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Abstract

Forl <k<d-1,let f,gd) (n) be the maximum possible number/esimplices spanned
by a set ofn. points inR? that are congruent to a givénsimplex. We prove thaf2(3) (n) =
O(n5/3200@* () £ () = O(n2+<), for anye > 0, £ (n) = O(n7/3), and £ (n) =
O(n?0/9+=), for anye > 0. We also derive a recurrence to bouf)c(d) (n) for arbitrary values

of £ andd, and use it to derive the bourfg@d) (n) = O(n®/?+#), for anye > 0, ford < 7 and
k < d — 2. Following Erdés and Purdy, we conjecture that this bousldsfor larger values of
d as well, and folk < d — 2.

1 Introduction

Let P be a set ofn points inR%, and letA be a prescribed-dimensional simplex, for some
1<k<d-1. Let f,gd) (P, A) be the number ok-simplices spanned b¥ that are congruent to
A. Setf,gd) (n) = max f,gd) (P, A), where the maximum is taken over all sets:gboints inR¢ and
over allk-simplices inR?. We wish to obtain sharp bounds ff}id) (n).

The casek = 1 is the well-studied problem akpeated distanceoriginally considered by
Erd6s [17] in 1946: How many pairs of points &flie at a prescribed distance from each other.
This special case is interesting only fér= 2,3 becausefl(d) (n) = O(n?) for d > 4. Indeed,
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Figure 1: A construction fof(* (n) = Q(n?).

as observed by Lenz (see, e.g., [23], one can construBt itwo orthogonal unit circleg”; :

22+ 75 = l,z3 = x4 = 0andCy : 71 = 73 = 0,22 + 2 = 1 and placen/2 points on
each of the two circles. The distance between any two peirtsC; andq € Cs is /2, thereby
obtaining a se of n points withQ)(n?) pairs of points at distancg/2. The known upper bounds
for d = 2,3 are f? (n) = O(n*?) [15, 26, 27] andf¥) (n) = O(n/2B(n)) [15], whereB(n) =
20(e”(n) js a slowly growing function of:, defined in terms of the inverse Ackermann’s function
a(n). However, neither of these bounds is known to be tight. Ttst keown lower bounds are

f1(2> (n) = nHQ(l"gll"g“) andfl(?’) (n) = Q(n*3loglogn); see, e.g., [23].

Note that we have excluded the cages= 0 andk = d. The casek = 0 is uninteresting
because, trivially,féd> (n) = n. The casek = d is also uninteresting because one easily has
f(gd) (n) = O(fé‘?l (n)). Itis conceivable, though, th¢§d> (n) is significantly smaller thayﬁé‘?1 (n).
However, we are not aware of any instance where this has Ibe@mdo be the case. Another easy
observation is thaf,gd>(n) = O(nF*!) for anyk < |d/2] — 1. The upper bound is trivial, and
the lower bound can be proved by generalizing the constnudbtr the casé = 1, namely, by
placing the points of” on k£ + 1 mutually orthogonal unit-radius circles centered at thigior

Erdés and Purdy [19] proved thﬁf’) (n) = O(n'*/?). The bound was later improved by Akutsti
al. [5] to O(n®/) and then by Brass [10] t6(n7/4). Akutsuet al. [5] also proved thaf}" (n) =
On®/2+5) and £{" (n) = O(n%/23+¢), for anye > 0.1 By generalizing Lenz’ construction,
Abrego and Fern'andez-Merchant [2] proved tmﬁt) (n) = Q(n?) andf2(5> (n) = Q(n"/?). Erdés
and Purdy [20] conjectured th:;f}g@ (n) = O(n%?) for even values ofl > 4. There has also

been work on bounding the number of simplices spanned byra pef that are similar to a given a
simplex [1, 2, 3].

TWe follow the convention that an upper bound that involvesptarametet holds for anye > 0 and the constant of
proportionality depends ofy and generally tends to infinity agends to O.
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We prove thatf{¥(n) = On*383(n)), £\ (n) = 0m2*), f{’(n) = ©(n7/3), and
() = 0(n20/9+2). The best lower bound that we know féf* (n) is Q(n*/3). This is ob-
tained by placing one point at the origin and— 1 additional points on the unit sphere, so that
there areQ(n4/ 3) pairs of those: — 1 points at distance/2 from each other (see [18] for such a
construction). The bound off) (n) is almost tight because as mentioned abg@@,(n) = Q(n?).

We conjecture tha]‘f,g@(n) = O(min{n**!, n4/?) for even values off > 4 and f,g‘”(n) =
O(min{nFt! nd/2=1/6}) for odd values ofl > 5. The lower bound can once again be attained
by generalizing Lenz’ construction.

We also derive a recurrence fg&’ﬁd) (n) for general values of andd. The solution of this
recurrence i¥) (n¢(%“k)+¢) where( (d, k) is a rather complicated function dfandk. Although we
are currently unable to provide sharp explicit boundsfat, k), for arbitrary values of andd, we
can prove that (d, k) < d/2 ford < 7 andk < d — 2. We conjecture thaf(d, k) < d/2 for all d
andk < d — 2. (The casé = d — 1 seems harder to analyze; see below.) Proving this bound on
¢(d, k) will (almost) settle in the affirmative the above-mentioreahjecture for even values df

A novel feature of our analysis is a round-robin recurrenceeme. In each round of this
scheme some of the given points are treated as points whitgsoare treated as spheres of various
radii (equal to the lengths of appropriate edges of the ghreplexA). The recurrence then follows
from a space partitioning process, based @h/a)-cutting of these sets of spheres; see Sections 3
and 5 for details.

The problem is motivated by the problem @éfact pattern matchingWe are given a sell of
n points inR? and a “pattern setP of m < n points (in most applications: is much smaller
thann), and we wish to determine whethé&r contains a congruent copy @f, or, alternatively,
to enumerate all such copies. A commonly used approachd@tbblem is to take a simpleX
spanned by some points &f and find all congruent copies df that are spanned h¥. For each
such copyA’, take the Euclidean motion(s) that mapto A’, and check whether all the other
points of P map to points ofE under that motion. The efficiency of such an algorithm depend
on the number of congruent copies Afin E. Using this approach, de Rezende and Lee [24]
developed ai® (mn?)-time algorithm to determine wheth&r contains a congruent copy &f. For
d = 3, Brass recently developed &i{mn"/*3(n) log n)-time algorithm, which improves an earlier
result by Boxer [9]. Our improved bounds can be applied tivdanore efficient algorithms for the
corresponding variants of this problem (see, e.g., a ndteatoeffect at the end of Section 2).

2 Congruent Triangles in Three Dimensions

In this section we first bound the number of triangles spayalpoint set iR that are congruent
to a given triangle. Then we show that our proof also gives lgorishm for computing these
triangles.

Theorem 2.1 Let P be a set ofn points inR*. The number of triangles spanned Bythat are
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congruent to a fixed triangle ©(n?/3 - 20(e” (M),

Proof: Let the fixed triangle bé\ = zqy(2o, with side lengthszoyo| = &, |z020| = 71, |v020| = .
Without loss of generality, we can assume thgj, is the longest edge dk. Let £* be the distance
betweenz, and the projection of, on the edge:yo, and letp be the distance betweep and the
edgexyo. Fix a pair of pointsp, ¢ € P such thatlpg| = £. Letv* be the point on the segment
pq at distance™ from p. Any pointv such thatApquv is congruent ta\, with |pq| = &, |pv| = n,
lgv| = ¢, lies on the circley,, of radiusp centered abv* and orthogonal td,,; see Figure 2.
Repeating this analysis for each pajg at distance, we obtain a (multi)set of congruent circles,
one for each such pair of points, and the number of trianghekeiuconsideration is equal to the
number of incidences between the circle€£a&nd the points of. It is easily checked that at most
two pairs of pointg, ¢ can give rise to the same circle ) so we may assume that all circles in
€ are distinct. Since each circle this generated by a pair of points &f at distance apart, the
results in [15] imply|C| = O(rn3/23(n)), whereg(n) = 2°(@*() is as above.

