Computing the Volume of the Union of Cubes

Pankaj K. Agarwal Haim Kaplan Micha Sharit
December 3, 2006

Abstract

Let € be a set ofi axis-aligned cubes iR?3, and letl((C) denote the union of. We present an algo-
rithm that can compute the volumef@) in time O(n*/3 log n). The previously best known algorithm
was by Overmars and Yap, which computes the volume of thenusfioxes inR? in O(n?/? logn)
time.

*Work by Pankaj Agarwal and Micha Sharir was supported by atgram the U.S.-Israel Binational Science Foundation. kVor
by Pankaj Agarwal was also supported by by NSF under gran®-Q@G86013, EIA-98-70724, EIA-99-72879, EIA-01-31908da
CCR-02-04118. Work by Haim Kaplan was supported by Grant@&om the Israel Science Fund. Work by Micha Sharir was
also supported by NSF Grants CCR-00-98246 and CCF-05-14%y7%rant 155/05 from the Israel Science Fund, and by the
Hermann Minkowski-MINERVA Center for Geometry at Tel Avivniversity.

TDept. Computer Science, Duke University, Durham, NC 270089, USApankaj @s. duke. edu

*School of Computer Science, Tel Aviv University, Tel Aviv®®B, Israelhai nk@ost . tau. ac. i |

$School of Computer Science, Tel Aviv University, Tel Aviv®8, Israel, and Courant Inst. of Math. Sci., 251 Merceredire
NYC, NY 10012, USAn chas@ost.tau. ac. il

1 Introduction

Let € be a set of: axis-aligned cubes i3, and letlU(€) denote the union of. The problem studied in
this paper is to compute the volume 6fC) efficiently. This is related to the well-knowKlee's measure
problem In 1977 Victor Klee [11] had presented ér{n log n) time algorithm for computing the union of
n intervals inR! and had asked whether his algorithm was optimal {&n log n) lower bound was proved
by Fredmen and Weide [9]. Bentley [4] studied the two-dini@mal version of Klee's measure problem.
When extended to computing the volume of the uniom e-dimensional axis-aligned boxes, its running
time isO(n? ! logn). Later, van Leeuwen and Wood [10] improved the running timé ¢»?) for d = 3.
The problem lay dormant for a while until Overmars and Yapspréed an algorithm With)(nd/2 logn)
running time [12]. In spite of several attempts, no furthexgsess was made on this problem, except for a
somewhat simpler solution but with the same running timedfer 3, 4 [7], and for a more space-efficient
algorithm [6]. See [1] for a brief history of the problem.

In contrast, there has been tremendous progress in thedeatlel on obtaining sharp bounds on the
combinatorial complexity of the union (i.e., the number afds of all dimensions on the boundary of the
union) of objects. For example, Boissonmtal. [5] proved that the combinatorial complexity afaxis-
aligned cubes iR? is ©(n/%/21), and it is©(nl%2)) if all the cubes have the same size. Note that this
bound is considerably better than #9¢n) worst-case bound on the unionwfaxis-aligned boxes iR?.
This suggests that it might be easier to compute the voluntigeafinion ofn cubes. Indeed, the volume of
the union ofn unit cubes iNR? can be computed i (nlogn) time, by computing their union explicitly
(which has linear complexity). However this will not leaddn efficient algorithm for cubes of different
sizes. Edelsbrunner [8] gave an inclusion-exclusion fdanfior computing the volume of the union ef
balls (see also [2]). It might be possible to extend his apgincto computing the volume of the union of
cubes inR3, but the running time will b&(n?) in the worst case.

In this paper we show that one can indeed exploit the spedimitare of cubes ilR? in order to compute
the volume of their union more efficiently, and present tH®fzng result.

Theorem 1.1 Let C be a set ofy axis-aligned cubes if®?. The volume of((€) can be computed in time
O(n*3logn).

The high-level approach of our algorithm is similar to th&f12], in the sense that it is also based on
sweeping the space with a horizontal plane. The detail$aregver, more intricate, and exploit, sometimes
in subtle ways, the fact that we are dealing with cubes, ratten boxes. We believe that our algorithm is
far from being optimal, and that the running time can be imptbtoO(n polylog(n)), but so far we have
not been able to overcome all of the technical difficultietifl, as the reader might appreciate, are quite
numerous).

The algorithm asserted in Theorem 1.1 is presented in thee thollowing sections. Section 2 gives
the high-level description of the algorithm, Section 3 gogs the more technical low-level details, and
Section 4 presents further details of the data structutemtintains the union during the sweep.

