
Computing the Volume of the Union of Cubes∗

Pankaj K. Agarwal† Haim Kaplan‡ Micha Sharir§

December 3, 2006

Abstract

Let C be a set ofn axis-aligned cubes inR3, and letU(C) denote the union ofC. We present an algo-
rithm that can compute the volume ofU(C) in timeO(n4/3 log n). The previously best known algorithm
was by Overmars and Yap, which computes the volume of the union of boxes inR

3 in O(n3/2 log n)
time.

∗Work by Pankaj Agarwal and Micha Sharir was supported by a grant from the U.S.-Israel Binational Science Foundation. Work
by Pankaj Agarwal was also supported by by NSF under grants CCR-00-86013, EIA-98-70724, EIA-99-72879, EIA-01-31905, and
CCR-02-04118. Work by Haim Kaplan was supported by Grant 975/06 from the Israel Science Fund. Work by Micha Sharir was
also supported by NSF Grants CCR-00-98246 and CCF-05-14079, by Grant 155/05 from the Israel Science Fund, and by the
Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.

†Dept. Computer Science, Duke University, Durham, NC 27708-0129, USA.pankaj@cs.duke.edu
‡School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel,haimk@post.tau.ac.il
§School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Inst. of Math. Sci., 251 Mercer Street,

NYC, NY 10012, USA.michas@post.tau.ac.il

1

1 Introduction

Let C be a set ofn axis-aligned cubes inR3, and letU(C) denote the union ofC. The problem studied in
this paper is to compute the volume ofU(C) efficiently. This is related to the well-knownKlee’s measure
problem. In 1977 Victor Klee [11] had presented anO(n log n) time algorithm for computing the union of
n intervals inR

1 and had asked whether his algorithm was optimal. AnΩ(n log n) lower bound was proved
by Fredmen and Weide [9]. Bentley [4] studied the two-dimensional version of Klee’s measure problem.
When extended to computing the volume of the union ofn d-dimensional axis-aligned boxes, its running
time isO(nd−1 log n). Later, van Leeuwen and Wood [10] improved the running time to O(n2) for d = 3.
The problem lay dormant for a while until Overmars and Yap presented an algorithm withO(nd/2 log n)
running time [12]. In spite of several attempts, no further progress was made on this problem, except for a
somewhat simpler solution but with the same running time ford = 3, 4 [7], and for a more space-efficient
algorithm [6]. See [1] for a brief history of the problem.

In contrast, there has been tremendous progress in the last decade on obtaining sharp bounds on the
combinatorial complexity of the union (i.e., the number of faces of all dimensions on the boundary of the
union) of objects. For example, Boissonnatet al. [5] proved that the combinatorial complexity ofn axis-
aligned cubes inRd is Θ(ndd/2e), and it isΘ(nbd/2c) if all the cubes have the same size. Note that this
bound is considerably better than theΘ(nd) worst-case bound on the union ofn axis-aligned boxes inRd.
This suggests that it might be easier to compute the volume ofthe union ofn cubes. Indeed, the volume of
the union ofn unit cubes inR3 can be computed inO(n log n) time, by computing their union explicitly
(which has linear complexity). However this will not lead toan efficient algorithm for cubes of different
sizes. Edelsbrunner [8] gave an inclusion-exclusion formula for computing the volume of the union ofn
balls (see also [2]). It might be possible to extend his approach to computing the volume of the union of
cubes inR3, but the running time will beΩ(n2) in the worst case.

In this paper we show that one can indeed exploit the special structure of cubes inR3 in order to compute
the volume of their union more efficiently, and present the following result.

Theorem 1.1 Let C be a set ofn axis-aligned cubes inR3. The volume ofU(C) can be computed in time
O(n4/3 log n).

The high-level approach of our algorithm is similar to that of [12], in the sense that it is also based on
sweeping the space with a horizontal plane. The details are,however, more intricate, and exploit, sometimes
in subtle ways, the fact that we are dealing with cubes, rather than boxes. We believe that our algorithm is
far from being optimal, and that the running time can be improved toO(n polylog(n)), but so far we have
not been able to overcome all of the technical difficulties (which, as the reader might appreciate, are quite
numerous).

The algorithm asserted in Theorem 1.1 is presented in the three following sections. Section 2 gives
the high-level description of the algorithm, Section 3 goesinto the more technical low-level details, and
Section 4 presents further details of the data structure that maintains the union during the sweep.

2 The Global Structure

We assume that the given cubes are ingeneral position. In particular, we assume that no plane support
facets of two distinct cubes inC. Let z1 < · · · < z2n be the (distinct)z-coordinates of the vertices of cubes
in C, sorted in increasing order. We sweep a horizontal planeΠ in the (+z)-direction from−∞ to +∞,
stopping at eachzi. Let Π(t) denote the horizontal plane atz = t. For each1 ≤ i < 2n, the cross-section

1

U(C) ∩ Π(z) is the same for allz ∈ (zi, zi+1). Let ai denote the area of this cross-section. Then

Vol U(C) =
2n−1
∑

i=1

ai(zi+1 − zi).