Figure 2: lllustration to the upper bound.

For eachu € P, let o, denote the sphere of radiyscentered at.. Let 8 denote the resulting
collection ofn spheres. LeP, = P No, andC, = {vu | v € P, |uv| = £} (all circles inC, lie
onoy). Putm, = |P,| andc, = |C,|. We have

> mu = 0m?B(n)), (2.1)
ueP

Y e = 1€ =0n*?B(n)).

ueP

We claim that the number of incidences between the point3,@nd the circles o€, is
Om23E23 +my + cy).

This follows exactly as in the proof of a similar bound on thener of incidences between points
and unit circles in the plane (cf. [15, 27]; in fact, the praof27] translates practically verbatim to
the case of congruent circles on a sphere).
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The number of incidences between the circle€ ahd the points of? is thus (using (2.1))

O (Z(mi/?’ci/g’ + my, + cu)> = 0(n*?B(n))+0 (Z mi/?’ci/?’) .

ueP ueP

To obtain an upper bound for the second term, we need theviolipproperties.

Lemma 2.2 The number of sphere-circle containments between a sipsétspheres o8 and the
circles ofC is

O (n*1[80]*/*8(n) +n + IS0l

Proof: Let Py C P denote the set of centers of the sphere§;ofConsider a containment between
a spherer,, for u € Py, and a circley,,, of €. Thenwv is a point of P at distance from «. That
is, u lies on the sphere of radigscentered at. Conversely, any such pointgives rise to a circle
vuv € € thatis contained im,. The asserted bound is now an immediate consequence ofuhe bo
on the number of incidences between points and unit sphef®s ias given in [15]. O

Forj > 0, let P; C P be the set of points such that the sphere, contains;j circles of C.
Define P>y, = U;op Py Pk = U< Py, and8sy, = {0y, | u € P> }. For a given integek > 0,
lett-) = |P~| denote the number of spheressithat contain at least circles ofC. Animmediate
corollary of the previous lemma is the following.

Corollary 2.3

324
bk = [Por| = O (" 7w %) - (2.2)

Proof: The number of sphere-circle containments between the eploé8 . and the circles of
is at leastit> . Using Lemma 2.2, we have

ktsg = O <n3/4t;/,fﬁ(n) +n+ t2k> :
from which the asserted bound follows easily. O

We now obtain a bound on the express@&ep mf/?’c?/?’. Fix a threshold parametét whose

value will be specified later. We have

Zmi/?’c?/?’ _ Z mz/303/3+2 Z m?/?’jQ/?’

ueP u€Py j>k ueP;

2/3 Z mz/?, +2:]-2/3 Z m?/?’.

u€Py, i>k u€Pj

IN
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Using Holder’s inequality and (2.1), the first sum is at most

2/3
L2/3 Z mi/?’ L2/3 (Z mu> /3

u€Pp ueP

k2/3n1/3 ) ((n3/2l3(n))2/3>
_ O(k2/3n4/352/3(n)).

IN

Using once again Holder’s inequality, in conjunction wighl) and (2.2), the second sum can be
bounded by

2/3
ZjQ/S Z m2/3 < ij/g (Z mu> 12RE

3>k u€eP; jzk uePp;
2/3 1/3

< (ZZmu) '(ZJ'?PJ')

j<k ucP; Jj>k

2/3 1/3

< (Z m> - (k2p>k + 35+ 1)p>,.)

ueP j>k

1/3
o [ e (2]
j>k

n33%(n 1/3
= 0 (nﬁQ/?’(n)- (7@2( ) +n2> )
n?B3%(n
- ¢ (nS/Sﬁ m)+ ,fg/ﬁ, )>'

Hence, the total number of trianglesﬁé‘n?’)(P, A)is

2 32
O (k2/3n4/352/3(n) +n5/352/3(n) 4 n ]Z/gn)> _

Choosingk = n'/23(n), we obtain the asserted bound. O

We conclude this section by describing an algorithm for cotimg the triangles spanned @y
that are congruent td. The algorithm consists of the following two main steps.

() For each pointu € P, compute the set®, = {u € P | d(u,v) = n} andP,, = {u € P |
d(u,v) = ¢}, as follows. Construct the s& = {0, | v € P} of n spheres, each of radius
n, centered at the points @f. For each point, € P, we want to compute the set of spheres
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in X that containu. Since an arrangement ofspheres can be decomposed i6te-33(r))
cells of constant description complexity [15], one can ieedivide-and-conquer algorithm
described in [13], to compute the incidences betwfeand X, and thus the setB,, for all

u € P,in O(n/?*%) time. The sets”! can be computed in exactly the same way.

(i) PutC, = {vuw | v € P,}. For each poini. € P, we compute the pair&, w) € P, x C,
for which v lies on the circley,,,. For any such paifv, w), we report the triangl\uvw,
as it is congruent ta\. SinceC, is a set of congruent circles, all lying on the spherg
we can compute, by adapting the algorithm described in [1Bf& computing incidences
between points and lines, all incidences betwBgandC,, in timeO(mf/?’c?/?’ log n+(my+
cy) logn) time.

Following the above analysis, we can conclude that the totahing time of the algorithm is
O(n®/3+¢), for anye > 0. That is, we have:

Theorem 2.4 Let P be a set of: points inR? and A a triangle. The set of triangles spanned By
that are congruent ta\ can be computed i®(n°/3+¢) time, for anye > 0.

Remark 2.5 The best known lower bound fgfé?’) (n) is Q(n*/3). Erdéset al.[18] construct a set

S of points on a unit sphere & in whichQ(n*/?) pairs are at distancg2. If we add the origin to
the point set, every pair if at distance/2 now forms an isosceles triangle with the origin whose
side lengths aré, 1, /2.

As mentioned in the introduction, an immediate corollaryhaf above theorem is the following.

Corollary 2.6 Given a setF of n points inR? and a pattern point seP of m < n points, we can
determine inO(mn®/34(n) 4+ n®/3+¢) time whethet®Z contains a congruent copy &f.

This application raises the following interesting openlgleon. In the preceding algorithm,
we used an arbitrary triangle spanned Byand applied the upper bound that we derived on the
maximum number of congruent copies of this trianglegZinHowever, ifm is reasonably large?
spans many noncongruent triangles, and it is conceivahatesttime of them have considerably fewer
congruent copies iy. Formally, and more generally, we wish to obtain improvepardbounds for
mina flgd)(E, A), for a setE of n points inR?, where the minimum is taken over @Hsimplices
A spanned by a sd? of m points. We note that Akutset al. [5] study a related quantity, which
bounds the sum, over dltsimplices spanned b#, of the number of occurrences of that simplex
in I (so, for each congruence class of simplices, we sum the nunflbecurrences of the simplex
in P times the number of its occurrencesii.
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3 Congruent Triangles in Higher Dimensions

We now prove optimal or near-optimal bounds pj‘f) (n), for d > 4. Recall that the problem is

interesting only ford = 4,5 becausefQ(d)(n) = O(n?) for d > 6. Let P be a set ofn points
in R, and letA = zoyoz be the fixed triangle, with side lengthsyyo| = £, |zoz0| = 1, and
lyozo| = ¢. For a given triple of setsl, B, C of points inR?, let U(A, B, C; A) denote the set
of trianglesuvw such that(u,v,w) € A x B x C, |uv| = &, luw| = n, and|vw| = (. Set
P(A,B,C;A) = |¥(A, B,C;A)| and

D (a,b,c) = max (A, B,C; A),

where the maximum is taken over all setsB, C in R? with |A| = a, |B| = b, and|C| = ¢ and
over all trianglesA. Sety@ (n) = (@ (n,n,n). Obviously, £¥(P,A) = 4(P, P, P;A) and
£3D () < (D (n). It therefore suffices to obtain a bound o) (a, b, c).