2 The Global Structure

We assume that the given cubes arey@meral position In particular, we assume that no plane support
facets of two distinct cubes i&. Letz; < --- < 29, be the (distinctk-coordinates of the vertices of cubes
in C, sorted in increasing order. We sweep a horizontal plane the (+z)-direction from—oo to +oco,
stopping at each;. LetII(¢) denote the horizontal plane at= ¢. For eachl < i < 2n, the cross-section

U(C) NII(z) is the same for alt € (z;, z;11). Leta; denote the area of this cross-section. Then

2n—1

Vol U((:’) = Z (IZ'(ZZ‘+1 — Zi).
1=1

We thus need to maintain; as we sweep the horizontal plane. The intersectioH (@f) with U(C) is the
union of a seb of squares that changes dynamically—a square is added iat¢hsection whenl sweeps
through the bottom facet of its corresponding cube, andri®wed from the intersection whdih sweeps
through the top facet of its cube. We describe a data strei¢hat maintains, ir@(n1/3 log n) amortized
time, the area of the union &f denoted byArea U(8), as we insert a square infoor delete a square from
8 during the sweep. This implies Theorem 1.1. Our proceduptodg, in a crucial though subtle way, the
special (obvious) property that thige-time of a square of side length(regarding the:-direction as “time”)
is alsoh time units.

In our case, we know in advance the ¥ett R? of vertices of all the squares that will ever be inserted
into 8. That is,V is the set of the:y-projections of the vertices of the given cubes, and we féye- 4n.
Let B be the smallest axis-parallel rectangle containhdVe choose the parameter= n'/3, and partition
B into s rectanglesBy, . .., B, calledslabs by vertical lines (parallel to thg-axis), so that the interior
of eachB; contains at mostn/s = O(n?/?) vertices ofV; see Figure 1. Next, we partition eaéh into
s rectangles, calledells by lines parallel to the:-axis, so that the interior of each cell contains at most
4n /s> = O(n'/?) vertices. Forl < i < s, we maintaino; = Areall(8) N B;, using a binary tred; with
s leaves. Each node of T; is associated with a rectanglg, contained inB; and touching its two vertical
sides. For théth leftmost leafv of T;, O, is theith bottom-most cell ofB;. For an interior node with
childrenw andz, 0O, = O, U O,. Fora nodev € T, let§, C § be the set of squares whose boundaries
intersect the interior ofl,, ands; C § be the set of squares that contaip but notO,,,y (wherep(v) is
the parent ob). At each leafv of T; we store the respective s&t, and we also store, = |S};| at each node
v. Foranodey € T3, leta, = AreaU(S, U 8}) N O,. If v is a leaf, we compute and update using the
algorithm described in Section 3. For an interior nedeith childrenw andz, we have

(1)

o — Aread, ifo, >1,
Yl aw o, ifo, =0.

When we insert a square, we first find all the slab$3; that S meets. Then, for each of theg&g, we
find the leaves of T; such thatd, N 9S # (). For each such, we insertS into 8, and updatey, using
the algorithm described in Section 3. B does not contain a vertex &f, thenS is inserted into at most
two leavesw and z, such thatd,, and O, intersect the horizontal edges 8f Next, we find allO(log n)
nodesu in T; which lie betweeny andz, and whose parents lie along the two path§ ofo w and toz, so
thato, C SbutO,,) € S. For each such, we increment the value ef, and setw,, = AreaO,. If B;
contains a vertex af, thenS may have to be inserted into many (perhaps all) leavég,andS ¢ 8 for
anyv € T;. For each leab for whichd, N 9S #), we updatev,, using the algorithm of Section 3.

Finally, using (1) in a bottom-up manner, we update the \&dygfor all ancestors: of any nodev that
has been updated. We repeat this procedure for each of tief3laand return the value of;_, Qroot(T;)-
A square is deleted fro®in a similar manner.

Letv be a leaf ofJ such thatS € 8,. We show in the next section (cf. Lemma 3.1) thadjfn 95 # 0,
then (i) o, can be updated i (log n) amortized time if0,, does not contain a vertex of in its interior,
and (i) a,, can be updated i®((n/s?)logn) = O(n'/3logn) amortized time ifJ, does contain a vertex
of S in its interior. There are at most four cells that contain deseof S, and there are at most cells that

B1 B> B3 By

Oy -
\ Y o
. . P
v . ° e
o o
° °
. .
° °
. ° ol o
° o o °
w ° °
o | o
. o o o
4

O

Figure 1: Partition ofB into cells and the tre@;.

intersectdS, so we spend a total @((s + n/s%)logn) = O(n'/?logn) amortized time in updating the
areas at the leaves of the tréBs We then update the ancestors of the updated leaves. In t& ease,
we visit all the nodes of at most twi's—if B; contains a vertex of—andO(log n) nodes of any other
T;. We spendD(1) time at each of these ancestor nodes. Hence, the total aetbtiime spent in updating
AreaU(8) when a square is inserted or deleted is @%a'/3 log n). That is,Area U(8) can be updated in
O(n'/?logn) amortized time after each update operation, and Theoreriolots.

