the points dual to the planes containing e is at most twice the
number of these circles. Summed over all edges e, we obtain a total of at most 2n incidences of
this type.

Finally, consider points 7* that are vertices of the cells (and do not lie in the relative interior
of any face or edge of another cell). Any vertex 7* is either a vertex of the first decomposition
stage, or a vertex of the second stage, constructed within a cell of the first stage.

In the former case, 7* is the intersection point of three planes of R that do not pass through
a common line. Fix one such plane pj. Then 7* is a vertex of the planar cross-section of the



arrangement A(R) within pj. Any dual plane p* that is incident to 7* intersects pf; in a line
¢ that passes through 7*. The number of such incidences within pj is at most r, since ¢ must
cross one of the planes of R at 7*. In total, this yields a bound of O(mr?) on the number of
incidences under consideration.

In the latter case, #* is an intersection point of a triple of planes of R, U A, that do not
share a line, for some simplex 7 of the first decomposition stage, which is crossed by m&; /r dual
planes, for some &; > 1; here A; is the set of four planes bounding 7. At least one of the planes
of the triple belongs to R, or else 7* would be a vertex of the first decomposition stage. Let
py be such a plane. Applying and adapting the analysis used in the former case, we obtain a
total of O ((mé&;/r) - (&, log&,)?) incidences, involving all vertices 7* of the cutting in 7, and all
planes p* € P’. Summing this bound over all cells 7 with & > 1, we obtain a total of

0 (Z ~¢}log? &) -

It has been shown in [8] that the expected number of cells 7 of the initial triangulation of A(R),
for which & > t, is O(r® - 27%). This implies that, with an appropriate choice of R and R,, the
sum just obtained is at most O(mr?).

We sum up the bounds obtained so far, to conclude that

3/2
I(P,C)=0 (m2/3n2/3r1/3 + Z:‘TK (%) + mr? + n) .

We now choose r = n/1k8/1(m3 /n)/m*™, and note that 1 < r < m when n'/3 < m <
n®/ 432 (n). If m > n®*k3/2(n), we use the bound O(m?/3n?/3 +m), yielded by Theorem 2.1. If
m < n'/3 then I(P,C) = O(n), which follows, e.g., from the general weaker bound O(m?/°n*/® +

m + n) observed in [2,3]. We thus obtain
I(P,C) =0 (m6/11n9/11/<c2/11(m3/n) Lom2/3p2/3 L 38T 4 1 n) '

(We have used the fact that n/r® = O((m?/n)*/™), which implies that x(n/r?) = O(k(m?/n)).)
The first term dominates the third one when m > n'/3. For the sake of notational simplicity, we
rewrite k2/'1(.) as k(-), since both of these functions have the same asymptotic expression, with
a different constant of proportionality in the exponent. Hence, we obtain the first main result
of the paper:

Theorem 2.2. The number of incidences between m points and n circles in R is
O(mﬁ/llng/lln(m3/n) +m2Bp2B L m 4 n),

where k(n) = (log n)°@* (M)

3 Circles in Higher Dimensions

Interestingly, Theorem 2.2 can be extended to any dimension d > 4, employing a variant of the
technique used in the preceding section. Specifically, we first extend Theorem 2.1.



3.1 An initial bound

Theorem 3.1. The number of incidences between m points and n circles in R, for any d > 4,
s

O <m2/3n2/3 + 032k (n) + m) . (3)

Proof. Let P be a set of m points, and let C' be a set of n circles in R,

By applying an appropriate inversion to R%, in complete analogy to the 3-dimensional case,
we may assume that no two circles of C' lie in a common 2-plane.

The notions of elementary arcs, of the multigraph G, and of light and heavy edges and arcs,
carry over to higher dimensions verbatim. In particular, the number of light arcs is O(mQ/ 3p2/3 4
m+n), which is shown exactly as in the 3-dimensional case, by projecting the collections C' and
P onto a generic 2-plane.

The analysis of the number of heavy arcs proceeds by induction on d. Specifically, we show:

Lemma 3.2. The number of heavy elementary arcs in an arrangement of n circles in R? is

O(n2k(n)).

Proof. The proof proceeds by induction on d > 3. The base case d = 3 follows from the proof
of Theorem 2.1. Let d > 4. Suppose the lemma holds in all dimensions d’ < d.

Fix a threshold parameter k. We again apply an iterative pruning process to the circles of
C. Suppose that there exists a circle ¢y € C' with at least k other circles meeting it at two points
each. Let K (cg) denote the set of these circles, and let 1 > k denote its cardinality.