Let A, B, C, and A be as defined above. We apply the following randomized digiui-
conquer process, which consists of three substeps: heta sufficiently large constant, depending
one, whose value will be specified later. In the first step, whighrefer to as thel-step we regard
A as a set of points but map andC' to spheres. Denote by, (z) the (d — 1)-sphere of radiug
centered at. With each poinp € B (resp.q € C), we associate the sphese(p) (resp.o,(q)).
Set¥p = {o¢(p) | p € B}, Lc = {oy(q) | ¢ € C},and¥ = Ep U X¢.

A subdivision= of R? into constant-description-complexity cells, in the sedsgned in [25],
is called a(1/r)-cutting of X if each cell inZ is crossed by at mogt/r (resp.c/r) spheres of
Y p (resp.X¢). A similar cutting is used in the algorithm sketched at tinel ®f the previous
section. By following the approach originally proposed byaZelle and Friedman [14] and refined
by Agarwalet al. [4], we compute &1/r)-cutting of & of size O(r? logr) as follows. LiftY to a
collection H of b + ¢ hyperplanes iR+, using the well-known lifting transformation, e.g. given
in [16], which maps a spheref + - + 22 = 21 + - -+ + agzq + (3 to the hyperplane ., =
121+ - -+ agrq+ 6. The points ofR? are lifted to the standard paraboldid: x4, = Zle z3.
We choose a random subgetC H, compute the arrangement Bf and decompose each cell of
the arrangement into simplices, using, e.g., bottom-xdriangulation [14]. LetT" be the set of
simplices in the decomposition that intersélctThe generalized zone theorem of Arorehal. [7]
implies that the number of simplices s O(r¢logr). Let Hn C H be the set of hyperplanes
that cross a simplexX\ in 7. Next, we construct a s&' of pairwise-disjoint, constant-size cells,
which coverll, as follows. If|Ha| < (b + ¢)/r, then we addA to E'. Otherwise, suppose
t(b+c)/r < |Hpa| < (t+ 1)(b + ¢)/r for some integer > 1. We then choose a random subset
Ra C Hp of O(tlogt), construct a decompositiodY (R ) of the arrangement, and clip each
simplex of AV (R ) to within A. If the resulting cell, which is a convex polytope with(1) faces,
intersectdl, then we add it t&'. The set{7 N1II | 7 € E'} forms a subdivision ofl. Thee-net
theory (see, e.g., [23]) implies that, with high probafijlieach cell ofAY (R ) is crossed by at
most(b + ¢)/r hyperplanes o, and a result by Agarwadt al.[4] implies that the expected size
of = is at moster? log r, for some constant For each celi’ € =/, we computer’ N IT and project
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the intersection onto the hyperplang, ; = 0 (our original space). LeE denote the resulting set of
cells. By constructionz is a(1/r) cutting of > of sizeO(r%logr). In fact, a slightly more careful
analysis implies that one may assume that each céllisfcrossed by at most/r spheres ofp
and by at most/r spheres oE¢.

Foreach celr € E,letA, = AN7, B, = {p € B |1 C oelp)}, andB, = {p € B |
TNog(p) # 0 and T & o¢(p)}. Thatis, a poinp € B is in B; if the spheres¢(p) contains the
(necessarily lower-dimensional) cell and it is inB if o¢(p) crosses (i.e., intersects but does not
contain)r. Similarly, we define®, = {g € C | 7 C 0,)(q)}, C; = {q € C | TNay(q) # Dandr ¢
o,(q)}. By further refinement of the cells of the cutting, which does change the asymptotic
bound on the number of cells, we may assume ftHat < a/r%, 3 _|A,| = a, |B,| < b/r and
|C | < ¢/r. Since the point setd, B, andC are not in general position, the subdet (resp.
C,) could be as large a8 (resp.C). Note thatB, andC, can be nonempty only if is a lower-
dimensional cell.

If a triangle Auvw is in U (A, B, C; A), thenu € o¢(v) Noy(w). If u € A,, thenv € B, UB;
andw € C, U C,. Therefore,

(A, B,C;A) < Z[w(AT,BT,éT;A)+¢(AT,BT,O;A)+¢(AT,B,C*T;A)] (3.1)
TEZ
a b c

-, >+Z[ AT,BT,C;A)+¢(AT,B,C*T;A)]-

< 0Gogr) -4 (5,
T T T

In the remainder of this section we obtain boundsydat., B.,C; A) and(A,, B, Cr; A), for

d = 4,5, and substitute them in the above recurrence to derive thiesponding bounds fap(*)

and®)

3.1 The four-dimensional case

Lemma 3.1 Let A, B, and C be three point sets of sizesb, ¢, respectively, irR*. For any cellr
in the corresponding subdivisids,

w(A‘HET’C; A) + @b(AmBa C’T; A) = O(|AT||B| + |AT||C| + |B||C|)

Proof: As noted, we may assume thait a lower-dimensional cell. We first bouid A -, B.,C; A).

The assertion is obvious ifiin{|A.|,|B,|} < 2, so assume that each of the two sets has at least
three points. Recall that each point4f lies at distanceé from every point ofB3,.. This implies that
there exist two orthogonal concentric circtesg, v such thatd, C v, andB, C ~vp; see Figure 3.
Indeed, letu;, us, u3 be three distinct points ol.. The intersection of the sphereg(u, ), o¢(u2),
o¢(ug) is a circle; it cannot be a 2-sphere because a 2-sphere can taly two 3-spheres of a
given radius. Letyz denote this intersection circle, and febe the2-plane containingygz. Clearly,

B, C ~vp. The centew of vp is such that:;0, us0, ugo are all orthogonal tar. This implies that
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Figure 3: lllustration to the upper bound.

u1, ug, us lie in the (unique) planer containingo and orthogonal tor. Applying a symmetric
argument, in which the roles of, and B, are reversed, completes the proof of the existence of

YA, VB-
Letw be any point inC'. If w lies at distance from at most two points ofi,, then

(Ar, By, {w}; A) < 2|B,|,

for an overall bound o2|B;||C|. Similarly, if w lies at distance from at most two points of3;,
thene(A,, B;, {w}; A) < 2|A,], for an overall bound o2|A,||C|. If w is at distanceg from
at least three points ofl, and at distanceg from at least three points d8., thenw lies on a
circle y¢ that is orthogonal to both4 and+p. But this is impossible ifiR*, soy (A, B.,C; A) <
2(|A;|+|B,])|C]. A similar argument shows that( A, B, C;; A) < 2(|A,|+|C|)| B|. Summing
all the bounds obtained above, the assertion of the lemr®l O

In other words, we can write (3.1) far= 4 as

W(A,B,C;A) = O@r*logr) - |(ab+ ac+ be) + p™ (%, g, ;)] )

We now repeat this analysis a second time, using each of taé3seas the set of points and
the two other sets as representing sets of spheres of ajgieopadii (this is theB-step. Then we
perform a third step, thé'-step in which the resulting subsets 6f represent points and the two
other subsets represent spheres. In each of the secondrargtdbs, the size of each set of spheres
decreases by a factor of and the size of each set of points decreases by a factdr. dffter the
third round, we have(r'? log® ) subproblems in which the size of each point set has beenedduc
by a factor ofr®. Therefore we obtain the following recurrence:

D (n) = 0(r'210g* 1)y (%) + 0(n?), (3.2)

where the constant of proportionality of the second termeddp (polynomially) on-. For any
constant: > 0, with an appropriate choice efas a function of the prescribed it can be shown
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that the solution to (3.2) i) (n) = O(n?*¢), where the constant of proportionality depends on
e. Applying this bound forA = B = C' = P, we obtain thay”2(4) (n) = O(n?**).