Remark. We believe that the running time of the algorithm can be impdoto O (n polylog(n)) by using

a recursive binary partioning @& and maintaining a similar (but more involved) informatianeach cell

in the recursive partition. However we have not succeedea@mcoming all the technical difficulties in
updating the information at each cell in (even amortizedpg n) time when a square is inserted or deleted.

3 Mantaining the Union within a Cell

Let O = [xg,21] X [yo, 1] be a fixed cell in the partition oB, which, as we recall, is an axis-parallel
rectangle inR?, where we assume, without loss of generality, that- zo > y; — yo (handling cells with
x1 — xo < Y1 — Yo IS done in a fully symmetric manner, switching the roles @& th and y-axes). Let
po = (%0,90),p1 = (1,90),p2 = (z1,y1), andps = (xo, y1) be its vertices in counterclockwise order. Let
S be a set of squares whose boundaries intefSedlVe describe a data structure for maintaining the area
ap of Ug = U(S) N O under insert/delete operations &mwhere we also assume that the life-span of each
square irs is equal to its side length. Recall that the 8& updated when the sweep plane passes through
a top or a bottom facet of a cube (h

Since the boundary of each squareimtersectsd, and thex-span ofc is at least as large as igsspan,
no squares € § can intersect both left and right edgesofvithout fully containing either the top or bottom
edge ofd. We partitions into the following subsets (see Figure 2):

Upper rim. The set of squares, denoted Gythat contain the top edge of. We storeU in a list sorted in
decreasing order of thg-coordinates of their bottom edges.

Lower rim. The set of squares, denotedlbythat contain the bottom edge @f We storel. in a list sorted
in increasing order of thg-coordinates of their top edges.

Pillars. The set of squares, denotedBythat intersect both top and bottom edgesiof

3

pillars

upper rim

p2
cornet

corner

PO
T floaters

Lower rim

Figure 2: Partition of into various categories.

Corners. The set of squares, denoted @ythat contain exactly one vertex of exactly one vertex of each
corner square lies in.

Floaters. The set of remaining squares, denotedfhat least two (i.e., either two or four) of the vertices
of each floater square lie in.

The first three types of squares are calleap, and the last two types are callstort® Thefloor of O
is the top edge of the last square in the lower rim (i.e., tghédst edge in the lower rim), and tbeiling is
the bottom edge of the last square (the lowest edge) in therujp.

Informally, inserting/deleting a short square is “easisifice their number, over all cells, is or}(n),
so we can afford)(n'/3) (amortized) time to process a short square. For example awafford to (and
indeed we will) recompute the union of the corners or of thatéics when we insert or delete one of these
squares. In contrast, inserting/deleting a long squamedripillar) is more challenging, since we want to do
itin only O(log n) (amortized) time.

The main technical complication in our solution is that, Mhi is fairly easy to maintain the area of
the union of each class of squares separately, it is much imaved to maintain the area of the combined
union. Our approach is to maintain this latter area as the@usineas of disjoint portions dfi—the area
covered by the rims, the area covered by the pillars but nahbyrims, the area covered by the corner
squares but not by the pillars or rims, and finally the are@iy by the floaters but not by any other square.
maintaining these disjoint areas is somewhat tricky; tlghével details are given in this section, and the
low-level details in the following section.

We call a (rectilinear) polygoastaircaseif it consists of a rectilinear chain that is bathandy-monotone
(in each coordinate it can be either increasing or decrggsimd the endpoints of the chain are connected
together by a horizontal and a vertical edge; see Figure Jtie common endpoint of the horizontal and
the vertical edge is called tfapexof the polygon. Since the complexity of the union of a set eé-goarallel
squares is lineafl{(C) N O hasO(|C|) vertices. We can decompo$&C) N O into four pairwise-disjoint
staircase polygongyy, Pi, P, Ps, with a total ofO(|C|) vertices, such that the apex Bf is the cornemp;
of O (see Figure 3 (ii)). (Informallyp; is composed of the corner squares that contgjribut since other
squares can “nibble off” some portions of these squaress #lsistrated in the figureP; may be smaller
than the union of its squares. Also, tids are not uniquely defined, but, since they will be recomgute
from scratch when we insert or delete a square @tdt does not matter.) We decompose edglinto a

1This is somewhat of a misnomer for corner squares, which eagulie large compared with, but we still think of them as
short since they have a vertex inside

setC; of rectangles by computing the vertical decompositiotPofi.e., drawing a vertical edge from each
reflex vertex ofP; within O until it touches a horizontal edge of, see Figure 3 (iii)). Set = Ufzo C;. By

constructionU(C) = U(C) N O.

P> ~ ~

@] - =

() Po G Co iy ©

Figure 3: (i) Staircase polygons. (ii) Decompositionl(fC) into four staircase polygongy, . . ., Ps. (iii)
The decompositio©; of eachP; into rectangles.

