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ABSTRACT

We first describe a reduction from the problem of lower-bongd
the number of distinct distances determined by aSsef s points

in the plane to an incidence problem between points and aigert
class of helices (or parabolas) in three dimensions. We otfe-
jectures involving the new setup, but are still unable ttyftésolve
them.

Instead, we adapt the recent new algebraic analysis taghniq
of Guth and Katz [9], as further developed by Elekes et al. t{®]
obtain sharp bounds on the number of incidences betweer thes
helices or parabolas and points Rt¥. Applying these bounds,
we obtain, among several other results, the upper bau@d) on
the number of rotations (rigid motions) which map (at ledst¢e
points of S to three other points of. In fact, we show that the
number of such rotations which map at least 3 points of S to
k other points ofS is close toO(s®/k'?/7).

One of our unresolved conjectures is that this numbex(is’ /k?),
for k > 2. If true, it would imply the lower boun@(s/ log s) on
the number of distinct distances in the plane.
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THE INFRASTRUCTURE

The motivation for the study reported in this paper comesfro
the celebrated and long-standing problem, originally ddseErdbs
[8] in 1946, of obtaining a sharp lower bound for the number of
distinct distances guaranteed to exist in any $eif s points in
the plane. Erds has shown that a section of the integer lattice de-
termines onlyO(s/+/log s) distinct distances, and conjectured this
to be a lower bound for any planar point set. In spite of steady
progress on this problem, reviewed next, &'d conjecture is still
open.

L. Moser [12], Chung [4], and Chunet al.[5] proved that the
number of distinct distances determineddygoints in the plane is
Q(s*/3), Q(s*'7), andQ(s*/® /polylog(s)), respectively. Székely
[19] managed to get rid of the polylogarithmic factor, whsely-
mosi and Té6th [17] improved this bound f(s%/7). This was
a real breakthrough. Their analysis was subsequently cefige
Tardos [21] and then by Katz and Tardos [11], who obtained the
current record of)(s(48714¢)/(55=16e)=¢) ‘for anye > 0, which
is Q(SO‘8641).

In this paper we transform the problem of distinct distarioes
the plane to an incidence problem between points and a mertai
kind of curves (helices or parabolas) in three dimensions.w&
show, sharp upper bounds on the number of such incidences tra
late back to sharp lower bounds on the number of distinchdésts.
Incidence problems in three dimensions between points angs
have been studied in several recent works [2, 6, 16], and a ma-
jor push in this direction has been made last year, with tealer
through result of Guth and Katz [9], who have introduced meth
ods from algebraic geometry for studying problems of thisdki
This has been picked up by the authors [6], where worst-dgise t
bounds on the number of incidences between points and lines i
three dimensions (under certain restrictions) have betairaa.

The present paper serves two purposes. First, it studiestail d
the connection between the distinct distances problemtanddr-
responding 3-dimensional incidence problem. As it turrs there
is a lot of interesting geometric structure behind this oidun, and
the paper (or rather its full version) develops it in detslle offer
several conjectures on the number of incidences, and shawitho
true, they yield the almost worst-case tight lower bo{d/ log s)
on the number of distinct distances. Unfortunately, so farhave
not succeeded in proving these conjectures. Neverthelessave
made considerable progress on the incidence problem, igaiich
is the second purpose of the study in this paper. We show how
to adapt the algebraic machinery of [6, 9, 10, 14] to derivargh
bounds for the incidence problem. These bounds are veryasimi
to, and in fact even better than the bounds obtained in [G)dant-
line incidences, where they have been shown to be worstticgue
However, they are not (yet) good enough to yield significantr

1.



bounds for distinct distances. We believe that there isteafail
geometric structure in the particular problem studied hetgch
should enable one to further improve the bounds, but so far th
remains elusive.

The paper is organized as follows. We first describe the reduc
tion from the planar distinct distances problem to the 3atisional
incidence problem mentioned above.
explore several additional geometric connections betvileertwo
problems (as manifested, e.g., in the analysispecial surfaces
given below). We then present the tools from algebraic gégme
that are needed to tackle the incidence problem; they arantar
of the tools used in [6, 9], adapted to the specific curves et

In doing so, we note and

multiplicity exactly k (resp., at least), for k£ > 2. Then

|K| = Z <];> Ny, = Z <];> (N> — N>gt1)

k=2 k=2
= NZQ =+ Z(k — 1)N2k.

k>3
(H4) The main conjecture.
CONJECTURE 1. Forany2 < k < s, we have
Nsp =0 (s°/K?) .

need to handle. We then go on to bound the number of incidences Suppose that the conjecture were true. Then we would have

We first bound the number of rotations in terms of the number of
parabolas, and then bound the number of incidences theesselv
The latter task is achieved in two steps. We first use a “puakly
gebraic” analysis, akin to those in [6, 9], to obtain a wediaind,
which we then refine in the second step, using more traditiona
space decomposition techniques. The final bound is stillasot
good as we would like it to be, but it shows that the case stlidie
this paper “behaves better” than its counterpart involVings.

Due to severe lack of space, many details are omitted in this
version. They can be found in the full version [7].

Distinct distances and incidences with helicesVe offer the fol-
lowing novel approach to the problem of distinct distances.
(H1) Notation. Let S be a set of points in the plane with: distinct
distances. Le# denote the set of all quadruplés,b,a’,b’) €
S*, such that the pairgz, b) and(a’, b') are distinct (although the
points themselves need not be) dabl = |a’d’| > 0.