Observe that the above proof is constructive in the sens& dan be converted into a recursive
algorithm for computing the triangles ir(A, B, C; A), whose running time follows the same
recurrence as (3.2). Indeed, since a constant, we can compute {Higr)-cutting described above
by a randomized algorithm i@ (b+ c) expected time. In fact, it can be computed by a detreministic
algorithm inO(b + ¢) worst-case time [12]. For each celle =, A., B.,C;, can be computed in
an additionalO(a + b + ¢) time. Following the proof of Lemma 3.1, the s@t$A., B.,C; A) and
U(A:, B, Cr; A) can be computed in tim@(ab + be + ca). Hence, the total running time of the
recursive algorithm i€ (n?+¢).

It can be shown thq:fQ(4) (n) = Q(n?), by generalizing Lenz’ construction. In fact, the follogin
construction shows that this lower bound can be attaineaifigrgiven triangleA. Let the side
lengths ofA bea,b,c. Choosen; < a, by < b, andh > 0 so thata; + by > c anda® — a? =
b? — b? = h?. Geometrically, regard\ as a triangle ifR* with the side of length: lying on the
zy-plane, projectA on thezy-plane;a; andb, are the two other sides of the projected triangle (see

Figure 4). Take the following three circles
Y1 ZE%—FiE%:hQ, 153:.%‘4:0,
Y2 w%—i—xiza%, r1 =x0 =0,
Y3 w%—l—xizb%, 1 =29 = 0.

Placen /3 points on each of the circles so that for each of the pgimtkced ony, there is a point

Zo
b

20

IS)

Yo, by

®0

Figure 4: Lower bound construction.

q placed ony; at distancec from p. The resulting set hag/3)? congruent copies ofA. This
construction is reminiscent of a constructionki#, given in [2].

Hence, we have the following theorem.

Theorem 3.2 Let P be a set of: points inR*, and letA be a triangle. The number of triangles
spanned byP that are congruent ta\ is O(n?*¢), for anye > 0, and can be?(n?) in the worst
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case. Moreover, all the triangles spanned Bythat are congruent ta\ can be computed in time
O(n2+e)_

3.2 The five-dimensional case

An argument similar to but somewhat more involved than the wsed in Lemma 3.1 implies the
following lemma ford = 5.

Lemma 3.3 Let 4, B, andC be three point sets of sizasb, c, respectively, irR>. For any cellr
in the corresponding subdivisids,

Y(Ar, By, O3 A) + (A7, B, Crs A) = O(|A|(IBIP|C? + | B| + |C)) + | B]|C)).

Proof: The proof follows the same line of reasoning as that of Lemmia 3Ne first bound
zp(AT,BT,C; A). Again, we can assume that |, |E}T| > 3. Since each point ofd, lies at
distancet from every point of3;, it follows, similar to the 4-dimensional case, that onlpteases
are possible:

(i) A, lies on a circley, and B; lies on a concentric orthogonal 2-spherg.

(i) A, lies on a 2-sphere 4 and B; lies on a concentric orthogonal circie;.

Indeed, take three distinct points, us, u3 € A,. Arguing as aboveB, is contained in a 2-sphere
that is concentric with and orthogonal to the cirgléhat passes throughy , uo, ug. If B, contains

at least four noncoplanar points then the enfiremust be contained ify, and we get the situation
in case (i). Otherwise, the entife, must lie on a single circle and we get the situation in caje (ii

Letw be any point inC'. If w lies at distancey from at most three points o then
$(Ar, By, {w}; A) <3|B,],

for an overall bound o8| B, ||C|. So assume that is at distance) from at least four points of...

In case (i),w must lie on a 2-spherg that is concentric with and orthogonal 4q, and thus
lies in the same 3-space containipg. We have thus reduced the problem to the following one:
We have two concentric spheres, ¢/, in three dimensions, and two finite point s€isQ’, with
Q C pand@’ C ¢, and we wish to bound the number of pairs of point€jirk Q' that are at
distance( from each other. Following the proof in [15] on the number efeated distances in a
planar point set and the proof of Theorem 2.1, it can be shtvahthe number of such pairs is
O(|Q1*?1Q"** +1Q| +|Q'|). In other words, the number of triangles under considendtio

O (IA-(B,*P1CPP + 1B, +|C)))

In case (ii),w must lie on a circleyc that is concentric with and orthogonal ¢9y, and thus lies
in the same 2-plane containing;. In this case it is easily seen that the number of pairs oftpoin
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in B, x (C N~c) at distance from each other is at mo&tB; |, so the number of triangles under
consideration i$)(|A;||B:|).

The estimation ofs(A,, B, Cr; A) is fully symmetric, and yields the bound
O (14:(1C; P1* B +1Cy | + B)) + C- 1B )
Summing all the bounds obtained above, the assertion oétheh follows. O

We now apply Lemma 3.3 to each lower-dimensional ¢efl =, sum up the resulting bounds,
and recall that is a constant, to conclude that the number of triangles titatfg the assumptions
of the lemma, over all cells, is O(a(b*/3¢2/3 + b+ ¢) + be).

By applying a round-robin decomposition process, as in tdawkensional case, we obtain the
following recurrence fory®) (n):

¥O ) = 06 log* () + 0. (33)

Using induction om and choosing a sufficiently large constant valuerfdt can be shown that the
solution to (3.3) igp®) (n) = O(n/3).

Again, we can convert the above argument into an efficietrdkgn for computing? (P, P, P; A).
Let T'(n) be an upper bound on the running time of the algorithm, fas |98t = n. All the steps
in the preceding analysis are effective, and can be compffmiently. In particular, given two
sets of points) and @’ on two spheres in 3-space, and a real parametare can find, in time
O((|QIP21Q'12? + Q| + Q') log(|Q| + |Q'])), all pairs inQ x Q' that are at distance, by mod-
ifying an algorithm by Chazelle [13]. Proceeding as above,get the following recurrence for
T(n):

_ 1573 n 7/3
T(n) = O(r® log® r)T (ﬂ) + OB logn),

whose solution i€ (n"/? log n).

Finally, a matching lower bound fap(® (n) is constructed as follows. Take a unit 2-sphere
o and a unit circley that are concentric and orthogonal. Plag& points ono so that there are
Q(n*/?) pairs of these points at distan¢ apart (as in [18]), and place/2 points arbitrarily on
~. We obtain a set ofi points withQ(n7/3) equilateral triangles of side lengtfi2. We thus obtain
the following theorem.

Theorem 3.4 Let P be a set of, points inR, and letA be a triangle. The number of triangles
spanned by’ that are congruent ta\ is O(n"/3), and the bound is tight in the worst case. Moreover,
the triangles spanning b¥ that are congruent té\ can be computed in tin{é(n7/3 logn).

Remark 3.5 The number of congruent triangles in a setqioints in the plane iQ(n4/3), which
is an immediate consequence of the same bound for the nurhiegeated distances in the plane.
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Itis curious to note that each of these four bounds is clog®td%2)/3), whered is the dimension.
However, while ford = 4, 5 these bounds are nearly tight (b= 4) and tight (ford = 5), they are
conjectured not to be tight faf = 2, 3.

4 Congruent Tetrahedra in Four Dimensions

We now bound the number of tetrahedra spanned by R sét» points inR* that are congruent to

a given tetrahedro\ = pgrs. Fix three points:, v, w € P so that the trianglevw is congruent to
the facepqr of A. By Theorem 3.2, the number of such triplegign?*¢). Any pointz € P such
thatuvwz is congruent ta\ must lie on a circley,,,, that is orthogonal to the 2-plane spanned by
u, v, w, Whose center lies at a fixed point in this plane, which is thage (under the congruence)
of the base point* of the height ofA from s.