Next, we computgU(F) N O) \ U(C), i.e., the portion ol{(F) N O that lies outsidé((C), and partition
it into pairwise-disjoint rectangles by computing its veat decomposition. LeR = {R;,..., R, } be the
set of the rectangles in the resulting decomposition. Sif{@ andU(C) haveO(|F|) andO(|C|) vertices,
respectively|R| = O(|C| + |F|). See Figure 4. We call a rectangle®fstalactite(resp.,stalagmitg if it
intersects the ceiling (resp., floor) Gf a rectangle may be both a stalactite and a stalagmiteS T étesp.,
ST) denote the set of stalagmites (resp., stalactite®). in

We store the horizontal edges Bf(or, more precisely, the rectangles®) in a list A, sorted by their
y-coordinates. We also maintain the following auxiliaryalat

stalactites

_2L7 ﬂ—r»‘h
= O L =8 I

stalagmites

Figure 4: (i) Squares ifff; the darkly-shaded region 1§(C) N O, and the lightly-shaded region (((F) N
0) \ U(C); the rim squares are drawn as dashed. (ii) Rectangl8s the dark shaded rectangles are the
stalagmites and stalactites.

. The length of the portion of the top edge©@f(or any other horizontal line intersecting covered by
the pillars.

¢: The area ofll(R) not covered by the long squares (i.e., pillars, upper rird,lawer rim).
fl: they-coordinate of the floor ofl.
cl: they-coordinate of the ceiling ofl.

Ae: The length of the ceiling covered by the stalactites butayahe pillars.

5

M. The length of the floor covered by the stalagmites but nohieypillars.

By definition, A, (resp.,\.) measures exactly the portion of the floor (resp., ceilimy)eced by the floaters
but by no other square.

For ay-interval A, let W denote the rectangley, 1] x A, and let¢(A) = Area[U(C) \ U(P)] N Wa.
We construct a segment tréeon thez-projections of the rectangles (or squaresPiny R U C, so as to
maintain the above data and to answer queries of the formerGay-interval A C [y, y1], return&(A).

The values\., Ay, ¢, m, will get updated each time we upddre

Figure 5: Each term of (2) is shown in a different shade.

Assuming that we can maintain the above data and query @miagess the squares 8fare inserted and
deleted, the arean (which, as we recall, is the area of the portiorco€overed by the squares &f whose
boundaries cross) can be computed i@ (log n) time as follows. lfcl < fl, thenan = Area 0. Otherwise,
we computes(A), for A = [fl, cl], by performing a query offi. Then, as is easily verified,

ag = (v1 —x0)[(fl — yo) + (y1 —)] + (cl =)7 +E(A) + . 2)

Indeed, the first term is the area of the region covered by ppemurim and lower rim squares. The second
term is the area of the region covered by the pillars but naryyrim square. The third term is the area of
the region covered by the corner squares but not by any rimrear pillar, and the fourth term is the area
of the region covered by the floater squares but not by any btpe of squares (recall that, by definitidR,

is disjoint from the corner squares). See Figure Figure 5.

Inserting/Deleting a short square. Suppose we want to insert a short squériato § or deleteS from

8. Lety < 4n/s?> = O(n'/?) denote the maximum number of short squares ever preséntlinS € C,
we recomputeC in O(plogn) time. We delete the old rectangles ©ffrom T and insert the new ones,
where each update také€glog n) time (this will be shown in Lemma 4.1 below). Next, in bothessvhere
S is a floater or a corner, we re-compukein O(ulogn) time, and reconstruct the list. We delete all
old rectangles ofR from T and insert each new rectangle®finto T, in a total ofO(ulogn) time (again,
Lemma 4.1 below will show this). The data stored at the rodt pfovides the new values af ¢, \., and
As. Deleting a short square can be done in the same mannerlyFirshg (2), we compute the new value
of ap in additionalO(log n) time (dominated by the cost of the appropriate query). Thad tone spent in
inserting or deleting a short square is thus at mpgbg n, for some constant > 0.

Inserting/Deleting a long square. Suppose we want to insert a long squérdf S is a pillar, we simply
insert it intoT in O(log n) time (cf. Lemma 4.1). IS is a lower-rim square, we first inse$tinto the sorted
sequencd.. If S is not the topmost square, it does not affdgt, and we stop. Otherwise, lgt be the
y-coordinate of the top edge 6f We raise the floor continuously frofhto y, stopping at each horizontal

edge of a square if (or, more precisely, of a rectangle®) that the sweep encounters, and updating r,
andfl, until we reachy. In more detail, we find the first edge ithat lies above the current floor of,
and then scarn from this edge upwards, processing each edge that lies belo@onsider such an edge
e aty-coordinater. Since the floor has not crossed any edgd @iince the last event, the value pthas
decreased by (7 — fl) between the preceding and current events. Therefore, wesetp — \¢(7 — fl)
andfl := 7. This update is applied also at the ene- x of the sweep. We next need to update (fot x)
the value of)\;, because we now have one additional or one fewer stalagfatethis, we simply invoke
the procedure described above to insert/delete a shortesgenzen though no square is actually inserted
or deleted at the moment). This seemingly expensive stdpwijustified in the amortized analysis given
below. Finally, we compute the new valueaf in O(log n) time, using (2).