Letdy,...,d, denote ther distinct distances ity, and letE; =
{(a,b) € S? | |ab| = §;}. We have

Kl =2 <'E2'> > > (1B - 1

i('EZ"—U} _ =1 —af

i=1

1
> =
T T

(H2) Rotations. We associate eadh, b, a’, b') € K with a (unique)
rotation (or, rather, a rigid, orientation-preserving transforimabf
the plane)r, which mapsz to o’ andb to b’. A rotationr, in com-
plex notation, can be written as the transformatior~ pz + ¢,
wherep,q € C and|p| = 1. Puttingp = €%, ¢ = ¢ + i, we
can represent by the point(¢,7,0) € R3. In the planar context,
0 is the counterclockwise angle of the rotation, and the cerite
rotation isc = ¢/(1 — €'%), which is defined fo # 0; for § = 0,

T is a pure translation.

The multiplicity n(7) of a rotationr (with respect taS) is de-
fined as|7(S) N S| = the number of pairéa, b) € S* such that
7(a) = b. Clearly, one always hgs(r) < s, and we will mostly
consider only rotations satisfying(7) > 2. As a matter of fact,
the bulk of the paper will only consider rotations with mplitity
at least3. Rotations with multiplicity2 are harder to analyze.

If u(7) = k thenS contains two congruent and equally oriented
copiesA, B of somek-element set, such that A) = B. Thus,
studying multiplicities of rotations is closely related dnalyzing
repeated (congruent and equally oriented) patterns inn@pfaint
set; see [3] for a review of many problems of this kind.

(H3) Bounding | K|. If u(r) = k thent contributes(’;) quadru-
plestoX. Let Ny, (resp..N>) denote the number of rotations with

M < |K| = O(s%) - 1+Z% =0(s"log s),

k>3

which would have implied that = Q(s/log s). This would have
almost settled the problem of obtaining a tight bound forrttiei-
mum number of distinct distances guaranteed to exist in angfs

s points in the plane, since, as mentioned above, the upperdbou
for this quantity isO(s/+/log s) [8].

We note that Conjecture 1 is rather deep; even the simple in-
stancek = 2, asserting that there are orfy(s*) rotations which
map (at least) two points &f to two other points of (at the same
distance apart), seems quite difficult. In this paper webdistaa
variety of upper bounds on the number of rotations and onuhe s
of their multiplicities. In particular, these results pide a partial
positive answer, showing tha¥'s; 0(33); that is, the num-
ber of rotations which map a (degenerate or non-degendrate)
gle determined bys to another congruent (and equally oriented)
such triangle, isD(s*). Bounding N2 by O(s?) is still an open
problem. See Section 5 for a simple proof of the weaker bound
NZQ — 0(810/3).

Lower bound. In the full version [7] we present a construction
(suggested by Haim Kaplan) which shows:

LEMMA 2. There exist set$' in the plane of arbitrarily large
cardinality, which determin®(|:S|*) distinct rotations, each map-
ping a triple of points ofS to another triple of points of.

A “weakness” of this construction is that all these rotasiomap
acollinear triple of points ofS to another collinear triple. (In the
terminology to follow, these will be calleftht rotations.) We do not
know whether the number of rotations which mapaa-collinear
triple of points ofS to another non-collinear triple can b¥|S|*).
We tend to conjecture that this is indeed the case.

We also do not know whether Conjecture 1 is worst-case tifjht (
true). That is, do there exist sefs with s = | S| arbitrarily large,
so that there ar@(s® /k?) distinct rotations, each mapping at least
k points of S to k other points ofS?

(H5) Helices. To estimateN>, we reduce the problem of analyz-
ing rotations and their interaction with to an incidence problem
in three dimensions, as follows.

With each pair(a,b) € 52, we associate the curve, ;, in a
3-dimensional space parametrized (gyn, 0), which is the locus
of all rotations which ma to . That is, the equation di, ; is
given by

hao = {(&:1,0) | b= ac” + (&,m)}.
Puttinga = (a1, az2), b = (b1, b2), this becomes

3
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b1 — (a1 cosf — azsinf),

@)

bz — (a1 sin 6 + a2 cosh).



This is ahelixin R?, having four degrees of freeedom, which we
parametrize bya1, a2, b1, b2). It extends from the plangé = 0 to
the planed = 27; its two endpoints lie vertically above each other,
and it completes exactly one revolution between them.

(H6) Helices, rotations, and incidencesLet P be a set of rota-
tions, represented by points R, as above, and |t/ denote the
set of alls? helicesh, p, for (a,b) € S? (note thata = b is per-
mitted). Let/ (P, H) denote the number of incidences betwden
and H. Then we have

I(PH) = p(r).

TEP

RotationsT with p(7) = 1 are not interesting, because each of
them only contributes to the count/ (P, H), and we will mostly
ignore them. For the same reason, rotations w(th) = 2 are also
not interesting for estimating( P, H ), but they need to be included
in the analysis ofV>.. Unfortunately, as already noted, we do not
yet have a good upper bound (i.e., cubicsinon the number of
such rotations.

(H7) Incidences and the second conjecture.

CONJECTURE 3. For any P and H as above, we have
1(P,H) = O (|PI2HY* + |P| + H])

Suppose that Conjecture 3 were true. Egt, denote the set of
all rotations with multiplicity at least (with respect t&5). We then
have

kN>k = k|P>r| < I(Pr, H) = O (Né/,f|H|3/4 + N>k + |H|) ;

from which we obtain

83 82 83
ve=o () -0 (f):

thus establishing Conjecture 1, and therefore also therlbaend
for = (the number of distinct distances) derived above from this
conjecture.
Remark. Conjecture 3 can also be formulated for abitrary
subsetH of all possible helices.

Note that two helices, ;, and h. 4 intersect in at most one
point—this is the unique rotation which mapgo b andc to d (if
it exists at all, namely ifac| = |bd|). Hence, combining this fact
with a standard cutting-based decomposition techniquei)asi to
what has been noted in [16], say, yields the weaker bound

@)

which, alas, only yields the much weaker bou¥id, = O (s*/k?),
which is completely useless for deriving any lower boundaon
(We will use this bound, though, in Section 6.)