We thus need to maintainai as we sweep the horizontal plane. The intersection ofΠ(z) with U(C) is the
union of a setS of squares that changes dynamically—a square is added to theintersection whenΠ sweeps
through the bottom facet of its corresponding cube, and is removed from the intersection whenΠ sweeps
through the top facet of its cube. We describe a data structure that maintains, inO(n1/3 log n) amortized
time, the area of the union ofS, denoted byArea U(S), as we insert a square intoS or delete a square from
S during the sweep. This implies Theorem 1.1. Our procedure exploits, in a crucial though subtle way, the
special (obvious) property that thelife-timeof a square of side lengthh (regarding thez-direction as “time”)
is alsoh time units.

In our case, we know in advance the setV ⊂ R
2 of vertices of all the squares that will ever be inserted

into S. That is,V is the set of thexy-projections of the vertices of the given cubes, and we have|V| = 4n.
Let B be the smallest axis-parallel rectangle containingV. We choose the parameters = n1/3, and partition
B into s rectanglesB1, . . . , Bs, calledslabs, by vertical lines (parallel to they-axis), so that the interior
of eachBi contains at most4n/s = O(n2/3) vertices ofV; see Figure 1. Next, we partition eachBi into
s rectangles, calledcells, by lines parallel to thex-axis, so that the interior of each cell contains at most
4n/s2 = O(n1/3) vertices. For1 ≤ i ≤ s, we maintainαi = AreaU(S) ∩ Bi, using a binary treeTi with
s leaves. Each nodev of Ti is associated with a rectangle2v contained inBi and touching its two vertical
sides. For theith leftmost leafv of Ti, 2v is theith bottom-most cell ofBi. For an interior nodev with
childrenw andz, 2v = 2w ∪ 2z. For a nodev ∈ Ti, let Sv ⊆ S be the set of squares whose boundaries
intersect the interior of2v, andS∗v ⊆ S be the set of squares that contain2v but not2p(v) (wherep(v) is
the parent ofv). At each leafv of Ti we store the respective setSv , and we also storeσv = |S∗v | at each node
v. For a nodev ∈ Ti, let αv = Area U(Sv ∪ S∗v) ∩ 2v. If v is a leaf, we compute and updateαv using the
algorithm described in Section 3. For an interior nodev with childrenw andz, we have

αv =

{

Area2v if σv ≥ 1,
αw + αz if σv = 0.

(1)

When we insert a squareS, we first find all the slabsBi thatS meets. Then, for each of theseBi, we
find the leavesv of Ti such that2v ∩ ∂S 6= ∅. For each suchv, we insertS into Sv and updateαv using
the algorithm described in Section 3. IfBi does not contain a vertex ofS, thenS is inserted into at most
two leavesw andz, such that2w and2z intersect the horizontal edges ofS. Next, we find allO(log n)
nodesu in Ti which lie betweenw andz, and whose parents lie along the two paths ofTi to w and toz, so
that2u ⊆ S but 2p(u) 6⊆ S. For each suchu, we increment the value ofσu and setαu = Area 2u. If Bi

contains a vertex ofS, thenS may have to be inserted into many (perhaps all) leaves ofTi, andS 6∈ S∗v for
anyv ∈ Ti. For each leafv for which2v ∩ ∂S 6= ∅, we updateαv, using the algorithm of Section 3.

Finally, using (1) in a bottom-up manner, we update the valuesαu for all ancestorsu of any nodev that
has been updated. We repeat this procedure for each of the slabsBi, and return the value of

∑s
i=1 αroot(Ti).

A square is deleted fromS in a similar manner.
Let v be a leaf ofT such thatS ∈ Sv. We show in the next section (cf. Lemma 3.1) that if2v ∩ ∂S 6= ∅,

then (i)αv can be updated inO(log n) amortized time if2v does not contain a vertex ofS in its interior,
and (ii) αv can be updated inO((n/s2) log n) = O(n1/3 log n) amortized time if2v does contain a vertex
of S in its interior. There are at most four cells that contain a vertex ofS, and there are at most4s cells that

2

2w

B3 B4

v

w

2v

B1 B2

Figure 1: Partition ofB into cells and the treeT1.

intersect∂S, so we spend a total ofO((s + n/s2) log n) = O(n1/3 log n) amortized time in updating the
areas at the leaves of the treesTi. We then update the ancestors of the updated leaves. In the worst case,
we visit all the nodes of at most twoTi’s—if Bi contains a vertex ofS—andO(log n) nodes of any other
Ti. We spendO(1) time at each of these ancestor nodes. Hence, the total amortized time spent in updating
Area U(S) when a square is inserted or deleted is alsoO(n1/3 log n). That is,Area U(S) can be updated in
O(n1/3 log n) amortized time after each update operation, and Theorem 1.1follows.
Remark. We believe that the running time of the algorithm can be improved toO(n polylog(n)) by using
a recursive binary partioning ofB and maintaining a similar (but more involved) information at each cell
in the recursive partition. However we have not succeeded inovercoming all the technical difficulties in
updating the information at each cell in (even amortized)O(log n) time when a square is inserted or deleted.