LetI" denote the collection of circleg,,,,. Note that the circley,,,, is fully determined by the
pointsu, v, w, but that it is possible that two different circleg,,, and~, ., coincide. In this case,
u'v'w' is obtained fromuvw by a rotation (and/or reflection) in the plane orthogona}.i9,, about
the center of this circle. In other words, all the poiatse P that induce, with two other points
of P, a fixed circley = v,,, SO thatu maps top, must lie on a circle’, ;,, which is concentric
with and orthogonal tey. The radius of”, ,, is the distance betwegnands*. Similarly, the points
that inducey and map toy (resp.r) lie on a circleC, , (resp.C, ). The three circleg’, ;,, C, 4,
andC, . are concentric and coplanar. It is easily checked that arlyesfe three circles uniquely
determinesy and vice versa. For simplicity of presentation, we only use af these three coplanar
circles, sayC, ,,. For acircley € T, there areD(|P Ny - |[P N C, ) tetrahedrawwwz spanned by
P such thatz € v andu, v, w lie on the respective orthogonal concentric cirdles,, C, 4, C, ..
Indeed, once the point has been chosen (frof N C., ), the pointy that maps ta; must lie on
C, , and must be at distang¢gg| from «. There are at most two such points. Similarly there are two
candidate points fow in P N C., , and any point in” N «y is a candidate fog.

Fix a threshold parametér whose value will be specified later. If a cirejec T" contains fewer
than k points, then the number of tetrahedra under considerasiat mostk times the number
of trianglesuvw that are spanned b¥, are congruent t@qr, and induce the circle,,, = v.
Summing this bound over all such “low-degree” circles, weobthe bound) (n*°k).

The problem can thus be reduced to the following. We have & &6t points and a collection
IT of pairs of concentric orthogonal circles, in which no twarpdnave a circle in common, and at
least one circle in each pair contains at ldapbints of P. Our goal is to estimate the sum

Yo Pnql- Py 1< Y max{|P Ny, PNy}
(v,7') el (v,y)en

The problem of estimating the last sum can be restated asv&llWe have the point sdét and
a collection€ of circles so that each circle i@ contains at least points of P, and our goal is to
estimate the suh__ . [P N v|2. Note that we may assume that the circle€’iare all congruent.
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Lemma 4.1 The numbet ; of circles inC that contain at leasj points ofP is O(n?k(n) /"% +
n2/53 + n/j), wherer(n) = (logn)0@*m),

Proof: The number of incidences between thesgcircles and the points aP is at leastjt> ;. A

result by Aronowet al. [6] implies that the maximum number of incidences betweeaircles and
n points isO(n% 1 m? Lk (n) +m2/3n2/3 4 n+m), wherex(n) = (logn)°@ () We thus have
jt>j = O(nﬁ/uti/jnm(n) + t2>/]?’n2/3 + n + t;), from which the asserted bound follows easily.

Lett; denote the number of circles éthat contain exactly points of P. We then have

YNoPnyl? = > % =K+ Y (25 + Dt

yee j>k j>k

2
= 0 nk—i—k k7/2 +Z[g/2 — +n

>k
= 0w+ no).

Hence, the overall number of tetrahedra spannef laywd congruent td\ is

n3 2+e
O [ n? +Wf<c(n)+n k).

Choosingk = n?/?, we obtain the following bound.

Theorem 4.2 Let P be a set of: points inR*. The number of tetrahedra spanned Bythat are
congruent to a fixed tetrahedron ((n20/9+), for anye > 0.

5 The General Case

Let P be a set of points inR? and let3 < k < d—1. LetA = ajas - - - a1 be afixedk-simplex.
We wish to bound the number &fsimplices spanned by the points Bfthat are congruent ta.

We assume that we are givén+ 1 sets of points irR?, call themPy,..., P. Initially,
P =P = - = P, = P. LetUy(Py,...,P..1;A) denote the set ofk + 1)-tuples
(p1,p2, .- Pkt1) € Py X Py X -+ X P11 such that the:-simplexpips - - - pr11 IS congruent
to A and|p;p;| = |a;a;| for1 <i < j < k+1 (i.e.,p; maps toa;). Set

Yre(Pry ..oy Peg1; A) = [Up(Pr, ..o Peg; Q)

and
Pr(ni, ... ngy1) = max Y (Pr, ..., Pegr; A),
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where the maximum is taken over all tuples of sBs..., Py, in R? with |P;| = n;, fori =
1,...,k + 1, and over allk-simplicesA. For brevity, we will use)(n) to denoteyy(n,...,n).
The following lemma will be crucial for our analysis.

Lemma 5.1 Let P andQ be two point sets iiR?, so that|P|, |Q| > d + 1, and so thatpq| = a for
eachp € P, g € @, for some fixed.. Then there exist two spherEs, I'g, of respective (smallest)
dimensiongp, dg and centers:p, cg, such that

) PcTpand@ C FQ;
(i) 1 <dp,dg <d—-3anddip +dg < d—2; and

(iii) T'p is orthogonal tol'g and both are orthogonal to the segmeicg. (If op + dg = d — 2
thencp = CQ.)

Conversely, the existence of such a pair of spheres implasall distancegpq|, for eachp € P
andq € Q, are equal.

Proof: P is contained in the intersectidn = () . 0a(g), Whereo,(q) is the (d — 1)-sphere of
radiusa centered ag. This intersection is a sphere of dimension at nabst3. Indeed, two of these
(congruent)(d — 1)-spheres intersect in@ — 2)-sphere, which cannot be contained in any other
(d — 1)-sphere of the same radius. &t C I' be the smallest-dimensional sphere containihg
and letép denote its dimension. A symmetric argument implies tQds also contained in some
(smallest-dimensional) sphef&,, of dimensiondg. Clearly,1 < p,dg < d — 3. Letcp, cg
denote the respective centerslgf, I'g, and letrp, rg denote their respective radii. Léfp, H
denote the affine hulls d?, @, respectively.

Note that, for each pair of poings p’ € P, Q is contained in the perpendicular bisector hyper-
plane ofpp’. Thus@ lies in the intersection of these hyperplanes, which is ailabontainingH
and orthogonal tddp. This shows thaffp and Hg, and thus als@'p, ', are orthogonal to each
other. Consequentiylim(Hp) + dim(Hg) < d and thusip + dg < d — 2.

Note that, by constructiornf containscp. It also contains:g since this point lies in the affine
hull of Q. Hence,cpcg is orthogonal td’p. A symmetric argument implies that this segment is
also orthogonal td'g, and this completes the proof of the lemmadiin(Hp) + dim(Hg) = d,
then no line is orthogonal to both spherescgso= cg. 0

By applying the above lemma inductively, we obtain the follng.
Corollary 5.2 LetP;, P,,..., P, be? sets of points ilR?, each of size at least + 1, so that for
allpairs1 < i < j < /¢andforanyp € P, andq € P;, [pq| = |a;a;|. Then there exist spheres
I'y,...,I'y of respective (smallest) dimensions. . ., d, and centers:, ..., ¢y, such that

(i) P, C Ty, foreachl <i </
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(i) 1 < 6; < d—3,foreveryi,and>>‘_, & < d— ¢ (if Y'_, 6 = d — £ thenc; = --- = ¢); and

(iii) for < # j, I'; is orthogonal tal"; and all spheres are orthogonal to the affine hulkgf. . ., c,.

We extend the divide-and-conquer procedure describeddtidBe3 to boundy,.. Initially, each
P; is an arbitrary set of points B¢, but each step of the procedure will decompose a problem into
subproblems in which some “cliques” of the point sets witisfg the conditions of Corollary 5.2.
We therefore define a generalized version of the funatipby introducing avertex-weighted graph
G = (V,E,\), whereV = {1,...,k + 1}. Apair (i,5) € Eif |pq| = |a;a;| for everyp € P,
andq € P;. We associate a weight function: {1,...,k + 1} — {1,...,d} with the vertices of
G, which we simply write as a sequentg,, ..., \;+1). Here); is the dimension of the smallest
sphere that containB;. We refer toG as a(d, k)-graph By Corollary 5.2,G satisfies the following

property.