(H8) From helices to parabolas.The helices:, » are non-algebraic
curves, because of the use of the arfjbes a parameter. This can
be easily remedied, in the following standard manner. Agssum
that 6 ranges from—= to 7, and substitute, in the equations (1),
Z =tan(0/2), X = £(1+ Z%), andY = n(1 + Z*), to obtain

X (a1 + bl)Z2 + 2a2 7 + (b1 — al) (3)
Y = (az + b2)Z2 —2a17 + (bz — ag),

which are the equations of glanar parabolain the (X,Y, Z)-
space. (The parabola degenerates to a litkesf —a, a situation
that we will rule out by choosing an appropriate generic door
nate frame in the originatly-plane.) We denote the parabola corre-
sponding to the heli, ;, ash}, ,, and refer to it as ah-parabola

1(P,H) = 0 (|PPP*|HP® + |P| +|H])

(H9) Joint and flat rotations. A rotationt € P is called goint of
H if Tisincident to at least three helices Bfwhose tangent lines
at 7 are non-coplanar. Otherwise, still assuming tha incident
to at least three helices &f, 7 is calledflat.

Let = (¢,7n,0) € P be a rotation, incident to three distinct
helicesha b, he,d, he,s. From their equations, as given in (1), the
directions of the tangents to these helices ate

(a1 8in @ + az cos @, —a1 cosf + azsinb, 1)
(c1sin@ + c2cos @, —ci cosf + cosin, 1)
(e1sinf + ez cos O, —eq cosf + e2sin b, 1).

Putp = cos 8 andg = sin 6. Then the three tangents are coplanar
if and only if

a1q+azp —aip+axq 1
cig+cep —cip+ceq 1 |=0.
eiq+ep —eip+eaq 1

Simplifying the determinant, and recalling that + ¢ = 1, the
condition is equivalent to

ai a2 1
c1 c2 1 |=0.
€1 €2 1

In other words, the three helicés, v, hc a, he,r form a joint at
7 if and only if the three points, ¢, e (and thus als@, d, f) are
non-collinear.

CLAIM 4. A rotation 7 is a joint of H if and only if - maps
a non-degenerate triangle determined §yo another (congruent
and equally oriented) non-degenerate triangle determibgds.
A rotation 7 is a flat rotation if and only ifr maps at least three
collinear points ofS to another collinear triple of points of, but
does not map any point ¢f outside the line containing the triple
to another point ofS.

The preceding analysis also shows that, for any fixed rotatio
the directions of the tangents atto the helices incident te are
all distinct. This will be important in the algebraic anatygiven
below.

(H10) Special surfaces.In preparation for the forthcoming alge-
braic analysis, we need the following property of our hedice

Let 7 be a flat rotation, with multiplicityk > 3, and let/ and
¢’ be the corresponding lines in the plane, such that there kxis
pointsas, ...,ar € SN £andk pointsby, ..., b € SN{, such
thatT mapsa; to b; for each: (and in particular mapéto ¢’). By
definition, 7 is incident to thek heliceshq, s,, fori =1,... k.

Let u andv denote unit vectors in the direction éfand?’, re-
spectively. Clearly, there exist two reference poiatss ¢ and
b € /¢, such that for eacti there is a real numbet; such that
a; = a + t;u andb; = b + t;v. As a matter of fact, for each reél
T mapsa + tu to b + tv, so it is incident tQhg 4 ¢, b+40. NOte that
a andb are not uniquely defined: we can takéo be any point on
£, and shifth accordingly along’.

Let H(a, b; u, v) denote the set of these helices. Since a pair of
helices can meet in at most one point, all the helicdg (n, b; u, v)
pass through but are otherwise pairwise disjoint. Using the re-
parametrizatioé, n, 0) — (X, Y, Z), we denote by = 3(a, b; u, v)
the surface which is the union of all theparabolas that are the im-
ages of the helices if (a, b; u, v). We refer to such a surfageas
aspecial surface

An important comment is that most of the ongoing analysis als
applies when only two helices are incidentp they suffice to
determine the four parametersb, u, v that define the surface.



We also remark that, although we started the definition(ef, b; u, v)
with a flat rotationr, the definition only depends on the parameters
a,b,u, andv. If 7 is not flat it may determine many special sur-
faces, one for each line that contains two or more poinwhich
7 maps to other (also collinear) points®f Also, as we will shortly
see, the same surface can be obtained from a different setctin
many such sets) of parametersd’, v’, andv’ (or, alternatively,
from different flat rotations’). An “intrinsic” definition of special
surfaces will be given shortly.

The surface:(a, b; u, v) is a cubic algebraic surface, whose equa-
tion, worked out in detail in the full version [7], is

Ex(Z)X — E1(Z2)Y + K(Z) =0, where (4)
E1(Z) = (u1 + ’U1)Z + (U2 + ’02) (5)
EQ(Z) = (u2 + ’Uz)Z — (Ul + ’01)7

and K (Z) is the cubic polynomial
<(u1 +v1)Z + (u2 + vz)) ((a2 + bz)Z2 —2a1Z + (b2 — az)) —

<(U2 +v2)Z — (u1 + v1)> ((a1 +01)Z% + 2027 + (b1 — al)).

We refer to the cubic polynomial in the left-hand side of (4) a
a special polynomial Thus a special surface is the zero set of a
special polynomial.

(H11) The geometry of special surfacesSpecial surfaces pose

a technical challenge to the analysis. Specifically, eadtiap
surfaceX captures a certain underlying pattern in the ground set
S, which may result in many incidences between rotations/and
parabolas, all contained M. The next step of the analysis studies
this pattern in detail.

ao

bo

Figure 1: Left: The configuration of u,v,u’,v’. Right: The
structure of 7 and 7’ on a common special surface.