3 Mantaining the Union within a Cell

Let 2 = [x0, x1] × [y0, y1] be a fixed cell in the partition ofB, which, as we recall, is an axis-parallel
rectangle inR2, where we assume, without loss of generality, thatx1 − x0 ≥ y1 − y0 (handling cells with
x1 − x0 < y1 − y0 is done in a fully symmetric manner, switching the roles of the x- andy-axes). Let
p0 = (x0, y0), p1 = (x1, y0), p2 = (x1, y1), andp3 = (x0, y1) be its vertices in counterclockwise order. Let
S be a set of squares whose boundaries intersect2. We describe a data structure for maintaining the area
α2 of U2 = U(S) ∩ 2 under insert/delete operations onS, where we also assume that the life-span of each
square inS is equal to its side length. Recall that the setS is updated when the sweep plane passes through
a top or a bottom facet of a cube inC.

Since the boundary of each square inS intersects2, and thex-span of2 is at least as large as itsy-span,
no squareS ∈ S can intersect both left and right edges of2 without fully containing either the top or bottom
edge of2. We partitionS into the following subsets (see Figure 2):

Upper rim. The set of squares, denoted byU, that contain the top edge of2. We storeU in a list sorted in
decreasing order of they-coordinates of their bottom edges.

Lower rim. The set of squares, denoted byL, that contain the bottom edge of2. We storeL in a list sorted
in increasing order of they-coordinates of their top edges.

Pillars. The set of squares, denoted byP, that intersect both top and bottom edges of2.

3

Lower rim

pillars

upper rim

corner

floaters

corner
p2

p1p0

p3

Figure 2: Partition ofS into various categories.

Corners. The set of squares, denoted byC, that contain exactly one vertex of2; exactly one vertex of each
corner square lies in2.

Floaters. The set of remaining squares, denoted byF; at least two (i.e., either two or four) of the vertices
of each floater square lie in2.

The first three types of squares are calledlong, and the last two types are calledshort.1 Thefloor of 2

is the top edge of the last square in the lower rim (i.e., the highest edge in the lower rim), and theceiling is
the bottom edge of the last square (the lowest edge) in the upper rim.

Informally, inserting/deleting a short square is “easier”, since their number, over all cells, is onlyO(n),
so we can affordO(n1/3) (amortized) time to process a short square. For example, we can afford to (and
indeed we will) recompute the union of the corners or of the floaters when we insert or delete one of these
squares. In contrast, inserting/deleting a long square (rim or pillar) is more challenging, since we want to do
it in only O(log n) (amortized) time.

The main technical complication in our solution is that, while it is fairly easy to maintain the area of
the union of each class of squares separately, it is much moreinvolved to maintain the area of the combined
union. Our approach is to maintain this latter area as the sumof areas of disjoint portions of2—the area
covered by the rims, the area covered by the pillars but not bythe rims, the area covered by the corner
squares but not by the pillars or rims, and finally the area covered by the floaters but not by any other square.
maintaining these disjoint areas is somewhat tricky; the high-level details are given in this section, and the
low-level details in the following section.

We call a (rectilinear) polygonstaircaseif it consists of a rectilinear chain that is bothx- andy-monotone
(in each coordinate it can be either increasing or decreasing), and the endpoints of the chain are connected
together by a horizontal and a vertical edge; see Figure 3 (i). The common endpoint of the horizontal and
the vertical edge is called theapexof the polygon. Since the complexity of the union of a set of axis-parallel
squares is linear,U(C) ∩ 2 hasO(|C|) vertices. We can decomposeU(C) ∩ 2 into four pairwise-disjoint
staircase polygons,P0, P1, P2, P3, with a total ofO(|C|) vertices, such that the apex ofPi is the cornerpi

of 2 (see Figure 3 (ii)). (Informally,Pi is composed of the corner squares that containpi, but since other
squares can “nibble off” some portions of these squares, as is illustrated in the figure,Pi may be smaller
than the union of its squares. Also, thePi’s are not uniquely defined, but, since they will be recomputed
from scratch when we insert or delete a square intoC, it does not matter.) We decompose eachPi into a

1This is somewhat of a misnomer for corner squares, which can be quite large compared with2, but we still think of them as
short since they have a vertex inside2.

4

setC̃i of rectangles by computing the vertical decomposition ofPi (i.e., drawing a vertical edge from each
reflex vertex ofPi within 2 until it touches a horizontal edge of2; see Figure 3 (iii)). Set̃C =

⋃3
i=0 C̃i. By

construction,U(C̃) = U(C) ∩ 2.

(i) (ii) (iii)

P3

C̃3

P0

P2

P1

C̃2

C̃0 C̃1

Figure 3: (i) Staircase polygons. (ii) Decomposition ofU(C) into four staircase polygonsP0, . . . , P3. (iii)
The decompositioñCi of eachPi into rectangles.

Next, we compute(U(F)∩2) \U(C), i.e., the portion ofU(F)∩2 that lies outsideU(C), and partition
it into pairwise-disjoint rectangles by computing its vertical decomposition. LetR = {R1, . . . , Ru} be the
set of the rectangles in the resulting decomposition. SinceU(F) andU(C) haveO(|F|) andO(|C|) vertices,
respectively,|R| = O(|C| + |F|). See Figure 4. We call a rectangle ofR stalactite(resp.,stalagmite) if it
intersects the ceiling (resp., floor) of2; a rectangle may be both a stalactite and a stalagmite. LetS

− (resp.,
S+) denote the set of stalagmites (resp., stalactites) inR.