If we delete the highest square of the lower rim, we need tetdie floor. We follow the same algorithm
except that at each event, we get= o+ A ¢(fl — 7). We can lower and raise the ceiling in a similar manner.
If the algorithm sweeps acrosshorizontal edges dR, these updates take at meétu + 1) log n time.

Amortized analysis. We now analyze the amortized running time of each updateatiparusing a credit-
debit method. This is the only stémhere we use the fact that the squares are being insertedetedie
while sweeping a plane through a set of cubeRn We assigricy. log n credits to each square fiwhen

it is inserted, and use them to pay for the cost of insertirddaleting upper/lower-rim squares. Since the
update time of a short square<s cu log n, the amortized update time is also ¢ logn. The amortized
update time of a pillar i®)(log n) (recall that these running times will be established in Lenahi below).

The actual update time of a lower or upper rim squaie at mosic(xu + 1) log n, wherex is the number of
edges inA crossed by the rising/descending-floor (or descendirggriseiling) sweep-line algorithm. We
chargecy log n units to each square i whenever the sweep line passes through one of its edgesg so th
amortized (i.e., uncharged portion of the) update time afiaee in the upper/lower rim is alge(log n).

We now have to prove that each squar&ialways has sufficient amount of credits to pay for updating
the upper/lower rim. The key observation is that the size lofaeer or upper rim square is bigger than that
of a floater. Recall that a square is inserted when the swee peaches the bottom facet of its cube
and is deleted when it reaches the top facet'ofTherefore if a lower/upper rim squafgis insertedafter
a floaterS’, thenS’ is deletedbeforeS is deleted. This implies that if the floor was raised abovedgee
e of S/, during the insertion of, it is lowered below that height (while deletirf§jor some other square
after S has been deleted) only aftsf has already been deleted. Hence, the floor sweeps agrassle ¢
is alive, at most twice: it may be lowered belevonce (during the deletion of a lower-rim square that was
insertedbeforeS” was inserted), and then it may be raised abowace. The same is true for the upper rim
squares. Sincé’ has two horizontal edges; is charged at most eight times by the update procedure for
the upper/lower rim, thereby implying thatu log n credits are sufficient for each squarelirio pay for
inserting/deleting a square in the upper or lower rim. We ttanclude the following.

Lemma 3.1 The amortized update time of a long squar®idog n), and the amortized (and worst case)
update time of a short square @(z:log), wherep, < 4n/s*> = O(n'/3) is the maximum number of short
squares in3J at any time.

4 Maintaining the Segment Tree

To complete the analysis, we now describe the segmerf'tcemstructed on the-projections of rectangles
in PUCUR. We assume, as is indeed the case in our scenario, that we tkieoendpoints of the:-

20f course, we are also strongly using the fact that the hoti@ross-sections of the cubes are squares.

projections of all squares hin advance, so that the primary tree structur@ @ constructed over all these
segments, and remains fixed. Each nodef T is associated with am-interval 4, and a corresponding
rectangled, = 0, x [yo,y1]. If w,z are the two children of, thend, = §,, U d,. Foranodev € T,
letR, C R (resp.,P, C P, (f:,-v - C,-, for 0 < ¢ < 3) be the set of rectangles of the respective classes
whosez-projections contairs, but notd,,). SetR; = (J,, Ruw, P = U, Pw, andC}, = U,, Ci, over

all descendents of v (including v itself). We store the seR, and the sizéP,| at each node. We also
maintain the following auxiliary information at each nodef T.

m(v): The length of the portion of, covered by the-projections of the pillars ifP;;.
©(v): Area of U(R?) N O, not covered by the long squares (pillars, upper rim, lowa) of S.

h(v): Length of the left edge dfl, covered by the rectangles i, but not by the squares in the upper or

lower rim.
Ar(v): Length of the floor covered by theprojections of the stalagmites & but not by the pillars.
Ac(v): Length of the ceiling covered by theprojections of the stalactites R but not by the pillars.
&i(v): Area((U(CE) \ U(PE)] N O,), fori =0,...,3.
Ji(v): The vertical segment which is theprojection of the portion of the rectilinear chain of thaistase

polygon P, that lies insided,,. If O, intersects only one horizontal edge of the chain, thign) is a
singleton. The values of;(v) along the leaves are ordered becaBige) is a staircase, and therefore
monotone, polygon.

fi(v): The most recently recorded valuefbat v.

cl(v): The most recently recorded valuedfat v.