Consider first a simple instance of this situation, in whialo t
special surface¥, ¥/, generated by two distinct flat rotations
7/, coincide. More precisely, there exist four parameteis u, v
such thatr maps the lineg/; = a + tu to the linedy = b + tv
(so that points with the same parameteare mapped to one an-
other), and four other parametersd’, v’, v” such thatr’ maps (in
a similar manner) the liné, = o’ + tu’ to the lined; = b’ + o/,
andX(a, b;u,v) = X(a’,b’;u’,v"). Denote this common surface
by X. Since the surfaces coincide, simple algebraic calculatio
detailed in [7], show that the angle bisector betweemdv must
coincide with that between’ andv’, as depicted in Figure 1(left).
Moreover, as is easily checked, if we tgtbe the intersection point
of /; and/}, and letby be the intersection point df and/;, then
both 7 and 7’ mapao to by, andh;,_ ,, is contained inx. (See
Figure 1(right) and [7] for details.)

Since the preceding analysis applies to any pair of distivtet-
tions on a common special surfake it follows that we can asso-
ciate with> a common directionv and a common shifg, so that
for eachr € X there exist two lineg, ¢, wherer maps/ to ¢/,
so that the angle bisector between these lines is in direatj@nd
7 is the unique rigid motion, obtained by rotatifigo ¢’ around
their intersection point N ¢, and then shifting’ along itself by a
distance whose projection in directianis 6. See Figure 1(right).

Let X be a special surface, generatedbya, b; u, v); that is,2
is the union of all parabolas of the forhf  ;,, ;. ;,, fort € R. Let
70 be the common rotation to all these parabolas, so it mapgie |
Lo = {a+tu|t € R}tothelinely = {b+tv | t € R}, sothat
every pointa + tu is mapped t® + tv.

Leth. , be a parabola containedhbut not passing throughy.
Take any pair of distinct rotations , 72 on h; ;. Then there exist
two respective real numbets, t2, such that; € hg ;.. pyt;0, fOF
i = 1,2. ThusT; is the unique rotation which mapsto d and
a; = a+t;utob; = b+t;v. In particular, we havén +t;u —¢| =
|b+t;v—d|. Thisin turn implies that the triangles a2c andb, b2d
are congruent; see Figure 2.

Lo

Figure 2: The geometric configuration corresponding to a
parabola h; ; contained inX.

Givenc, this determined, up to a reflection abouf,. We claim
thatd has to be on the “other side” @f, namely, be such that the
trianglesa;azc andb; bod are oppositely oriented. Indeed, if they
were equally oriented, ther would have mappedto d, and then

+.a would have passed through, contrary to assumption.

Now form the two sets

A= {p e S |there existg € S such thath,, , C X}
B = {q € S | there existp € S such thath,, , C X}.

(6)

The preceding discussion implies thétand B are congruent and
oppositely oriented.

To recap, each rotation € 3, incident tok > 2 parabolas
contained in%, corresponds to a pair of lings¢’ with the above
properties, so that mapsk points of S N ¢ (rather, ofA N ¢) to k
points of SN/’ (thatis, of BN¢'). If 7 is flat, its entire multiplicity
comes from points of on ¢ (these are the points of N £) which
are mapped by to points ofS on ¢’ (these are points aB N ¢'),
and all the corresponding parabolas are contained. inf 7 is a
joint then, for any other point € .S outsidel which is mapped by
7 to a pointg € S outsidel’, the parabolé;, , is not contained in
¥, and crosses it transversally at the unique rotation

Note also that any pair of parabola$, ,, andh;, ,, which are
contained inY intersect, necessarily at the unique rotation which
mapsc; to d; ande; to dz. This holds because; cz| = |didz|, as
follows from the preceding discussion.

Special surfaces are anti-rotations.Let > be a special surface,
and letA, B be the subsets &f associated witfz, as in (6). Then



there exists a singlanti-rotation (a rigid, orientation-reversiong
motion of the plane) which map4d to B. Conversely, any anti-
rotation can be associated with a unique special surfatésinmtan-
ner. However, the number of incidences within a specialesarf
may be larger than the incidence count of the anti-rotatidin w
the appropriate variants of thieparabolas: the former counts in-
cidences between the points éf(or of B) and the lines that they
determine, while the latter only counts the sizedofor of B).
Parabolas on special surfaces.

LEMMA 5. Aspecial surface can contain at magi-parabolas.

Proof: Let = be the given special surface. We claim that for each
a € S there can be at most one poink S such thath; , C =.
Indeed, suppose that there exist two such pdints, € S. Since
any pair ofh-parabolas orE intersect,h;, ,, andh; ,, meet at a
rotationr, which maps: to bothb, andb., an impossibility which
completes the proofl

2. TOOLS FROMALGEBRAIC GEOMETRY

We review in this section (without proofs) the basic toolsnfir
algebraic geometry that have been used in [6, 9]. We stagether
variants that arise in the context of incidences betweentpaind
our h-parabolas. The proofs can be found in the full version of the
paper [7].

So letC be a set ofn < s? h-parabolas ifR®. Recalling the
definitions in (H9), we say that a point (rotatioa)is ajoint of
C if it is incident to three parabolas ¢f whose tangents at are
non-coplanar. Let/ = J- denote the set of joints af’. We will
also consider pointa that are incident to three or more parabolas

of C, so that the tangents to all these parabolas are coplardar, an

refer to such points afat points of C. We recall (see (H9)) that
any pair of distincth-parabolas which meet at a point have there
distinct tangents.