(G) If {i1,...,i¢} isaclique inG, then
¢
d N <d—t.
7j=1

We now definez/),(f) (n1,...,ngy1) to be the maximum value afy (P, ..., Pry1;A), taken
only over sets’, ..., P, whose associated vertex-weighted grapyisThus, these sets satisfy
the following properties:

(x.0) |P;| >d+ 1foreachi =1,... k+ 1,

(1.ii) If \; < dthenP; is contained in &;-dimensional spherg; (if \; = d, thenP; is an arbitrary
set of points irR?); and

(i) If {iq,..., 4} is a clique inG, thenT; ,...,T';, are orthogonal to each other, and all of
them are orthogonal to the affine hull of their centers.

As a special case, the original bougig(ny,...,nt1) can be written asb,gGO)(nl, e M),
whereGy = (V,0,(d,d,...,d)) is an empty vertex-weighted graph (i.e., a graph with no gdge
with no constraints on ang;.

We apply a round-robin decomposition method to bowﬂﬁ) (n) = 1/;,(CG) (n,...,n). Let
Py, ..., P, having@G as their induced vertex-weighted graph, each of siz&he process con-
sists ofk + 1 rounds, which are then repeated recursively. Ingtheround, P; is regarded as a
set of points, and eachR;, for i # j, is regarded as a set of congruent spheres of rgdias|.
Consider the first round, in which we regaly as a set of points, and |1&} denote the collection
of all verticesj # 1 of G such that(1,5) ¢ E. If V; = (), we skip the first round altogether (see
below for details). IfG contains an edge of the fori, j), thenA; < d — 3, and P, lies on a
Ai-dimensional spherg;. We setl/; to be the affine hull of'y. Otherwise, ifA\; = d, then we set
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I' = U, = RY. Regard any poinp in somePj, for j € Vi, as defining §\; — 1)-dimensional
sphereo;(p), obtained as the intersection &f with the (d — 1)-sphere centered atand having
radius|aa;|. SetS; = {o}(p) | p € P;} andX = ¢y, &5

As above, a subdivisioR of I'; into constant-description cells is calledlg/r)-cutting of X if

each cell o is crossed by at mo$E;|/r spheres o for every;j € V;. Arguing as in Section 3,
we have

Lemma 5.3 For any given parameter > 0, there exists &1 /r)-cutting of % of sizeO(r*! logr).

We fix a parameter; and compute &l /r;)-cutting of 2. By splitting cells further as necessary,
we may assume that each cell contains at mqsq\l points of P;; the number of cells is still
O(r{\l log 1), with a larger constant of proportionality. LEtdenote the resulting set of cells. For
eachr € E, setP] = P, N 7. Obviously

¢k(P17"'7Pk+1;A):Zwk(PlTa-P?a"'aPk-i-l;A)‘

TEZ

LetA’ = ay - - - ap,; be the facet ofA opposite taz;. LetG; denote the vertex-weightdd, k — 1)-
subgraph of7 induced by the vertice® \ {:}. Fix a cellT € =. We say that a point; € P;, for
any: > 1, islight in 7 if p; is at distancda;a;| from at mostd points of P/ (this also includes
the case whergP[| < d); otherwise, it isheavyin 7. Let LT (resp.H) be the subset of points of
P; that are light (resp. heavy) in, fori = 2,...,k + 1. Letpy---pr.1 be a(k — 1)-simplex in
Uyp_1(Py,...,L7, ..., Pyy1; A'). Sincep; is lightin 7, ps - - - pp41 contributes at most simplices
toU,(Pl,Py,...,L],..., Per1;A). Therefore the light points aP; contribute at most

A\ (n, ... n) < dp{C) (n)
simplices, which implies that

k(P Py, P A) < dkp\C) (n) + o (P], HS, ... HY, 3 A).

Foreachi > 1,let H = {p € H] | 7 C 0;(p)}, and let
H] ={p€ H] | TNoi(p) # Dandr ¢ o;(p)}.

That is, a poinp is in HY if o;(p) crossesr. By definition, ifi ¢ Vi thenH] = ( andH] = H.
SinceE is a(1/r)-cutting of X (in the refined sense), we hal@| < n/r; for eachi € V;. If a
simplexp: - - pr1 € Ui (P, HS,... Hf, ; A), thenpy € ) o(p;). Sincep; € 7, we have
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thatp; € H] U HY for 2 < i < k + 1. Hence, we obtain:

S\

> n(Pl HS,... H ;A) < Zzpk(P{,fI;,...,ﬁ;,ﬁ[;+1,...,ﬁf,g+£>+

TEE TEE e o
SO (Pl Hy, .. H . HE 5 A)
TeZieV;
< O(rMlogr (G)<n r/\l,n,...,n,n TlyeeoyN r)
> (r1" log 1)¢k /T /1 /T
k—|v1] Vil
+ZZ¢/€(P{7H577£I[7HI€+17A)
TEZIEV]

Fix anz € V7. Similar to the above argument,|ﬁ[| < d, then

G T T ags T G;
o (P H, . H L HE 5 A) < Ay ().

)

If |ﬁI{| > d+1, apply Lemma 5.1 t&] andFI{ to conclude the existence of two sphefes P7,
"> ISTZT that satisfy the properties of that lemma. We clearly heve I'y andI” C I';, and
proper inclusions are possible. Le®’ denote the respective dimensiond'of”. Note that for any
j ¢ V1, I andI'; continue to satisfy the properties of Lemma 5.1 (asltiéndI';, except that the
dimension ofl' may be smaller than that @f;). The same holds for any edge’) in G incident
to 4, with T' replacingl’;. We now replaces by the augmented vertex-weighted gra@h; ;),
whose edge set B U {(1,4)}, and in which); is replaced by, A\; by ¢, and, forl < j # i, \;
is replaced, if necessary, by the smallest integer A; such thatH} lies in ans-sphere. This step
does not increase the value of akyy We can thus rewrite the above recurrence as:

(@) Al (@) Al
Py,...,P.1;A) < O(ritlogr n/rit.n, .. ,n.n/ry,.ooon/ry |+
Py (Pr (EREYAY (r] g1)¢k</1 /1 /1>
k—[V1] |Vi]
k+1

k™) () +d S T n) + 3t (), (5.1)
=2

%
We now repeat this step for each of the remainingunds. In theth round we compute @l /r;)-
cutting of an appropriate set of spheres (whEyes mapped to a set of spheres of common radius
la;a;| if (i,7) ¢ E), so that the size of the cutting @(r?i logr;). We then obtain a recurrence
similar to that in (5.1). To derive the final resulting re@irce, we need to choose appropriate values
for the parameters;, which we do as follows. Fix an indexe {1, ...,k + 1}. In theith round, the
size of theith set in the leading recursive term (i.e., the term thatlire®the sam@,@ function,
which is the first term in the right-hand side of (5.1)) is reeld by a factor of’?i. At the jth round,
for anyj # i, there are two cases:

(a) If (i,j) ¢ E, then the size oP; in the leading recursive term is reducedry
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(b) If (i,7) € E, thenP; does not change.

Thus the total size of thah set in the final leading recursive term is at most

1
S L

i Gi)gE

Foreachi = 1,...,k + 1, putr; = %, for some sufficiently large constant parametend for
exponentse; > 0, that are required to satisfy the followirig+ 1 inequalities:

Nzi+ Y mp>1, fori=1,...,k+1. (5.2)
(G:)¢E

That is, we want the size of each set in the final leading re@iterm to be at most./r. Let
A = A(G) be the symmetri¢k + 1) x (k + 1) matrix, defined by

Aij =1 i#j, (i,j) ¢ E,
0 i#j, (i,§) € B
Define((G) to be the optimum value of the linear program

min A-x sSubjectto Ax>1 and x> 0.