Let mp be the 2-plane that contains cyp. Choose some (d — 2)-flat gy that contains mp, so
that go \ mo does not contain any center of a circle of C' or any intersection point of two such
circles. Consider the set H of all ((d — 1)-dimensional) hyperplanes that contain go and at least
one circle of C' besides c¢g. Note that such a hyperplane contains a circle in K(¢g) if and only
if it contains its center. All the hyperplanes that contain gp form a 1-dimensional family—their
normals trace the circle g of vectors perpendicular to gg on the ((d—1)-dimensional) unit sphere
of directions. Let hy, ho, ..., hs denote the (circular) sequence of the hyperplanes in H, ordered
in the order of their normals along vo; clearly, s < p. For each i = 1,...,s, let C'(h;) denote the
set of circles that lie on h;; one of them is ¢y, and some of them might not intersect ¢y at all.
Put p; = |C(hs)|, and p/ = >"7 ; pi. Note that ' > p+1 > k. Put K'(¢) = J;_; C(h;); this
set contains ¢, the circles in K(¢g), and also possibly some circles that happen to lie on some
hyperplane h;, without intersecting co. (Note that, since no two circles of C' are coplanar, no
circle in K (c¢p) can have its center on 7, because any such circle has to be coplanar with ¢g.)

Fix a hyperplane h;, consider the set C(h;), and associate with it the multigraph G(h;)
that is formed by all elementary arcs on the circles in C'(h;). The induction hypothesis implies
that the number of heavy elementary arcs in G(h;) is O(,u?/Q/{(,ui)). (Note that, similar to the
situation for d = 3, this only counts elementary arcs on circles of C(h;), whose endpoints are
shared by at least one additional circle from C'(h;), where they also delimit an elementary arc.)

Suppose that ¢, ¢’ # ¢g are two circles that lie on different respective hyperplanes h;, hj, and
meet each other at two points p, ¢, so that p and ¢ delimit elementary arcs along both ¢ and
c’. This interaction between ¢ and ¢’ is not recorded in the bounds just mentioned, but we can
bound the number of these arcs, exactly as in the 3-dimensional case, as follows: Note that p
and ¢ must lie on 7 (they lie in go, and the choice of gy ensures that they cannot lie in go \ 7).



Since any circle in C'\ {co} intersects mp in at most two points, it follows that there can be at
most one such elementary arc along each circle ¢ € K'(¢g). Hence, the number of these arcs is
at most p'.

hl

Figure 2: Elementary arcs along a circle ¢ that does not lie in any hyperplane h; (as seen when
projected onto a 2-plane orthogonal to gp).

Let ¢ be a circle that does not lie in any of the hyperplanes h;. Then ¢ meets each of the
hyperplanes h; in at most two points. We wish to bound the number of heavy elementary arcs
along ¢ that have common endpoints with some circle ¢ € K'(¢g) (where they also delimit an
elementary arc). We claim that the number of such arcs is at most two; the proof is identical to
the analogous proof in three dimensions. Specifically, suppose ¢, ¢”, ¢’ are three circles, lying on
three distinct respective hyperplanes h', h”, h" through g¢o, so that each of them meets ¢ at two
points, denoted respectively as {p',¢'}, {p”,¢"},{p",¢"}. To determine the order of these six
points along ¢, we project the set of circles orthogonally onto a 2-plane orthogonal to gg. If the
disk bounded by ¢ meets g then, up to relabeling ¢, ¢, ¢ and interchanging the p’s and ¢’s, the
order must be p’,p”, ", ¢, q",¢" (see Figure 2(a)); otherwise, it must be p’, p", p"", ¢"', ¢", ¢’ (see
Figure 2(b)). However, neither order is consistent with the requirement that p'q’, p"¢", p"'¢""" be
distinct elementary arcs on c; specifically, they are not disjoint, as they partially overlap in case
(a), and are nested in case (b). This establishes the claim. Hence, any circle ¢ not in K'(cp)
contains at most two elementary arcs of the type under consideration, for a total of at most
2n additional arcs. Adding the companion elementary arcs along circles in K'(cg), if needed,
as in the 3-dimensional case, we obtain at most 2n more arcs. The overall number of heavy
elementary arcs that we count while analyzing cg is thus at most

o(zzj () ) = o(@ ) G2 + ) = 02000+ )

We now remove ¢y and all the circles in K'(cp) from C'. Clearly, any heavy multi-edge of G' that
has at least one elementary arc on a circle in K'(¢g), is counted, with its multiplicity, in the
bound just given.