We remark right away that not all these values are correctiyntained at all times at, but they are
maintained in such a way that it is easy to reset theny)(ih) time) to the correct values upon demand—see
below.

The valuesr(r), ¢(r), A¢(r), andA.(r), stored at the roat of T give the values ofr, p, Af, A, that we
maintain for0d, as required by the algorithm described in Section 3. Imatet)i after an update 4f, these
values at- are correct, although the value gfcan deviate from the value ¢f(r) after inserting ot deleting
a lower-rim or an upper-rim square. However, the value careb®red to its correct value whenevers
accessed, as explained below.

Let p, be the rectanglé, x [fl, cl], assumingl < cl. For a rectangle, let Ht(p) denote its height.
Since, by construction, the rectanglesiip are pairwise disjoint, and each of them extends from the left
edge to the right edge @f,,, we have

h(v) = > H(RN py). (3)

ReR,

Note thath(v) depends only ofR, and not on the other rectangles in the sRis for proper descendants
w of v, nor does it depend on any other type of squares. Moreowg th at most one rectangle i), that
intersects the floor (resp., ceiling). Henég,(RN p,) is either0 or Ht(R) except for at most two rectangles
inR,.

Put/, := |d6,|, for a nodev of T. Letw andz be the children of an interior node The following
equalities are obvious (see Figure 6):

a2 if P, # 0),
m(v) = { m(w) +m(z) otherwise. @
o0 if P, # 0,
plv) = { o(w) + () + (£, — w(v))h(v) otherwise. ®)
0 if P, # 0,
Ar(w) = < 4, if P, =0, R, NS~ #£0, (6)
Ar(w) + Af(z) otherwise.
0 if P, # 0,
Ae(v) = 0, if P, =0, R, NSt # 0, (7
Ae(w) + Ae(z) otherwise.
v
w — m z
HFETT T«
i
2C) - R fl

Figure 6: lllustrating (4)-(7) at a node. «(v) is the highlighted portion of the bottom edgk(v) is
highlighted on the left edge. The small rectangles belon tofor proper descendants of v and are
disjoint from the rectangle dR, that determiné(v). A¢(v) = ¢, and.(v) is highlighted on the ceiling.

If C;, # 0, then it consists of a single rectangle, s&y,, and letyi, denote they-coordinate of its
horizontal edge that lies in the interior of,. Since the rectangles i@; are pairwise disjoint and a vertical
line intersects at most one rectangle@f C;,, # 0 implies thatC?, = C;, = {C;, }. Hence,

0 it P, £ 0,
&) = { (by — m(v)) Ht(Cy,) i P, = 0 andCy, # 0, (8)
&(w) + &(2) otherwise.
. — [Xiva Xiv] if (éiv 75 @,
Jilv) = { conv(J;(w) U J;(z)) otherwise. ©)

We can use simpler variants of the above equations, whiclotdmvolve the recursive terms, for the values
of these quantities at the leaf nodes; for example,) is 0 if P, =), and is¢,,h(v) otherwise.

Whenever a node is updated, we call a subroutinePDATEAUX (v) that implements (4)—(9), to recom-
puter(v), (v), Af(v), Ac(v), & (v), andJ;(v).

The data structure always maintains the correct values(of, A.(v), A¢(v), & (v), and J;(v) at all
nodes, but the values d@f(v), cl(v), p(v), h(v) may be incorrect because the updating of the floor and

9

ceiling of O does not always reach all the nodesTbin “real time”. For example, if the floor is raised
when we insert a square of the lower rim, so that no edgk lies between the new and old floor, then
we do not udpaté at all, and thus the stored valuesfti), cl(v), ¢(v), andh(v) are not modified, even
though the real values have changed. Even wihegets updated, when the floor or ceiling sweeps through
a horizontal floater edge, not all the nodedldfet the news"—it is too expensive to broadcast the changes
explicitly to all nodes ofT. Instead, we update them in a lazy manner, so that the faolpwiio invariants

are maintained:

(I11) Forany node» € T, none of the-coordinates of the horizontal edges of rectangleR;in
lie betweerfl andfl(v) or betweertl andcl(v).

(12) The value ofp(v) gives the area dfiil(R}) N O, not covered by the long squares §f
under the assumption that the floor (resp., ceiling) f&a} (resp.cl(v)).

To ensure that these quantities at a notbecome correct whenever we accesae apply the following
two straightforward subroutines, before manipulating ater data at.