We store the horizontal edges ofF (or, more precisely, the rectangles inR) in a list Λ, sorted by their
y-coordinates. We also maintain the following auxiliary data:

fl

cl

stalactites

stalagmites

P3

P0

P2

Figure 4: (i) Squares inF; the darkly-shaded region isU(C) ∩ 2, and the lightly-shaded region is(U(F) ∩
2) \ U(C); the rim squares are drawn as dashed. (ii) Rectangles inR; the dark shaded rectangles are the
stalagmites and stalactites.

π: The length of the portion of the top edge of2 (or any other horizontal line intersecting2) covered by
the pillars.

ϕ: The area ofU(R) not covered by the long squares (i.e., pillars, upper rim, and lower rim).

fl: they-coordinate of the floor of2.

cl: they-coordinate of the ceiling of2.

λc: The length of the ceiling covered by the stalactites but notby the pillars.

5

λf : The length of the floor covered by the stalagmites but not by the pillars.

By definition,λf (resp.,λc) measures exactly the portion of the floor (resp., ceiling) covered by the floaters
but by no other square.

For ay-interval∆, let W∆ denote the rectangle[x0, x1]×∆, and letξ(∆) = Area[U(C̃)\U(P)]∩W∆.
We construct a segment treeT on thex-projections of the rectangles (or squares) inP ∪ R ∪ C̃, so as to
maintain the above data and to answer queries of the form: Given ay-interval ∆ ⊆ [y0, y1], returnξ(∆).
The valuesλc, λf , ϕ, π, will get updated each time we updateT.

Figure 5: Each term of (2) is shown in a different shade.

Assuming that we can maintain the above data and query processing as the squares ofS are inserted and
deleted, the areaα2 (which, as we recall, is the area of the portion of2 covered by the squares ofS, whose
boundaries cross2) can be computed inO(log n) time as follows. Ifcl ≤ fl, thenα2 = Area 2. Otherwise,
we computeξ(∆), for ∆ = [fl, cl], by performing a query onT. Then, as is easily verified,

α2 = (x1 − x0)[(fl − y0) + (y1 − cl)] + (cl − fl)π + ξ(∆) + ϕ. (2)

Indeed, the first term is the area of the region covered by the upper rim and lower rim squares. The second
term is the area of the region covered by the pillars but not byany rim square. The third term is the area of
the region covered by the corner squares but not by any rim square or pillar, and the fourth term is the area
of the region covered by the floater squares but not by any other type of squares (recall that, by definition,R

is disjoint from the corner squares). See Figure Figure 5.

Inserting/Deleting a short square. Suppose we want to insert a short squareS into S or deleteS from
S. Let µ ≤ 4n/s2 = O(n1/3) denote the maximum number of short squares ever present inS. If S ∈ C,
we recomputẽC in O(µ log n) time. We delete the old rectangles ofC̃ from T and insert the new ones,
where each update takesO(log n) time (this will be shown in Lemma 4.1 below). Next, in both cases where
S is a floater or a corner, we re-computeR in O(µ log n) time, and reconstruct the listΛ. We delete all
old rectangles ofR from T and insert each new rectangle ofR into T, in a total ofO(µ log n) time (again,
Lemma 4.1 below will show this). The data stored at the root ofT provides the new values ofπ, ϕ, λc, and
λf . Deleting a short square can be done in the same manner. Finally, using (2), we compute the new value
of α2 in additionalO(log n) time (dominated by the cost of the appropriate query). The total time spent in
inserting or deleting a short square is thus at mostcµ log n, for some constantc > 0.

Inserting/Deleting a long square. Suppose we want to insert a long squareS. If S is a pillar, we simply
insert it intoT in O(log n) time (cf. Lemma 4.1). IfS is a lower-rim square, we first insertS into the sorted
sequenceL. If S is not the topmost square, it does not affectU2, and we stop. Otherwise, letχ be the
y-coordinate of the top edge ofS. We raise the floor continuously fromfl to χ, stopping at each horizontal

6

edge of a square inF (or, more precisely, of a rectangle inR) that the sweep encounters, and updatingϕ, λf ,
andfl, until we reachχ. In more detail, we find the first edge inΛ that lies above the current floor of2,
and then scanΛ from this edge upwards, processing each edge that lies belowχ. Consider such an edge
e at y-coordinateτ . Since the floor has not crossed any edge ofΛ since the last event, the value ofϕ has
decreased byλf (τ − fl) between the preceding and current events. Therefore, we setϕ := ϕ − λf (τ − fl)
andfl := τ . This update is applied also at the endτ = χ of the sweep. We next need to update (forτ < χ)
the value ofλf , because we now have one additional or one fewer stalagmite.For this, we simply invoke
the procedure described above to insert/delete a short square (even though no square is actually inserted
or deleted at the moment). This seemingly expensive step will be justified in the amortized analysis given
below. Finally, we compute the new value ofα2 in O(log n) time, using (2).