The described iterative process is repeated until no circle ¢, € C' has k or more other circles
meeting it in two points each. Let vq,..., v, denote the number of circles removed at each step
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in the process. We have 22:1 vj < n, and v; > k for each j. Therefore r < n/k. Arguing as
above, the total number of heavy arcs in G is thus

r 2
Z O (u?/Qm(uj) + n) = 0n*%k(n)+nr) =0 <n3/2n(n) + %) X
j=1
We are left with a collection C” of circles, so that each ¢ € C’ meets at most k other circles at
two points each, and thus has at most k elementary arcs, for a total of at most O(nk) arcs. The
grand total number of heavy elementary arcs is thus

2
O <n3/2/@(n) + % + nk) .

Choosing k = nl/2 yields the bound asserted in the lemma. This completes the induction step,
and thus also the proof of the lemma. O

We return to the estimation of I(P,C). Using the bound of Lemma 3.2 on the number of
heavy elementary arcs, and adding the number of light elementary arcs noted above, we obtain:

I(P,C)=0 (m2/3n2/3 + n3/2/¢(n)> ,

thus completing the proof of the theorem. O

3.2 Strengthening the bound

To improve the bound of Theorem 3.1, we project P and C' onto some generic 3-space. The
circles of C' are mapped to ellipses, and incidences between points of P and circles of C' are
mapped to incidences between the corresponding projected points and ellipses. Let P and C
denote, respectively, the projected sets of points and circles. By using a generic projection, we
may assume that no two ellipses in C are coplanar.

We pass to the dual 3-space, and map the points of P to planes and the ellipses of C to
points, dual to the planes containing the ellipses. From this point on, we can repeat the analysis
of Section 2.2 almost verbatim, except for the following items: (i) Within each cell of the cutting
we apply Theorem 3.1 to bound the number of incidences between the corresponding original
points and circles in d-space. (ii) When we consider dual points 7* that lie on an edge e of the
cutting, we note that, since the projection onto 3-space is generic, the primal points p whose
duals contain e must be collinear not only in the projected 3-space but also in the original R?,
so the analysis of this case carries over easily to d dimensions as well. Omitting further easy
details we obtain the improved bound, which is asymptotically identical to the bound in three
dimensions:

Theorem 3.3. The number of incidences between m points and n circles in R? is

O(mﬁ/nng/n,{(m:&/n) +m2B3n23 L+ n).
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4 Convex Non-coplanar Plane Curves

4.1 The three-dimensional case
4.1.1 An initial bound

Let C be a set of n arbitrary convex plane curves, no two in a common plane, and let P be a
set of m points in 3-space. Let I(P,C) denote the number of incidences between P and C'.

As above, we also assume that each curve of C' contains at least three points of P, since
the remaining curves only contribute at most 2n to the incidence count. The notions of an
elementary arc, of light and heavy arcs, and of the multigraph G that represents the incidence
structure, are defined in complete analogy to the case of circles. Our analysis also allows (some
of) the given curves to be unbounded. In this case, |G| > I(P,C) — n. Thus, bounding |G|
suffices in this case too.

As in the case of circles, the number of light arcs is O(m?/3n2?/3 + m + n). It thus remains
to bound the overall number of heavy arcs.

We start with some definitions. A configuration consists of four curves ¢, ¢1,co,c3 € C' and
three pairs {p1,q1}, {p2, @2}, and {p3, g3} of points from P, such that (refer to Figure 3):

Figure 3: A configuration.

(i) The curves ¢; and ¢ intersect at the two points p;, ¢;, for i = 1,2, 3.

(ii) The six points p1, q1, P2, g2, p3, g3 of P are distinct (making the three curves ¢, ¢z, ¢3 distinct
as well).

(iii) For i = 1,2,3, p; and ¢; are consecutive points of P both along ¢; and along ¢; thus all
three edges {p;, ¢;} are heavy edges of G.

We do not distinguish configurations that differ only by a permutation of the indices 1, 2, 3. Since
a configuration, when it exists, is completely determined by its four curves, we will sometimes
refer to it as (¢, ¢1, c2, ¢3), instead of the somewhat more awkward, even if more accurate notation
(c,c1,¢2,C3, 01,41, P2, 42, P3,q3). The main technical tool used in our analysis is the following
lemma.