First, we note that, using a trivial application of Bézouitiso-

rem [15], a trivariate polynomigb of degreed which vanishes at
2d+ 1 points that lie on a commatparabolah™ € C must vanish
identically onh™.
Critical points and parabolas. A point a is critical (or singular)
for a trivariate polynomiap if p(a) = 0 and Vp(a) = 0; any
other pointa in the zero set op is calledregular. A parabolah™ is
critical if all its points are critical.

Another application of Bézout's theorem implies the foliog:

PROPOSITION 6. LetC be as above. Then any trivariate square-
free polynomialp of degreed can have at mosi(d — 1) critical
parabolas inC.

For regular points op, we have the following easy observation.

PROPOSITION 7. Leta be a regular point ofp, so thatp = 0
on three parabolas of' passing throughu. Then these parabolas
must have coplanar tangentsat

Hence, a point incident to three parabolas 6f whose tangent
lines ata are non-coplanar, so that= 0 on each of these parabo-
las, must be a critical point of.

The main ingredient in the algebraic approach to incidemob-p
lems is the following, fairly easy (and rather well-knowe}uilt.

PROPOSITION 8. Given a setS of m points in 3-space, there
exists a nontrivial trivariate polynomial(z, y, z) which vanishes

at all the points ofS, of degreed, for anyd satisfying(*%?) > m.

Proof: (See [6, 7, 9].) A trivariate polynomial of degrekhas

(‘%3) monomials, and requiring it to vanish at points yields

these many homogeneous equations in the coefficients &f theso-
mials. Such an underdetermined system always has a nahtrivi
solution.O

Flat points and parabolas. Call a regular point- of a trivari-
ate polynomialp geometrically flaif it is incident to three distinct
parabolas of” (with necessarily coplanar tangent lines-aho pair

of which are collinear) on whicp vanishes identically.

Handling geometrically flat points in our analysis is somatvh
trickier than handling critical points, and involves the@ed-order
partial derivatives op. The analysis, detailed in [7] (and similar to
those in [6, 9]) leads to the following properties.

PROPOSITION 9. Letp be a trivariate polynomial, and define

II(p) = pypxx — 2pxPYDPXY + PXDYY .

Then, ifr is a regular geometrically flat point gf (with respect to
three parabolas of”) thenII(p)(7) = 0.

Remarks. (1)II(p) is one of the polynomials that form tisecond
fundamental fornof p; see [6, 7, 9, 13] for details.

(2) Although most details are suppressed, itis important te tigit
for Proposition 9 to hold it is crucial thatbe incident to (at least)
three parabolas af'. This is why we can only handle rotations of
multiplicity at least3.

In particular, if the degree qf is d then the degree dfi(p) is at
most(d — 1) + (d — 1) + (d — 2) = 3d — 4.

In what follows, we call a point flat for p if II(p)(7) = 0. Call
anh-parabolah™ € C flatfor p if all the points ofh™ are flat points
of p (with the possible exception of a discrete subset). Argaisig
in the case of critical points, if* contains more tha(3d — 4) flat
points themh™ is a flat parabola.

The next proposition shows that, in general, trivariateypot
mials do not have too many flat parabolas. The proof is based on
Bézout’s theorem, as does the proof of Proposition 6.

PrRoPOSITION 10. Letp be any trivariate square-free polyno-
mial of degreed with no special polynomial factors. Thencan
have at mostl(3d — 4) flat h-parabolas inC'.

3. THE NUMBER OF ROTATIONS

In this section we extend the recent algebraic machineryubh G
and Katz [9], as further developed by Elekes et al. [6], ushregy
algebraic tools set forth in the preceding section, to distafhe
boundO(n®/?) = O(s*) on the number of rotations with multi-
plicity at least3 in a collection ofn h-parabolas.

THEOREM 11. LetC be a set of at most h-parabolas inR?,
and let P be a set ofn rotations, each of which is incident to at
least three parabolas d@f'. Suppose further that no special surface
contains more thag parabolas ofC. Therm = O(n*'? + ng).

Remarks. (1) The recent results of [10, 14] imply that the number
of joints in a set of, h-parabolas i€ (n*/2). The proofs in [10, 14]
are much simpler than the proof given below, but they do nptyap
to flat points (rotations) as does Theorem 11. Since flatiooisit
are an integral part of the setup considered in this papeneeed
to count them too, using the stronger Theorem 11. Moreoven e
if we were to consider only joint rotations, the analysis logit
incidences with thé:i-parabolas will turn some of them into flat
rotations (by pruning some of the parabolas), so we will need
face flat rotations, no matter what.

(2) By Lemma 5, we always have< s, and we also have!/? <

s, so the “worst-case” bound on is O(ns).



(3) Note that the parameterin the statement of the theorem is arbi-
trary, not necessarily the maximum numbér Whenn attains its
max;mum possible valug?, the bound becomes, = O(n*/?) =
O(s?).

The proof of Theorem 11 uses the proof technique of [6], prop-
erly adapted to the present, somewhat more involved comwtext
h-parabolas and rotations.

Proof. We first prove the theorem under the additional assumption
thatg = n'/2. The proof proceeds by induction en and shows
thatm < An®/2, whereA is a sufficiently large constant whose
choice will be dictated by the forthcoming analysis. Theestent
holds for alln < ng, for some constantg, if we chooseA to be
sufficiently large. Fixn > ng, and suppose that the claim holds
for all n’ < n. LetC and P be as in the statement of the theorem,
with |C| = n, and suppose to the contrary th&y > An®/2.

We first apply the following iterative pruning process@o As
long as there exists a parabdla € C incident to fewer thaan'/2
rotations of P, for some constant < ¢ < A that we will fix later,
we removeh™ from C, remove its incident rotations fromR, and
repeat this step with respect to the reduced set of rotatiorthis
process we delete at mast®/? rotations. We are thus left with a
subset of at leagtd — ¢)n®/? of the original parabolas, each inci-
dent to at leastn'/? surviving rotations, and each surviving rota-
tion is incident to at least three surviving parabolas. Fopcity,
continue to denote these set(asnd P.