If we delete the highest square of the lower rim, we need to lower the floor. We follow the same algorithm
except that at each event, we setϕ := ϕ+λf (fl−τ). We can lower and raise the ceiling in a similar manner.
If the algorithm sweeps acrossκ horizontal edges ofR, these updates take at mostc(κµ + 1) log n time.

Amortized analysis. We now analyze the amortized running time of each update operation using a credit-
debit method. This is the only step2 where we use the fact that the squares are being inserted or deleted
while sweeping a plane through a set of cubes inR

3. We assign8cµ log n credits to each square inF when
it is inserted, and use them to pay for the cost of inserting and deleting upper/lower-rim squares. Since the
update time of a short square is≤ cµ log n, the amortized update time is also≤ cµ log n. The amortized
update time of a pillar isO(log n) (recall that these running times will be established in Lemma 4.1 below).
The actual update time of a lower or upper rim squareS is at mostc(κµ+1) log n, whereκ is the number of
edges inΛ crossed by the rising/descending-floor (or descending/rising-ceiling) sweep-line algorithm. We
chargecµ log n units to each square inF whenever the sweep line passes through one of its edges, so the
amortized (i.e., uncharged portion of the) update time of a square in the upper/lower rim is alsoO(log n).

We now have to prove that each square inF always has sufficient amount of credits to pay for updating
the upper/lower rim. The key observation is that the size of alower or upper rim square is bigger than that
of a floater. Recall that a square is inserted when the sweep plane reaches the bottom facet of its cubeC
and is deleted when it reaches the top facet ofC. Therefore if a lower/upper rim squareS is insertedafter
a floaterS′, thenS′ is deletedbeforeS is deleted. This implies that if the floor was raised above an edge
e of S′, during the insertion ofS, it is lowered below that height (while deletingS or some other square
afterS has been deleted) only afterS′ has already been deleted. Hence, the floor sweeps acrosse, while e
is alive, at most twice: it may be lowered belowe once (during the deletion of a lower-rim square that was
insertedbeforeS′ was inserted), and then it may be raised abovee once. The same is true for the upper rim
squares. SinceS′ has two horizontal edges,S′ is charged at most eight times by the update procedure for
the upper/lower rim, thereby implying that8cµ log n credits are sufficient for each square inF to pay for
inserting/deleting a square in the upper or lower rim. We thus conclude the following.

Lemma 3.1 The amortized update time of a long square isO(log n), and the amortized (and worst case)
update time of a short square isO(µ log n), whereµ ≤ 4n/s2 = O(n1/3) is the maximum number of short
squares in2 at any time.

4 Maintaining the Segment Tree

To complete the analysis, we now describe the segment treeT constructed on thex-projections of rectangles
in P ∪ C̃ ∪ R. We assume, as is indeed the case in our scenario, that we knowthe endpoints of thex-

2Of course, we are also strongly using the fact that the horizontal cross-sections of the cubes are squares.

7

projections of all squares inS in advance, so that the primary tree structure ofT is constructed over all these
segments, and remains fixed. Each nodev of T is associated with anx-interval δv and a corresponding
rectangle2v = δv × [y0, y1]. If w, z are the two children ofv, thenδv = δw ∪ δz. For a nodev ∈ T,
let Rv ⊆ R (resp.,Pv ⊆ P, C̃iv ⊆ C̃i, for 0 ≤ i ≤ 3) be the set of rectangles of the respective classes
whosex-projections containδv but notδp(v). SetR∗

v =
⋃

w Rw, P
∗
v =

⋃

w Pw, andC̃
∗
iv =

⋃

w C̃iw, over
all descendentsw of v (including v itself). We store the setRv and the size|Pv| at each nodev. We also
maintain the following auxiliary information at each nodev of T.

π(v): The length of the portion ofδv covered by thex-projections of the pillars inP∗
v.

ϕ(v): Area ofU(R∗
v) ∩ 2v not covered by the long squares (pillars, upper rim, lower rim) of S.

h(v): Length of the left edge of2v covered by the rectangles inRv but not by the squares in the upper or
lower rim.

λf (v): Length of the floor covered by thex-projections of the stalagmites inR∗
v but not by the pillars.

λc(v): Length of the ceiling covered by thex-projections of the stalactites inR∗
v but not by the pillars.

ξ̄i(v): Area([U(C̃∗
iv) \ U(P∗

v)] ∩ 2v), for i = 0, . . . , 3.

Ji(v): The vertical segment which is they-projection of the portion of the rectilinear chain of the staircase
polygonPi that lies inside2v. If 2v intersects only one horizontal edge of the chain, thenJi(v) is a
singleton. The values ofJi(v) along the leaves are ordered becausePi(v) is a staircase, and therefore
monotone, polygon.

fl(v): The most recently recorded value offl at v.

cl(v): The most recently recorded value ofcl at v.

We remark right away that not all these values are correctly maintained at all times atv, but they are
maintained in such a way that it is easy to reset them (inO(1) time) to the correct values upon demand—see
below.

The valuesπ(r), ϕ(r), λf (r), andλc(r), stored at the rootr of T give the values ofπ, ϕ, λf , λc that we
maintain for2, as required by the algorithm described in Section 3. Immediately after an update ofT, these
values atr are correct, although the value ofϕ can deviate from the value ofϕ(r) after inserting ot deleting
a lower-rim or an upper-rim square. However, the value can berestored to its correct value wheneverT is
accessed, as explained below.