Lemma 4.1. Let ¢y, c2,c3 be three distinct curves in C'. There are at most 128 curves ¢ € C
forming a configuration with ci,co,c3, for any choice of points p1,q1,p2, q2, P3, q3-
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Proof. Let c¢1,c2,c3 be a fixed triple of curves in C. By our non-coplanarity assumption, the
curves cq,cs,c3 lie in three distinct respective planes 7, m, w3, and no curve ¢ that forms a
configuration with this triple is coplanar with any of them. Let A denote the arrangement of
these three planes. A has a single vertex o, unless the three planes are parallel to a common
line. Consider first the case where the vertex o exists. In this case, A has eight 3-dimensional
cells, each being an infinite trihedral wedge with its apex at o.

Suppose to the contrary that there are at least 129 curves ¢ € C that form a configu-
ration with ¢y, c2,c3, as above. Let ¢ be a curve that forms a configuration of the form
(c,c1,c2,¢3,P1,q1, P2, 42, P3,q3) With ¢q,co,c3. Consider the elementary arc piq; along c. Its
endpoints lie on 7y, and it cannot meet any of the planes mo, w3, because any such intersection
must be a point of P where ¢ meets ¢y or c3. Hence, p; and ¢ lie in the same 2-face of A, and
similarly for ps, ¢2, and for ps, 3.

This is easily seen to imply that, if we remove from ¢ the three (closed) elementary arcs p;q;,
for i = 1,2,3, the remainder of ¢, which we denote by ¢, is fully contained in a single (open)
3-dimensional cell of A. See Figure 4. Since there are eight such cells, at least one of them, call

T

C3

Figure 4: A 3-dimensional cell 7, bounded by the planes 71, 7, w3 containing ¢y, co, c3, respec-
tively. A ‘clipped’ curve ¢ within 7 is shown.

it 7, must contain the truncations ¢ of at least 17 of the curves c.

Consider one such curve ¢. The plane 7 containing ¢ meets each ¢;, for ¢ = 1,2,3, at the
two respective points p;, ¢;. We say that ¢; lies on the near side (resp., the far side) of 7 if the
elementary arc p;q; along ¢; lies on the side of 7 that does not contain (resp., contains) o. (Note
that 7 cannot pass through o0.) There are 8 = 23 possible combinations of sides for any plane
7 containing such a curve ¢ (one of two sides for each of ¢y, 2, c3), so there exists at least one
such combination that arises for at least three out of the 17 curves ¢ as above. We denote these
curves by ¢, ¢, ¢”, and their containing planes by 7,7, 7”. We consider the following cases:

(i) All three sides are of the same kind, say all are far sides. For each i = 1,2, 3, remove from ¢;
the three elementary arcs that it forms with ¢, ¢/, ¢”. Denote the portion of the remainder of ¢;
that lies on 97 by ¢;. Note that each ¢; is nonempty, because ¢; meets each of ¢, ', ¢’ at a pair
of points that lie on dr. Then ¢, ¢, ¢3 are all contained in the intersection of the three closed
halfspaces that are bounded by 7, 7/, 7" and do not contain o, and of the three closed halfspaces
that are bounded by my, w2, 73 and intersect in 7. Let K be the convex polyhedron formed by
the intersection of these six halfspaces. Then K has six facets, and each of the three (closed)
facets that lie on the planes 7, 7', 7" meets each of the three (closed) facets that lie on the planes
m, 2, 3. 1o see this, consider, for example, the two points pi,q; of intersection of ¢ and ¢;.
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Then: (a) Since p; and ¢; lie on 97, they lie in the appropriate halfspaces that are bounded by
71, T, 3. (b) Both points lie on 7. (¢) The halfspace under consideration h’ that is bounded
by 7’ contains all of ¢q, except for the elementary arc of ¢; delimited by its intersections with
. Since p; and ¢; do not lie in this arc, they lie in A/, and, similarly, also in the appropriate
halfspace bounded by #”. This implies that pq, ¢ lie on an edge of K where 7 and 7 meet, and
similarly for all other relevant pairs of curves (nine pairs in total). In other words, 0K yields
an impossible plane drawing of K33 contained in its dual graph. That is, we fix a point inside
each of the six facets, and connect, say, the point on the facet of 71 to the point on the facet
of m by an appropriate path, consisting of two segments, within the union of the two facets,
and similarly for all other relevant pairs of facets. This contradiction rules out this case. (The
situation where all sides are near is argued in exactly the same manner.)