Choose a random sampl&® of parabolas fronC, by picking
each parabola independently with probabilifywheret is a small
constant that we will fix later.

The expected number of parabolas that we choose:is< tn,
wheren; is the number of parabolas remaining after the pruning.
We haven; = Q(n'/?), because each surviving parabola is inci-
dent to at leastn'/? surviving rotations, each incident to at least
two other surviving parabolas; since all these parabokasliatinct
(recall that a pair of parabolas can meet in at most one ootati
point), we haven; > 2cn'/2. Hence, using Chernoff's bound, as
in [6] (see, e.g., [1]), we obtain that, with positive probiy (a)
|C*| < 2tn. (b) Each parabola® € C contains at leas} ctn'/?
rotations that lie on parabolas 6. (To see (b), take a parabola
h* € C and a rotatiom € P N h*. Note thatr will be incident to
a parabola of2® with probability at least, so the expected num-
ber of rotations inP N A* which lie on parabolas af'® is at least
ctn'/?. This, combined with Chernoff’s bound, implies (b).)

We assume that® does indeed satisfy (a) and (b), and then (re-
calling thatc > 1) choosen'/? arbitrary rotations on each parabola
in C*, to obtain a sef of at most2tn>/? rotations.

Applying Proposition 8, we obtain a nontrivial trivariatelp-
nomial p(X,Y, Z) which vanishes at all the rotations 8f whose
degree is at most the smallest intedesatisfying(“£?) > |S|+1,

S0

d < [(6S)"*] < (120)3n'/? + 1 < 2(126)*n/?,

for n (i.e., no) sufficiently large. Without loss of generality, we
may assume that is square-free—by removing repeated factors,
we get a square-free polynomial which vanishes on the sahas se
the originalp, with the same upper bound on its degree.

The polynomialp vanishes om'/2 points on each parabola in
C*. This number is larger tha, if we choose sufficiently small
S0 as to satisfy(12t)'/® < 1. Hencep vanishes identically on all
these parabolas. Any other parabolacbineets at leask ctn'/?
parabolas of”?, at distinct points, and we can make this number
also larger thar2d, with an appropriate choice ofandc (we need
to ensure thatt > 8(12t)'/%). Hence,p vanishes identically on
each parabola af'.

We will also later need the property that each parabol@ obn-
tains at leasd points of P; that is, we require thatn!/? > 9d,
which will hold if ¢ > 18(12t)'/3.

To recap, the preceding paragraphs impose several inggsali
on ¢ andt, and a couple of additional similar inequalities will be
imposed later on. All these inequalities are easy to sabgfyhoos-
ing ¢ < 1 to be a sufficiently small positive constant, and suffi-
ciently large constant. (These choices will also affectdheice of
A—see below.)

We note thap can have at most/3 special polynomial factors
(since each of them is a cubic polynomial); iggan vanish iden-
tically on at mostd/3 respective special surfacgs, ..., Zy, for
k < d/3. We factor out all these special polynomial factors from
p, and letp denote the resulting polynomial, which is a square-free
polynomial without any special polynomial factors, of degrat
mostd.

Consider one of the special surfaceés and lett; denote the
number of parabolas containedd;. Then any rotation ofE; is
either an intersection point of (at least) two of these pales) or
it lies on at most one of them. The number of rotations of the
first kind is O(t7). Any rotation 7 of the second kind is inci-
dent to at least one parabola @fwhich crosse€; transversally
at7. We note that each-parabolah™ can cros&; in at most three
points. Indeed, substituting the equationshtfinto the equation
Ex(Z)X — E1(2)Y + K(Z) = 0 of Z; (see (4)) yields a cu-
bic equation inZ, with at most three roots. Hence, the number of
rotations of the second kind (3(n), and the overall number of ro-
tations ori; is O(t? + n) = O(n), since we have assumed in the
present version of the proof that< n'/2.

Summing the bounds over all surfacés we conclude that al-
together they contait)(nd) rotations, which we bound byn?*/2,
for some absolute constaht

We remove all these vanishing special surfaces, togettikiting
rotations and the parabolas which are fully contained imthend
let C; C C and Pi C P denote, respectively, the set of those
parabolas of” (rotations of P) which are not contained in any of
the vanishing surfaces;.

Note that there are still at least three parabolasS'oincident to
any remaining rotation i1, since none of the rotations &% lie
in any surfaces;, so all parabolas incident to such a rotation are
stillin Cy.

Clearly,p vanishes identically on evely* € C;. Furthermore,
everyh* € (4 contains at mosd points in the surfaces;, be-
cause, as just argued, it crosses each sufade at most three
points.

Hence, eaclh* € C; contains at leasid rotations ofP;. Since
each of these rotations is incident to at least three paaabot’;,
each of these rotations is either critical or geometricédlyfor p.

Consider a parabola™ € C;. If h* contains more thaRd
critical rotations therh” is a critical parabola fop. By Proposi-
tion 6, the number of such parabolas is at mt{gt— 1). Any other
parabolah* € C, contains more thafd geometrically flat points
and hencé* must be a flat parabola fgr By Proposition 10, the
number of such parabolas is at mdé8d — 4). Summing up we
obtain

|C1] < d(d—1) +d(3d — 4) < 4d°.

We require thatld? < n/2; that is,32(12¢)%/® < 1, which can be
guaranteed by choosingsufficiently small.