ADJUSTFLOOR(v) ADJUSTCEILING (v)
p(v) = p(v) — Af(v)[fl — A(v)] p(v) = @(v) — Ac(v)[cl(v) —]
ifR(v)NS™ #0 if R(v) NSt # 0
h(v) = h(v) — [fl — fi(v)] h(v) = h(v) — [cl(v) — cI
filv) =1 cl(v) =cl

By invariant (I11), there is no horizontal edge®f betweernfl andfl(v), so if we raise or lower the floor
from fl(v) to fl then the value op(v) decreases by the amouxit(v)[fl — fl(v)]. A similar argument justifies
the updating applied th(v), and for the ceiling. This, in conjunction with (12), impdi¢hat, after executing
these proceduref(v), cl(v), ¢(v) andh(v) have their correct values.

Generic update procedure. We insert or delete a rectangle &fusing a slight variant of the standard
update procedure for segment trees [3], so that the auxiliéormation stored at each node is updated cor-
rectly and invariant (11) is maintained. The following pdetcode describes the generic procedusger-
ICUPDATE to updateT when a rectangle is inserted into or deleted fro. We use therd.(v) (resp.,
R(v)) to denote the left (resp., right) child of

GENERICUPDATE(v, S)

ADJUSTFLOOR(v), ADJUSTCEILING (v)
I := z-projection ofS
ifo, C 1
| Update information at | (%)
elseifd, NI #0
GENERICUPDATE(L(v), S)
GENERICUPDATE(R(v), S)
UPDATEAUX(v)
endif

The line &) depends on the type of rectangle that is being insertedletede The specific actions taken
at this line for each type of rectangle are described in thpehplix. The details of the query algorithm
(finding £(A) = Area[U(C) \ U(P)] N W, for ay-interval A, andW the horizontal strip of Section 3 that

10

corresponds td\.) are also deffered to the Appendix. The analysis in the Agdpeimplies the following
lemma, which thus completes the running time analysis oatherithm.

Lemma 4.1 (i) A rectangle inP U C U R can be inserted into or deleted frofhin O(log n) time. (ii) A
query can be answered {©i(log n) time.

References

[1] http://en.wikipedia.org/wiki/Klee'sneasureproblem

[2] D. Attali and H. Edelsbrunner, Inclusion-exclusionfaulas from independent complex&spc. 21st Ann. Sym-
pos. Comput. Geoni2005, 247-254.

[3] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkdpédmputational Geometry: Algorithms and
Applications 2nd edition, Springer Verlag, Heidelberg, 2000.

[4] J. L. Bentley, Algorithms for Klee's rectangle problemdnpublished notes, Computer Science Department,
Carnegie Mellon University, 1977.

[5] J.D. Boissonnat, M. Sharir, B. Tagansky and M. Yvinecrdfwi diagrams in higher dimensions under certain
polyhedral distance functionBjscrete Comput. Geort9 (1998), 485-519.

[6] E. Chen and T. M. Chan, Space-efficient algorithms forekdemeasure problenRroc. 17th Canadian Conf.
Comput. Geom2005.

[7] B. S. Chlebus, On the Klee's measure problem in small dsiens,Proc. 25th Conf. Current Trends in Theory
and Practice of Informaticsl998, 304-311.

[8] H. Edelsbrunner, The union of balls and its dual sh&js¢crete Comput. Geom.3 (1995), 415-440.

[9] M. L. Fredman and B. Weide, The complexity of computing theasure dfJ[a;, b;], Commun. ACM21 (1978),
540-544.

[10] J. van Leeuwen and D. Wood, The measure problem formgatar ranges ir-space,J. Algorithms2 (1981),
282-300.

[11] V.Klee, Canthe measure pf]a;, b;] be computed in less tha(n log n) steps?Amer. Math. MonthIg4 (1977),
284-285.

[12] M. Overmars and C.K. Yap, New upper bounds in Klee's meagroblemSIAM J. Comput20 (1991), 1034—
1045.

11

Appendix

A Updates and Queries to the Segment Tree

Inserting/Deleting a pillar. Let S be a pillar that we wish to insert intbor delete froms. If the line (x)

is executed at, thenS € P,.. If we are insertingS, we setr(v) = £, p(v) = Ap(v) = Ac(v) = &(v) =0
and incremen{P,|. If we are deletingS, we decremen?,|. If |P,| > 0, there is nothing else to be done,
so assume thaP,| becomes zero. If is a leaf, we invoke BDATEAUX(v) to compute the auxiliary data
stored aw. If v is an internal node, we first call the subroutinesJASTFLOOR, ADJUSTCEILING at the
children ofv and then invoke BDATEAUX (v).

Inserting/Deleting a floater rectangle. Suppose we wish to insert or delete a rectagle R. If the
line (x) is executed ab, thenR € R,. We perform the following steps at Letp, = ¢, x [fl,cl] and
r=Ht(RNpy).