(ii) Two sides are of the same kind, and the third is of the opposite kind. Without loss of
generality, assume that ¢; and ¢y lie on the far side of 7, 7', 7", and that c3 lies on the near side
of m, 7', 7". Denote by w4 (resp., m_) the halfspace bounded by 7 and containing o (resp., not
containing o), and define similarly the halfspaces 7/, 7', n/{, and 7. Assume that =, 7' 7"
meet at a single point ¢. Then QT =, Na/, N7/l and @~ = 7_ Na_ N7’ are complementary
trihedral wedges with a common apex ¢. Define the truncated curves ¢, ¢o, ¢3 as above; again
they must be non-empty. Note that 7 must meet both Q* and Q~, because ¢,co C Q, and
¢3 C Q. Note that this implies that the point ¢ does exist. Indeed, if it does not exist then
7, w7’ are all parallel to some direction, which implies that at least one of Q1, Q™ is a dihedral
wedge, bounded by only two of these planes. However, this wedge contains at least one of the
truncated circles ¢y, ¢, ¢3, which meets each of 7, 7', 7" at two distinct points, a contradiction

that shows m, 7/, 7"/ must meet in single point g.
There are two subcases to consider:

(ii.a) 7 contains ¢. See Figure 5(a). Consider the convex polyhedron K~ = @~ N 7. Arguing
as in case (i), K~ has (at least) five facets, bounded by the planes 71,7, 7, 7', 7", and three of
them, those lying on the planes 7, 7', 7", meet at the common vertex ¢. In this case, we also
obtain an impossible plane drawing of K33 along 0K, in which the nodes of one vertex set
are (points within) the facets that lie on 7, 7', 7", and the nodes of the second vertex set are
the vertex ¢ and (points within) the facets that lie on 71, m9. The edges connecting the points
on the facets of m, 7', 7" to the points on the facets of 71, 7y are drawn as in case (i); the edges
incident to ¢ are trivial to draw. This contradiction rules out this subcase.

(ii.b) 7 does not contain q. Draw through ¢ a plane ¢ that misses 7; ¢ must cross both Q@ and
Q, or else 7 could not meet both of them; see Figure 5(b). Consider the three lines (; = T N7,
ly =7mna" (3 =x"N7". Each line ¢; is split at ¢ into two rays, one of which, denoted E;“, is
an edge of QT, and the other, denoted Ej_, is an edge of ()~. Consider the halfspace h bounded
by ¢ and containing 7. Then either h contains two of the rays E;-" and one of the rays Zj_, or the
other way around. Suppose, say, that h contains Zf, E;, (5. Then the facet ¢ of ()~ delimited
by (7 and (5 (this is the facet lying on 7) is fully disjoint from h and thus also from 7. However,
¢ and ¢y, say, must meet each other within 7 N @~ (since ¢; lies in the far side of =, 7/, ), or,
rather, within 7 N . Since this intersection is empty, we obtain a contradiction that rules out
this subcase too.

Since the planes 7, 7', 7" play fully symmetric roles in the preceding argument, it applies also
to any other case where h contains two ‘positive’ rays and one ‘negative’ ray. The cases where h
contains two negative rays (say, (1 ,(, ) and one positive ray (/5 ) is handled by considering cs,
which has to meet ¢ within 7 N Q™, which is impossible, since the facet of Q* that is bounded
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(a)

Figure 5: Case (ii) of the proof: (a) ¢ € 7, (b) ¢ & 7.

by 7 is disjoint from 7.

If the planes m,m, m3 do not meet at a single point and do not share a common line, a
near-identical argument applies, the only difference being that 4 has no vertices, so 7 is a three-
sided prism rather than a trihedral wedge. (The notions of near and far sides need now to be
redefined in a consistent, though obvious, manner.) Finally, we need to consider the case where
m, T, T3 share a common line. If there existed a curve ¢ that formed a configuration with
c1,C2,C3, arguing as in the preceding analysis, we would conclude that the truncated portion ¢
of ¢ would have to lie fully within a single open cell of A. However, any such cell is bounded by
only two of the planes 7y, m, 3, S0 ¢ cannot form an elementary arc with the curve that lies in
the remaining plane. Hence 71, w2, m3 cannot share a line.