We next want to apply the induction hypothesisp, with the
parameterid® (which dominates the size @f;). For this, we first
need to argue that each special surface contains at(sést/? =
2d parabolas of”;. Indeed, leE be a special surface. Using (4),



eliminate, sayY” from the equation oE and substitute the resulting  n?/s < m < ns. In particular, the first term dominates when
expression into the equation ff to obtain a bivariate polynomial ~ n = s?, because we have = O(s*) = O(n?/s)

po(X, Z). Leth™ be a parabola of’; contained in=. We repre- Proof: The proof of Theorem 13 proceeds in two steps. We first
senth™ by its X -equation of the formiX = Q(Z), and observe that  establish a bound which is independentef and then apply it to
po(X, Z) vanishes on the zero set & — Q(Z). Hencepo must be obtain them-dependent bound asserted in the theorem. Due to lack

divisible by X — Q(Z). Note that, in a generic coordinate frame in  of space, we only sketch the proof for the first step, given in
the zy-plane, two different parabolas cannot have the same equa- )
tion X = Q(Z), because this equation uniquely determines, THEOREM 14. Let C' be a set of at most < s h-parabolas
andas, and then, in a generic framie, is also uniquely determined. ~ defined onS, and let P be a set of rotations with multiplicity at
Note also that the degree pf is at most3d, and that the degree least 3 with respect toS, such that no special surface contains
of each factorX — Q(Z) is 2, implying that can contain at most more thann'/? parabolgis ofC. Then the number of incidences
3d/2 parabolas of’; . betweenP and C'is O(n®/?).

Hence, the maximum number of parabolag’gfcontained in a

special surface is at mostl/2 < (4d%)"/2, so, by the induction ~ Proof- Write I = I(P, C) for short, and putn = |P|. We will

hypothesis, the number of points I is at most establish the upper bound< Bn?*/2, for some sufficiently large
absolute constan®B, whose specific choice will be dictated by the
A(4d2)3/2 < in?)/? various steps of the proof. Suppose then to the contrarylthat
- 23/2 Bn?/? for the givenC and P.

Adding up the bounds on the number of points on parabolas re- Forh* € C, letv(h”), thfmU“iP”CiW of n”, dengte the num-
moved during the pruning process and on the special surfaces ~ ber of rotations incident ta”. We havey_, . . v(h") = I; the

(which correspond to the special polynomial factorg)pfwe ob- average multiplicity of a parabofa” is I /7.
tain We begin by applying the following pruning process. Put
A I/(6n). As long as there exists a parabda € C' whose multi-
|P| < 237n3/2 + (b4 c)n®* < An®/? | plicity is smaller than/, we remove:* from C, but do not remove

any rotation incident t&*. We keep repeating this step (without

with an appropriate, final choice 6fc, andA. This contradictsthe  changingy), until each of the surviving parabolas has multiplicity

assumption thatP| > An®/?, and thus establishes the induction at least.. Moreover, if, during the pruning process, some rotation
step forn, and, consequently, completes the proof of the restricted + |oses| x(7)/2] incident parabolas, we removefrom P. This

version of the theorem. decreases the multiplicity of some parabolas, and we useetive
Proof of the general version: The proof proceeds almost exactly  muiltiplicities in the test for pruning further parabolasi ve keep
as the proof of the restricted version, except for the amabyfsthe using the original threshold.
number of rotations on the special surfaégs which, using the When we delete a parabolid, we lose at most incidences with
preceding notations, is bounded by surviving rotations. When a rotationis removed, the number of
current incidences with is smaller than or equal to twice the num-
o Z(ﬁ +n)|=0|q- Zti +nd | =0mn*? +ng). ber of incidences withr that have already been removed. Hence,
- p the total number of incidences that were lost during the ipgin

process is a mosinv = I/2. Thus, we are left with a subséy

See [7].0 . . . of the rotations and with a subs@t of the parabolas, so that each
We summarize the remarks following Theorem 11, combined h* € Cy is incident to at least = I/(6n) rotations of 1, and
with Lemma 2, in the following corollary. each rotation- € P, is incident to at least three parabolas(f
(the latter is an immediate consequence of the rule for pgiairo-

COROLLARY 12. LetS be a set of points in the plane. Then — a1i0n) Moreover, we havé(Pr, Cy) > /2. It therefore suffices
there are at mos©(s~) rotations which map some (degenerate or to bound! (Py, C1).

non-degenerate) triangle spanned §yto another (congruent and Letn; = |Ci]. Since at least three parabolag(in are incident
equally oriented) such triangle. This bound is tight in therst to each rotation itPy, it follows that each parabola ifi; is incident
case. to at mostn, /2 rotations ofP;, and thereford (P1, C1) < n?/2.

Combining this with the fact thai(Pi,Cy) > I/2, we get that
4. INCIDENCES BETWEEN PARABOLAS ni > BY/?p3/4,

AND ROTATIONS We fix the following parameters
In this section we further adapt the machinery of [6] to deriv = and (=6
an upper bound on the number of incidences betweantations nt/? n’
andn h-parabolas ifR*, where each rotation is incident to at least  for an appropriate absolute constdnk 1, whose value will be
three parabolas. fixed shortly. Clearlyt < 1, and we can also ensure that< v,
i.e., thatl > 6ni1n'/?, by choosingB > 6. Furthermore, since
THEOREM 13. For an underlying ground se$ of s points in n1 > BY?n%/* we haver > BY/?n!/%,
the plane, letC be a set of at most < s h-parabolas defined We construct a random samglg of parabolas of>; by choos-
on S, and letP be a set ofn rotations with multiplicity at leas8 ing each parabola independently at random with probabijitiie
(with respect taS). Then expected size of’} is tni. Now takex (arbitrary) rotations ofP;
on each parabola @f} (which can always be done singe< v), to
I(P,C)=0 (ml/gn + mQ/Snl/Ssl/S) : form a samples of rotations inP;, of expected size at mostn; .