Let ρv be the rectangleδv × [fl, cl], assumingfl ≤ cl. For a rectangleρ, let Ht(ρ) denote its height.
Since, by construction, the rectangles inRv are pairwise disjoint, and each of them extends from the left
edge to the right edge of2v, we have

h(v) =
∑

R∈Rv

Ht(R ∩ ρv). (3)

Note thath(v) depends only onRv and not on the other rectangles in the setsRw, for proper descendants
w of v, nor does it depend on any other type of squares. Moreover, there is at most one rectangle inRv that
intersects the floor (resp., ceiling). Hence,Ht(R∩ρv) is either0 or Ht(R) except for at most two rectangles
in Rv.

8

Put `v := |δv|, for a nodev of T. Let w andz be the children of an interior nodev. The following
equalities are obvious (see Figure 6):

π(v) =

{

`v if Pv 6= ∅,
π(w) + π(z) otherwise.

(4)

ϕ(v) =

{

0 if Pv 6= ∅,
ϕ(w) + ϕ(z) + (`v − π(v))h(v) otherwise.

(5)

λf (v) =







0 if Pv 6= ∅,
`v if Pv = ∅, Rv ∩ S

− 6= ∅,
λf (w) + λf (z) otherwise.

(6)

λc(v) =







0 if Pv 6= ∅,
`v if Pv = ∅, Rv ∩ S

+ 6= ∅,
λc(w) + λc(z) otherwise.

(7)

w z

fl

cl

h(v)

`v

v

Figure 6: Illustrating (4)-(7) at a nodev. π(v) is the highlighted portion of the bottom edge;h(v) is
highlighted on the left edge. The small rectangles belong toRw for proper descendantsw of v and are
disjoint from the rectangle ofRv that determineh(v). λf (v) = `v andλc(v) is highlighted on the ceiling.

If C̃iv 6= ∅, then it consists of a single rectangle, sayCiv, and letχiv denote they-coordinate of its
horizontal edge that lies in the interior of2v. Since the rectangles iñCi are pairwise disjoint and a vertical
line intersects at most one rectangle ofC̃i, C̃iv 6= ∅ implies thatC̃∗

iv = C̃iv = {Civ}. Hence,

ξ̄i(v) =







0 if Pv 6= ∅,
(`v − π(v))Ht(Civ) if Pv = ∅ andC̃iv 6= ∅,
ξ̄i(w) + ξ̄i(z) otherwise.

(8)

Ji(v) =

{

[χiv, χiv] if C̃iv 6= ∅,
conv(Ji(w) ∪ Ji(z)) otherwise.

(9)

We can use simpler variants of the above equations, which do not involve the recursive terms, for the values
of these quantities at the leaf nodes; for example,ϕ(v) is 0 if Pv 6= ∅, and is`vh(v) otherwise.

Whenever a nodev is updated, we call a subroutine UPDATEAUX(v) that implements (4)–(9), to recom-
puteπ(v), ϕ(v), λf (v), λc(v), ξ̄i(v), andJi(v).

The data structure always maintains the correct values ofπ(v), λc(v), λf (v), ξ̄i(v), andJi(v) at all
nodes, but the values offl(v), cl(v), ϕ(v), h(v) may be incorrect because the updating of the floor and

9

ceiling of 2 does not always reach all the nodes ofT in “real time”. For example, if the floor is raised
when we insert a square of the lower rim, so that no edge inΛ lies between the new and old floor, then
we do not udpateT at all, and thus the stored values offl(v), cl(v), ϕ(v), andh(v) are not modified, even
though the real values have changed. Even whenT gets updated, when the floor or ceiling sweeps through
a horizontal floater edge, not all the nodes ofT “get the news”—it is too expensive to broadcast the changes
explicitly to all nodes ofT. Instead, we update them in a lazy manner, so that the following two invariants
are maintained:

(I1) For any nodev ∈ T, none of they-coordinates of the horizontal edges of rectangles inR∗
v

lie betweenfl andfl(v) or betweencl andcl(v).

(I2) The value ofϕ(v) gives the area ofU(R∗
v) ∩ 2v not covered by the long squares ofS,

under the assumption that the floor (resp., ceiling) is atfl(v) (resp.,cl(v)).

To ensure that these quantities at a nodev become correct whenever we accessv, we apply the following
two straightforward subroutines, before manipulating anyother data atv.

ADJUSTFLOOR(v)
ϕ(v) = ϕ(v) − λf (v)[fl − fl(v)]
if R(v) ∩ S

− 6= ∅
h(v) = h(v) − [fl − fl(v)]

fl(v) = fl

ADJUSTCEILING(v)
ϕ(v) = ϕ(v) − λc(v)[cl(v) − cl]
if R(v) ∩ S

+ 6= ∅
h(v) = h(v) − [cl(v) − cl]

cl(v) = cl

By invariant (I1), there is no horizontal edge ofR∗
v betweenfl andfl(v), so if we raise or lower the floor

from fl(v) to fl then the value ofϕ(v) decreases by the amountλf (v)[fl−fl(v)]. A similar argument justifies
the updating applied toh(v), and for the ceiling. This, in conjunction with (I2), implies that, after executing
these procedures,fl(v), cl(v), ϕ(v) andh(v) have their correct values.