This completes the proof of the lemma. O

Continuing with our main argument, let () denote the set of all configurations. Lemma, 4.1
implies that |Q| = O(n?). A lower bound for |Q] is obtained as follows. Fix a curve ¢ € C' that
contains M. > 3 heavy arcs that do not share endpoints. Any other curve contributes at most
six incidences involving heavy arcs, for a total of O(n). (The maximum number six is attained
when ¢ contains two pairs of heavy arcs, each sharing a common endpoint. Together, these four
arcs have six endpoints.) Each of the (Agc) triples of those heavy arcs on ¢ generates a distinct
configuration in @) (in general, it may generate more than one configuration). Hence, we have

Q> Y (g)

ceC
M:>3
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In other words, the total number of heavy arcs is at most

O(n) + o( > Mc> =0(n) + O(Z(MC - 2))

Mc.>3 c

— 0 + o((Z (]\?))1/3 . n2/3>

c
= 0(n°?).
The second equation follows from Holder’s inequality. We have thus shown:

Theorem 4.2. Let C be a family of n arbitrary convex plane curves in R®, no two in the same
plane. Let P be a set of m points in R®. Then I(P,C) = O(m?/3n?/3 + m +n5/3).

4.1.2 Strengthening the bound

The bound in Theorem 4.2 is worst-case optimal when m > n3/2. For smaller values of m, we
apply an essentially identical analysis to the one given in Section 2.2, which considers the points
of P and the (distinct) planes containing the curves of C' in dual space. The main differences
are: (i) Within each cell of the cutting we apply Theorem 4.2 to bound the number of incidences
between the corresponding original points and curves. (ii) When we consider dual points 7* that
lie on an edge e of the cutting, we note that, as above, the primal points p whose duals contain
e are collinear, and any convex plane curve can be incident to at most two of them. Thus the
analysis of this case carries over easily to the situation at hand.

Thus the number of incidences involving dual points 7* that lie in the interiors of the cells
of the cutting is

O <Z ((%>2/3 (r_n3>2/3 N % N (%)5/3>> 0 (m2/3n2/37“1/3 +mr? + %f) )

As described above, dual points that lie on cell boundaries are handled as in Section 2.2. That
is, they are assigned to neighboring cells and/or contribute O(n + mr?) additional incidences.

In total, we thus obtain

5/3
I(P,C)=0 <m2/3n2/3r1/3 + n) .

r2

We now choose r = n3/7/m2/7, and note that 1 < r < m when nt/3 <m< n32. fm > n3/2,
we use the bound O(m?/3n?/3 + m), yielded by Theorem 4.2. If m < n'/3 then I(P,C) = O(n).
This follows since the bipartite incidence graph {(p,c) € P x C | p € ¢} does not contain K3 o,
so, by extremal graph theory [11], the number of incidences is O(mn?/3 + n) = O(n). We thus

obtain
I(P,C)=0 (m4/7n17/21 + 2323 L 3 TRST Lo+ n) )

The first term dominates the third one when m > n!/3. Hence we obtain the main result of this
section:

Theorem 4.3. The number of incidences between m points and n arbitrary convex plane curves
in R3, no two in the same plane, is O(m*/ ™ /21 4 m?2/3n2/3 £ m +n).
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4.2 Extension to higher dimensions

Theorem 4.4. Let C' be a collection of n convex plane curves, no two of which lie in a common
2-plane, and let P be a set of m points in R%, for any d > 4. Then I(P,C) = O(m* ™n!7/21 4
m2/3n?3 £ m +n).

Proof. We project the curves and points onto some generic 3-space. In the projection, the curves
of C' remain convex and planar, and no two of them are coplanar, so we can apply Theorem 4.3
to obtain the bound. O

5 Applications

As already mentioned in the Introduction, Theorems 2.2 and 3.3 can be applied to improve the
bound, obtained in [2], for the number of congruent tetrahedra in a point set in four dimen-
sions, and the bound, obtained in [6], for the number of distinct distances in three dimensions.
Specifically, we have:

Theorem 5.1. Let P be a set of n points in R*, and let A be a given tetrahedron. The number
of congruent copies of A that are spanned by the points of P is O(n?"/9=), for any ¢ > 0.

Theorem 5.2. Let P be a set of n points in R3. Then (a) the number of distinct distances
determined by P is Q(n%5*2), and (b) there always exists a point of P that determines Q(n05%9)
distinct distances to the other points of P.

The proofs are immediate adaptations of the proofs in [2,6], where the bounds on the number
of point-circle incidences in 4-space or 3-space, are replaced, respectively, by the bounds in
Theorems 2.2, 3.3.
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