Letx = (x1,...,7ry1) be a vector that attains the minimum. Set= r%i, fori = 1,...,k +
1. Then the leading term of the recurrence beco@és(%) logh+! r)z,b,(f) (n/r), and the full
recurrence becomes

k+1

W) < 0 @108 @ (B) £ 30w+ ST 0w m)),
i=1 ], (L.7)¢E

where the vertex-weighted grapfis (; ;) are defined in a manner similar to the definitiortof; ;)
given above. Let

(d,F) = max{(G)

where the maximum is taken over &, k)-graphs satisfying propert{G). The solution to the
above recurrence is easily see to be

for anye > 0.



ANALYSIS OF ((d, k) 21

6 Analysis of((d, k)

Unfortunately, so far we were unable to derive a sharp eixjplozind on( (d, k), for arbitrary values
of d andk, but we conjecture the following.

Conjecture 6.1 For anyd > 4 andk < d — 2, ((d, k) < d/2.

In the remainder of this section, we support the conjectyranalyzing (G) for various special
graphsG, and by proving the conjecture for small valuesiof

We first note that, folZ = Gy = (V,0, (d, ... ,d)), we have

dk+1) d
< <= <d-—
((G) < A1k =3 (fork <d-2)
by choosingz; = 1/(d + k) for eachi = 1,...,k + 1. As will follow from subsequent analysis,

this bound for{ (G) also holds ven if7 is empty but some weights are smaller th&an

Next we note that it suffices to consider the chase d — 2:
Lemma 6.2 If {(d,k) < d/2,for1 <k <d—2then((d,k—1) <d/2.

Proof: Let A = A(G) be ak x k matrix that corresponds to sonfé, & — 1)-graphG. Extend
Atoa(k+ 1) x (k+ 1) matrix B by putting Byy1,4+1 = d andB; 11 = By, = 1 for

i =1,...,k. (This corresponds to adding a 9&t, ; that is unconstrained.) By assumption, there
exists a(k + 1)-vectory such that

k
By>1, y>0, and ZM% + dyg1 < df2.
i=1

Putz; = y;/(1 — yg41), fori = 1,... k. Sincey,,1 < 1/2 we havex > 0, and, as is easily
verified, Ax > 1. Finally,

k k
Ny d/2—d
Z)\ig«'i _ 21_1 iYi < / Yk+1 < d/?.
i1 L =Yk 1 =Yt

Next, we get rid of cases in which one of thgs is equal to 1:

Lemma 6.3 Let G be a(d, k)-graph with, say\.,; = 1. Suppose thaf(d’, k") < d'/2 for all
d" < dandford" = dandforallk’ < k. Then{(G) < d/2.
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Proof: Let A = A(G) be the matrix associated with. Let B be the submatrix off consisting of
those rows and columns whose indigesatisfy 4; ., = 0 (that is, (i,k + 1) € E). Letl¢ < k
denote the size aB, and assume, without loss of generality, tBatonsists of the first rows and
columns ofA. The maximum diagonal entry iR is at mosi/ — 3 (by property G)). Moreover, the
same property implies that, for any clique of siza the induced subgraph @& that corresponds
toB,wehave) ., \; <d—1—(r+1) = (d—2)—r. Thisimplies that the matri® corresponds
to a(d — 2,¢ — 1)-graph, so, by assumption, there exists a vegtthat satisfieyy > 0, By > 1
andY'_ Aiyi < (d —2)/2. Now putz; = y; fori = 1,...,0,z; = Ofori = £+ 1,...,k, and
z11 = 1. Itis easily checked that > 0, Ax > 1, and> " \jz; < (d —2)/2+1=d/2. O

Complete r-partite graphs. Next, suppose that’ = (V, E, \) is a complete-partite graph for
somer < |d/2]. Thatis,V can be partitioned inte subsets, ..., V, such that(i, j) € E if
and only ifi andj belong to different subsets. We conjecture th@¥) is maximum wherG is a
completer-partite graph. We next prove that Conjecture 6.1 holdsimghpecial case. In fact, the
following result is stronger, because it also includes et = d — 1 (andr > 2).

Figure 5: A3-partite graph.

Lemma 6.4 If G is a complete--partite graph, forr < |d/2], and eitherk =d —2ork=d — 1
andr > 2, then((G) < d/2.

Proof: The above argument fdar, proves the lemma for = 1 (andk = d — 2), so assume that
r > 1. For each < r, letn; = |V;| and\! = max,ey; A;. Sinceq is a complete--partite graph,
(vi,vj) € Efori # j. Therefore, by PropertyQ),

zr:)\f <d-r.
i=1

The matrixA = A(G) is block-diagonal, where theth block A; is ann; x n;-matrix that corre-
sponds to/;. All the non-diagonal entries od; are 1, and the diagonal entries &g, ..., Ay, ,
wherewy, ..., vy, are the vertices o¥;. The linear program at hand is thus decomposable, and it
suffices to solve it for eachi; separately. That is, keepiridixed, we want to minimiz@?;1 Av; 2j,
subject to(A,; —1)z; + Z > 1,forj =1,...,n;, whereZ = 3 z;.
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Solving the linear syster\\,; — 1)z; + Z = 1, forj = 1,...,n;, is easy: By Lemma 6.3 we
may assume that n, is equal to 1. Take; = w/(\,;, — 1), forj =1,...,n;, where

or, puttingt; = \,, — 1,forj =1,...,n;,
1 1

Zj =
t] 1+Z£ lt[

Then we have
. i 1
iA S (1+d) ey u
— 1"‘2@;1% 1+370 1t

Jj=1

This expression is maximized Wh@ o t is minimized, which happens when all,’s are equal
to A¥. In this case the sum is equal)l(;)nz/(nZ + Af —1). In other words,

X‘ + n;—1
where

r r
Y X<d—r and > nmi=k+1.
=1 =1

(Note thatk + 1 is eitherd — 1 or d.) A tedious (but routine) calculation shows that, for angfix
r, ((G) is maximum when

d— kE+1
A= and n; = +
r r
for all 7 (here we allown; to assume non-integer values as well). Hence,
(d=—r)(k+1) k+1

Ry A S 2-(d-k-1)/(d-r)

Fork = d — 1 this expression is equal /2, regardless of the value of Fork = d — 2, this
bound is monotonically increasing inso it attains its maximum when= d/2, which implies that
¢(G) < d/2, as claimed. O

Small values ofd. Next, we prove Conjecture 6.1 for all< 7 (and fork = d — 2). We first make
a couple of additional observations.

(i) Since we may assume, by Lemma 6.3, that> 2, Property G) implies thatG does not
contain a triangle, whed < 8.
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(i) If G contains a patltiy, iz, i3, 14) such that\(i;) + A(ij41) = d — 2, for 1 < 5 < 3, then
(11,14) is also an edge 6. (This follows by noting that in this case, and P,, span the
same affine subspadé, while P;, and P;, also span the same affine subspateso thatH
and H' are orthogonal and have complementary dimensions.)

The cased < 5,k = d — 2. In this case, eithef7 is empty or some\; must be 1. In the former
case we have shown explicitly thatG) < d/2, and in the latter case, using Lemma 6.3 and an
appropriate inductive argument, we also obtai') < d/2.

The cased = 6,k = 4. In this case|V| = 5 and, by Lemma 6.3, we may assume that for each
1 either\; = 2 or \; = 6. Observations (i) and (ii) imply that does not contain an odd cycle.
Hence,G is bipartite. Letlj, V1, Vs be a partition of” such thatly consists of those vertices with
A; = 6 (they are isolated i), andE C Vi x V,. Putng = |Vp|, n1 = |V4], andng = |V3.

Consider first the case that bdth andV; are nonempty. In this case we put

1
€ Vi,
ny+1 ! !
— 1
T; = .
€ Vs,
no + 1 ! 2
0 1 € V).
For any vertex € Vi,
1
AiTi + Z xj > 2z + Z ;= +1+(n1—1)n1+1:1.