Generic update procedure. We insert or delete a rectangle ofS using a slight variant of the standard
update procedure for segment trees [3], so that the auxiliary information stored at each node is updated cor-
rectly and invariant (I1) is maintained. The following pseudo-code describes the generic procedure GENER-
ICUPDATE to updateT when a rectangleS is inserted into or deleted fromS. We use thereL(v) (resp.,
R(v)) to denote the left (resp., right) child ofv.

GENERICUPDATE(v, S)

ADJUSTFLOOR(v), ADJUSTCEILING(v)
I := x-projection ofS
if δv ⊆ I

Update information atv (?)

else if δv ∩ I 6= ∅
GENERICUPDATE(L(v), S)
GENERICUPDATE(R(v), S)
UPDATEAUX(v)

endif

The line (?) depends on the type of rectangle that is being inserted or deleted. The specific actions taken
at this line for each type of rectangle are described in the Appendix. The details of the query algorithm
(finding ξ(∆) = Area[U(C̃)\U(P)]∩W∆, for ay-interval∆, andW∆ the horizontal strip of Section 3 that

10

corresponds to∆.) are also deffered to the Appendix. The analysis in the Appendix implies the following
lemma, which thus completes the running time analysis of thealgorithm.

Lemma 4.1 (i) A rectangle inP ∪ C̃ ∪ R can be inserted into or deleted fromT in O(log n) time. (ii) A
query can be answered inO(log n) time.

References
[1] http://en.wikipedia.org/wiki/Klee’smeasureproblem

[2] D. Attali and H. Edelsbrunner, Inclusion-exclusion formulas from independent complexes,Proc. 21st Ann. Sym-
pos. Comput. Geom., 2005, 247–254.

[3] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry: Algorithms and
Applications, 2nd edition, Springer Verlag, Heidelberg, 2000.

[4] J. L. Bentley, Algorithms for Klee’s rectangle problems. Unpublished notes, Computer Science Department,
Carnegie Mellon University, 1977.

[5] J.D. Boissonnat, M. Sharir, B. Tagansky and M. Yvinec, Voronoi diagrams in higher dimensions under certain
polyhedral distance functions,Discrete Comput. Geom.19 (1998), 485–519.

[6] E. Chen and T. M. Chan, Space-efficient algorithms for Klee’s measure problem,Proc. 17th Canadian Conf.
Comput. Geom., 2005.

[7] B. S. Chlebus, On the Klee’s measure problem in small dimensions,Proc. 25th Conf. Current Trends in Theory
and Practice of Informatics, 1998, 304-311.

[8] H. Edelsbrunner, The union of balls and its dual shape,Discrete Comput. Geom.13 (1995), 415–440.

[9] M. L. Fredman and B. Weide, The complexity of computing the measure of
⋃

[ai, bi], Commun. ACM21 (1978),
540–544.

[10] J. van Leeuwen and D. Wood, The measure problem for rectangular ranges ind-space,J. Algorithms2 (1981),
282–300.

[11] V. Klee, Can the measure of
⋃

[ai, bi] be computed in less thanO(n log n) steps?Amer. Math. Monthly84 (1977),
284–285.

[12] M. Overmars and C.K. Yap, New upper bounds in Klee’s measure problem,SIAM J. Comput.20 (1991), 1034–
1045.

11

Appendix

A Updates and Queries to the Segment Tree

Inserting/Deleting a pillar. Let S be a pillar that we wish to insert intoS or delete fromS. If the line (?)
is executed atv, thenS ∈ Pv. If we are insertingS, we setπ(v) = `v, ϕ(v) = λf (v) = λc(v) = ξ̄i(v) = 0
and increment|Pv|. If we are deletingS, we decrement|Pv|. If |Pv| > 0, there is nothing else to be done,
so assume that|Pv| becomes zero. Ifv is a leaf, we invoke UPDATEAUX(v) to compute the auxiliary data
stored atv. If v is an internal node, we first call the subroutines ADJUSTFLOOR, ADJUSTCEILING at the
children ofv and then invoke UPDATEAUX(v).

Inserting/Deleting a floater rectangle. Suppose we wish to insert or delete a rectangleR ∈ R. If the
line (?) is executed atv, thenR ∈ Rv. We perform the following steps atv. Let ρv = δv × [fl, cl] and
r = Ht(R ∩ ρv).

If we are insertingR, we seth(v) = h(v) + r, ϕ(v) = ϕ(v) + (`v − π(v))r, and setλf (v) (resp.,
λc(v)) to `v − π(v), providedR is a rectangle ofS− (resp.,S+). (Note that the values ofh(v), ϕ(v) in the
right-hand sides are correct because the ADJUSTFLOOR and ADJUSTCEILING subroutines have just been
called atv.) On the other hand, if we are deletingR, we seth(v) = h(v)− r, ϕ(v) = ϕ(v)− (`v − π(v))r,
and setλf (v) (resp.,λc(v)) to zero, providedR is a rectangle ofS− (resp.,S+). The latter action is justified
by noting that ifR ∈ S

− then no other rectangle ofR∗
v belongs toS−, and the same is true forS+.