If we are insertingR, we seth(v) = h(v) + 7, p(v) = ¢(v) + (b, — 7(v))r, and set\;(v) (resp.,
Ae(v)) to £, — w(v), providedR is a rectangle ob~ (resp.,ST). (Note that the values df(v), p(v) in the
right-hand sides are correct because tl@sTFLOOR and ADJUSTCEILING subroutines have just been
called atv.) On the other hand, if we are deletifiy we seth(v) = h(v) — 7, ¢(v) = p(v) — (£, — 7 (v))r,
and set\ 7 (v) (resp.,\.(v)) to zero, providedr is a rectangle ob~ (resp.,S*). The latter action is justified
by noting that ifR € S~ then no other rectangle & belongs tdS—, and the same is true f&r".

Inserting/Deleting a corner rectangle. Suppose we wish to insert or delete a rectar@@le C,. Let y
be they-coordinate of the horizontal edge that lies in the intedbr. If line (x) is executed fow, then
C € Cip. We setg;(v) = (£, — m(v)) Ht(C) andJ;(v) = [x, x].

Answering queries. Recall that for ay-interval A, W denotes the rectang[eg, z1] x A, and{(A) =
Area[U(C) \ U(P)] N Wa. We have to answer queries of the form: Giveprimterval A C [y, 1], return
&(A). Toanswer such queries we define another kind of queriedlas$o Given anc-intervaly C [z, x1],
returnz(v), wherer () denotes the length of the portion pfcovered by thec-projections of the pillars in
P; (note thatr([x,z1]) = 7.) We refer to queries of the second type as Q1 queries andettegof the
first type as Q2 queries. See Figure 7.

J_L A

=1

[0 iy Pt

Figure 7: (i) A Q1 query;r(v) is the length of the highlighted portion of (ii) A Q2 query; the shaded
region isU(C), and the darkly shaded regionggA).

Answering a Q1 query. Let I be a query interval for which we wish to computé/), the length of the
portion of I covered by thec-projections of the pillars. The recursive procedure dbedrin Figure 8(i)

12

computesr (7). Itis the standard-dimensional range-searching procedure, with one catleaendpoints
of I may lie in the interior of the intervals associated with tloeresponding leaves &f, so additional
(though obvious) actions are required at those leaves. ®hreatness is straightforward, and the running
time is obviouslyO(log n).

Q1-QUERY(v, I) Q2-QUERY(v, A)
if7=0 return0 if AN Jo(v) =0 return0
if 6, C I returnm(v) if Jo(v) C A return &y(v)
if I C4,and|P,| >1 return ||| returnQ2-QUERY(L(v), A)
returnQ1-QUERY(L(v), I N dy,y)) + Q2-QUERY(R(v), A)
+ Q1-QUERY(R(v), I N dR(y))

0] (ii)
Figure 8: (i) The recursive procedure for answering a Q1yu#h| is the length of the interval. (i) The

recursive procedure to computeea(U(C(A)) \ U(P)).

Answering a Q2 query. Let A = [«, 3] be ay-interval. We describe how to compuieA), the area of
[U(C) \ W(P)] N Wa. Let&(A) = Area([U(C;) \ W(P)] N Wa), thené(A) = 322 &(A). We describe
how to computé&y(A); the otherg;(A)’s can be computed in a similar manner.

LetCo(A) C Cy be the set of rectangles whose top edges lie injtheerval A; see Figure 9Co(A) is
a contiguous subsequence®y, andu((@o(A)) is also a staircase polygdny(A). Letx, (resp.,xg) be the
x-coordinate of the left (resp., right) boundaryRf(A). Setl;, = [xg,z1], [p = [z1,zR], R = I, X A,
andRp = Ip X [yo, a| (see Figure 9 (ii)). Then

U(Co) N Wa = [Po(A) \ RB]URy,.

_ &(D)
i @A)
— A Ry, =P [A
o uE [2
l Rp
Ty & xo Ty, TR
TR . Is
@i) (ii)

Figure 9: (i) Shaded region & (A), rectangles irCy(A) are drawn in thick lines. (i) Rectangld®z and
Ry.

SinceR, andPy(A) are disjoint and?p C Py(A), we have
&(A) = Area(Py(A)\ U(P)) — Area(Rp \ U(P)) + Area(Ry \ U(P))
= Area(Py(A)\WP)) — (xg —axp — 7(Ip))(a — yo) + (v — xo — 7(I1)) (8 —).

We can computer(Ip) andn (1) by performing Q1 queries witliz and ;. The first term is computed
using the recursive procedure Q23€RY, described in Figure 8 (ii). The running time of Q2JERY is

13

O(logn) because the intervalg)(v) are ordered along the leavesfaind the parents of the nodes visited
by the procedure lie on two paths Bf
Putting everything together, we obtain the following lemamal Lemma 4.1.

Lemma A.1 (i) A rectangle inP U C U R can be inserted into or deleted frafhin O(log n) time. (i) A Q1
or a Q2 query can be answered @(log n) time.

This lemma provides the missing ingredients for the alporilescribed in Section 3, and thus, at long
last, completes the proof of Theorem 1.1.

14