( (] €E JEVI\{l}

Symmetrically, this also holds for eaéke V5. Fori € Vy we have

Aixi—i—.z T = Z T = n1+1+n2+121,
(4,9)¢E JjEVIUV,

since we assume that,n, > 1. Hence, (5.2) is satisfied for all vertices. Moreover,

277,1 an
+ ;
ny+1 ng+1

(@) <
and this sum is maximized when + ny = 5, n1,no > 1. Up to symmetry, there are two cases to
check: (i)ny = 1, ny =4, (ii) n1 = 2, no = 3. In both cases we ha g G) < 3.

The case where at least onef n, is zero is the case of an empty The analysis in the proof
of Lemma 6.4 implies thaf(G) is maximized when al\; = d = 6, and then((G) < d/2, as we
have already shown.

This completes the proof fat = 6.
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Remark 6.5 The reason for handling empty grapfiswith weights smaller thad is thatG may
result from some bigger graph by deleting some nodes, exgngla step that gets rid of nodes with
weight 1 (see the proof of Lemma 6.3).

The cased = 7, k = 5. Inthis casgdV| = 6 and)\; € {2,3} for each nonisolated nodec V,
and)\; = 7 for isolated nodes. (In this analysis we do not handle smaigghts of isolated nodes,
as done ford = 6. This is because we are not considering instances avith 8, in which such
smaller weights might arise by reduction of a larger gragtis heans that any future extension of
this analysis will have to redo the cage= 7.) Let V, denote the set of isolated nodes, and suppose
first thatVp = 0.

Suppose first that each vertegatisfies one of the following two conditions:

(i) deg(i) <2,o0r

(i) deg(i) = 3 and there exists a vertgxnot adjacent t@ such that\; = 2;

then we assign
forl1 <i<6.

For anyi, if deg(i) < 2, using the fact thak; < 3, we obtain

7 7 3 14

e S T

MZJF_Z S TR T I R TR
(i,J)¢E

and ifdeg(i) = 3 and has a vertex of weigBtnot adjacent ta, then

7 7 5 77

oy > oL 2 0 .

’\’x’+__z nZnptn s n ol
(i,J)¢E

Moreover,((G) = 7/2.

Next, consider the case in which there exists a verttat violates both conditions. L&t be
the set of neighbors af |V;]| > 3. SetV; = V' \ V, andp = |V;| < 2. SinceG does not have a
triangle, no two vertices i, are adjacent. If two verticas, v € V; are adjacent (see Figure 6 (a)),
then: # u, v because all neighbors ofre inV;,. Hence|V;| = 3 and the weight of at least one of
u andv is 2, thereby implying that satisfies condition (ii), contrary to the assumption thablates
conditions (ii). HenceFE C Vi x V. If every vertex inV; satisfies one of the above two conditions,
then we assign the following values gs:

3

(k4 2)N; re
Ti= 414 (6.1)
a 1 € Vs

2(p+2)(6 — p)Ai
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o ——©

3
(@) (b)

Figure 6: (a) There is an edge between two verticds ofb) a vertex ofl; violates conditions (i) and (ii).

For any vertex € V1, since: is not adjacent to any vertex iy, we obtain

3 3
iz + Z x> ——+(p—1)——==1
2 2)3
g M (n+2)
For any vertex € Vs, if 4 = 3, then at least one of the vertices not adjacernttas weigh®, so
w+14 w14 w14 187
N+ T; > =—>1,
2 20+2)(6 —p)  2(p+2)(6—p)2  2(up+2)(6—p)3 180

. . w14 3(p + 14) B w14
Nt D R a6 2268 kB o D

Finally,

(@) = 3u pt14 7
p+2 2p+2) 2
Next, if a vertex; of V5 violates the second condition, thé¥,| = 3 and G must be of the
form shown in Figure 6 (b), whereand; are the two vertices of weight 2; no other edge can exist,
because such an edge would have to connect two nodes of V@eigbrtradicting propertyQ). In
this case, we assign the following values:

2 n=2

7= 15 (6.2)
— A\ =3.
10 3

We leave it to the reader to verify that constraint (5.2) issfiad for all vertices and(G) < 7/2.

Next consider the case whelig| = 1, and assume that node 6 is the isolated node. We proceed
through the case analysis used above. Assuming first thatreste: < 5 satisfies (i) or (i), we
assign

2 1<i<5,

0 i=6,
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and obtain that, foi < 5, \;z; + Z(m)@ x; 1S either

Wl N
I
\
\.)—‘
o
=

Wl N
+

Wl DN

L2
3

Wl N

Foris = 6 the sum is

Suppose then that a nodeiolates both conditions, and defiig andV5 as above. IfV;| = 4 then
all other nodes, other than 6, have degree &irin this case, we choosg = 1/);, z¢ = 0, and
xj = 1/(2);) for all otherj. This is easily seen to imply tha{G) < 3 in this case. Thefl;| = 3
and the two other nodes i, other thani, are some nodé¢ with weight 3 and the node 6 with
weight 7. In this case we assign = 3/(4\;), ; = 3/(4);), z6 = 0, andz, = 2/(3),) for the
other nodes, as above. Again, one can easily verify thattioge implies that (G) < 7/2.

Next we have to consider the cgdg| = 2, where the isolated nodes are assumed to be 5 and
6. If every node has degree at most Zinwe choose

3
S 1<i<4,
0 i=5,6,

and verify that this yieldg (G) < 3. If a nodei has degree 3, thefi consists of exactly these three
edges. In this case we put

1 )
)\—i J=1

Ti=q 2 1<j#i<4
6>\j - -
0 Jj =9,6,

and again verify that in this caggG) < 7/2.

Next, suppose thgi}| = 3. Here we choose; = 1/, for all nonisolated nodes ang = 0
for all isolated nodes. Her@ consists of a path of length 2, and it is easy to verify @) < 3.

The casdl})| = 4 can be handled, e.qg., by choosing= 3/(2);) for all nonisolated nodes and
x; = 0 for all isolated ones. The ca$é| = 5 is impossible, and the ca$,| = 6 is the case of an
empty graph, which has already been handled.

This completes the analysis fdr= 7.

We have thus shown the following.

Theorem 6.6 (a) For all vertex-weighted graph& that arise in the analysis of(n), for any
dimensiond < 7 and for anyk < d — 2, we have/(G) < d/2, and thus((d, k) < d/2.

(b) For these values af and k, we have)(n) = O(nd/2+€)_
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Remark 6.7 The technical difficulty in proving a bound ofid, k) lies in the fact that, a&

is augmented, the number of recursive subproblems desrebgethe size of the point sets in
each recursive subproblem is larger than what it was in tleenstrained case. In particular, sets
connected inG to the current set do not change at all. The tradeoff betweesettwo “trends” is
not obvious.

7 Conclusions

In this paper we presented sharp bounds on the number ofisaa@panned by a point set that
are congruent to a given simplex. In some cases, our bouedspéimal or close to optimal. In
other cases, our bound is the first nontrivial bound for thesences. The main open problem is,
obviously, to prove Conjecture 6.1 for arbitraty There has been considerable work on sensitivity
analysis of linear programming (e.g., [22]). Can some oftitlose techniques be used to prove that
¢(@) is maximum wherG is a complete-partite graph?

The technique does not seem to extend to the gased — 1, so another open problem is to
sharpen the bounds q‘ié‘f)l(n). For example, can the bound on the number of triangles splamne
a set ofn, points inR? that are congruent to a given triangle be improve®ta*/25(n)) (which
is the best-known bound on the number of repeated distancasset ofn points inRR3)? The
current proof raises a related question: What is the numbiercimiences between points andn
unit circles inR3? We conjecture the bound to B§n*/3). Recently, Aronowet al AKS obtained
an improved bound on the number of incidences between pamtsircles inR?, which matches
the best-known bound for the same problem in the plane, llldds not lead to better bounds for
the case of congruent circles.

Finally, as already mentioned in Section 4, our paper mias/¢he open problem of obtaining
an improved bound for the number of incidences between gpaimii congruent circles in four (and
higher) dimensions.
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