Inserting/Deleting a corner rectangle. Suppose we wish to insert or delete a rectangleC ∈ C̃i. Let χ
be they-coordinate of the horizontal edge that lies in the interiorof 2. If line (?) is executed forv, then
C ∈ C̃iv. We setξ̄i(v) = (`v − π(v))Ht(C) andJi(v) = [χ, χ].

Answering queries. Recall that for ay-interval∆, W∆ denotes the rectangle[x0, x1] × ∆, andξ(∆) =
Area[U(C̃) \ U(P)] ∩ W∆. We have to answer queries of the form: Given ay-interval∆ ⊆ [y0, y1], return
ξ(∆). To answer such queries we define another kind of queries as follows. Given anx-intervalγ ⊆ [x0, x1],
returnπ(γ), whereπ(γ) denotes the length of the portion ofγ covered by thex-projections of the pillars in
P; (note thatπ([x0, x1]) = π.) We refer to queries of the second type as Q1 queries and to queries of the
first type as Q2 queries. See Figure 7.

∆

pillar
γ

(ii)(i)

Figure 7: (i) A Q1 query;π(γ) is the length of the highlighted portion ofγ. (ii) A Q2 query; the shaded
region isU(C), and the darkly shaded region isξ(∆).

Answering a Q1 query. Let I be a query interval for which we wish to computeπ(I), the length of the
portion of I covered by thex-projections of the pillars. The recursive procedure described in Figure 8(i)

12

computesπ(I). It is the standard1-dimensional range-searching procedure, with one caveat:the endpoints
of I may lie in the interior of the intervals associated with the corresponding leaves ofT, so additional
(though obvious) actions are required at those leaves. The correctness is straightforward, and the running
time is obviouslyO(log n).

Q1-QUERY(v, I)

if I = ∅ return 0
if δv ⊆ I return π(v)
if I ⊆ δv and|Pv| ≥ 1 return ‖I‖
returnQ1-QUERY(L(v), I ∩ δL(v))

+ Q1-QUERY(R(v), I ∩ δR(v))

Q2-QUERY(v, ∆)

if ∆ ∩ J0(v) = ∅ return 0
if J0(v) ⊆ ∆ return ξ̄0(v)
returnQ2-QUERY(L(v), ∆)

+ Q2-QUERY(R(v), ∆)

(i) (ii)

Figure 8: (i) The recursive procedure for answering a Q1 query; ‖I‖ is the length of the intervalI. (ii) The
recursive procedure to computeArea(U(C̃(∆)) \ U(P)).

Answering a Q2 query. Let ∆ = [α, β] be ay-interval. We describe how to computeξ(∆), the area of
[U(C̃) \ U(P)] ∩ W∆. Let ξi(∆) = Area([U(C̃i) \ U(P)] ∩ W∆), thenξ(∆) =

∑3
i=0 ξi(∆). We describe

how to computeξ0(∆); the otherξi(∆)’s can be computed in a similar manner.
Let C̃0(∆) ⊆ C̃0 be the set of rectangles whose top edges lie in they-interval∆; see Figure 9.̃C0(∆) is

a contiguous subsequence ofC̃0, andU(C̃0(∆)) is also a staircase polygonP0(∆). LetxL (resp.,xR) be the
x-coordinate of the left (resp., right) boundary ofP0(∆). SetIL = [x0, xL], IB = [xL, xR], RL = IL × ∆,
andRB = IB × [y0, α] (see Figure 9 (ii)). Then

U(C̃0) ∩ W∆ = [P0(∆) \ RB] ∪ RL.

xR

∆

IL IB

RL ∆

RB

xR

P0(∆)

ξ0(∆)

xL x0 xL

(i) (ii)

α

β

Figure 9: (i) Shaded region isξ0(∆), rectangles iñC0(∆) are drawn in thick lines. (ii) RectanglesRB and
RL.

SinceRL andP0(∆) are disjoint andRB ⊆ P0(∆), we have

ξ0(∆) = Area(P0(∆) \ U(P)) − Area(RB \ U(P)) + Area(RL \ U(P))

= Area(P0(∆) \ U(P)) − (xR − xL − π(IB))(α − y0) + (xL − x0 − π(IL))(β − α).

We can computeπ(IB) andπ(IL) by performing Q1 queries withIB andIL. The first term is computed
using the recursive procedure Q2-QUERY, described in Figure 8 (ii). The running time of Q2-QUERY is

13

O(log n) because the intervalsJ0(v) are ordered along the leaves ofT and the parents of the nodes visited
by the procedure lie on two paths ofT.

Putting everything together, we obtain the following lemmaand Lemma 4.1.

Lemma A.1 (i) A rectangle inP∪ C̃∪R can be inserted into or deleted fromT in O(log n) time. (ii) A Q1
or a Q2 query can be answered inO(log n) time.

This lemma provides the missing ingredients for the algorithm described in Section 3, and thus, at long
last, completes the proof of Theorem 1.1.

14