For any parabol&™ € C, the expected number of rotations
Remark. As easily checked, the first term dominates the sec- of Pi N k™ which lie on parabolas o’} is at leasttv (each of
ond term whenn < n2/s, and the second term dominates when the at least rotationsa € P1 N h™ is incident to at least one



other parabola of’;, and the probability of this parabola to be

chosen inCY{ is t). We assume thaB is large enough so that
5B mn1

= 6 nl/2
B > 12/5). Sincetv > 2z = Q(n'/*), and the expected size
2

is larger tharz (it suffices to choose

L. o
of C3istny = 2L > Bon'/?, we can use Chernoff’s bound, to

show that there 7e}xists a samyglg such that (i)C7| < 2¢n1, and
(i) each parabol&* € C; contains at Ieas%tu > 1 rotations of
P, which lie on parabolas af'{. In what follows, we assume that
C7 satisfies these properties. In this case, we hayec 2txn,.

Now construct, using Proposition 8, a nontrivial suqaeefirivari-
ate polynomialp which vanishes or$, of smallest degreé satis-
fying (“1?) > |S] + 1, so

[(61S)"3] < (12twns)® +1 = (126)/3 2L 41

d nl/2

IN

3 N1
< 2(120)" 3@

for n sufficiently large (for small values af we ensure the bound
by choosingB sufficiently large, as before).

We will choosed < 1/6144, sox > 4d.

As above, and without loss of generality, we may assumegthat
is square-free: factoring out repeated factors only lowerslegree
of p and does not change its zero set.

The following properties hold: (a) Sinee > 2d, p vanishes at
more thard rotations on each parabola®©f, and therefore, as al-
ready argued, it vanishes identically on each of these p&ash(b)
Each parabola™ € C, contains at Ieasgtu > x > 2d rotations
which lie on parabolas of’y. Since, as just arguegd,vanishes at
these rotations, it must vanish identically bh. Thus,p = 0 on
every parabola of’; .

Before proceeding, we enforce the inequatify < énl which

will hold if we chooses so that(126)%/® < 1/32. Similarly, an
appropriate choice aof (or B) also ensures that > 9d.

We next consider all the special polynomial factorspofand
factor them out, to obtain a square-free polynonjiabf degree
at mostd, with no special polynomial factors. As in the previous
analysis,p can have at most/3 special polynomial factors, so it
can vanish identically on at mog}'3 special surfacesy, ..., =,
for k < d/3. LetC> C () denote the set of those parabolas of
C1 which are not contained in any of the vanishing surfa€es
For each parabola™ € C5, p vanishes identically onr*, and (as
argued above) at modtrotations inP; N k™ lie in the surface&,.
Hence,h™ contains at leastd remaining rotations, each of which
is either critical or flat fofp, because each such point is incident to
at least three parabolas (necessarilg'ef on whichp = 0.

Hence, either at leagid of these rotations are critical, and then
h* is a critical parabola fop, or at leastd of these rotations are
flat, and them* is a flat parabola fop. Applying Propositions 6
and 10, the overall number of parabolaginis therefore at most

<4d® < %nl.

On the other hand, by assumption, each vanishing specialcsur
=, contains at most'/? parabolas of’, so the number of parabo-
las contained in the special vanishing surfaces is at mbstl <
in/22 < Lny, with our choice of.

Hence, the overall number of parabolasGh is smaller than
in1 + 2n1 < na, a contradiction that completes the proof of The-
orem 14.0
Proof of Theorem 13. Write I = I(P,C) for short. Setv =
em'® andp = en/m?/3, for some sufficiently large constant
¢ whose value will be determined later, and apply the follayvin

d(d —1) +d(3d — 4)

pruning process. As long as there exists a parabbla C' whose
multiplicity is smaller than/, we remover” from C, but do not re-
move any rotation incident tb*. Similarly, as long as there exists
a rotationt € P whose multiplicity is smaller thap, we remove
7 from P. Of course, these removals may reduce the multiplicity
of some surviving rotations or parabolas, making addifioota-
tions and parabolas eligible for removal. We keep repedtiig
step (without changing the initial thresholdsnd ), until each of
the surviving parabolas has multiplicity at leasand each of the
surviving rotations has multiplicity at leagt We may assume that
> 3, by choosing: suficiently large and using Theorem 11(i).

When we delete a paraboid, we lose at most incidences with
surviving rotations. When a rotatianis removed, we lose at most
u incidences with surviving parabolas. All in all, we lose atsn
nv4+mu = 2em3n incidences, and are left with a subggtof P
and with a subset’; of C, so that each parabola 6f; is incident
to at leastv rotations of P;, and each rotation of; is incident
to at leastu parabolas of”; (these subsets might be empty). Put
n1 = |Ci| andmy = |P1|. We havel < I(Py,C1) + 2cm!/3n,
so it remains to bound(P:, C1), which we do as follows.

We fix some sufficiently small positive parametex: 1, and
construct a random samplg® C P, by choosing each rotation of
P, independently with probability. The expected size Py’ is
mat, and the expected number of points/f on any parabola of
C, is at leastvt = ctm!/3. Chernoff's bound implies that, with
positive probability,|Pf| < 2mat, and |Pf N A*| > tetm!/3
for everyh™ € C4, and we assume thd’ does satisfy all these
inequalities. (For the bound to appiy,: (andm) must be at least
some sufficiently large constant; if this is not the case, wve the
trivial bound min (or mn) on I into the boundO(m}“n) (or
O(ml/ 3n)) by choosing the constant of proportionality sufficiently
large.)

Construct, using Proposition 8, a nontrivial square-freatiate
polynomial p which vanishes orP?, whose degree is at most the

smallest integed satisfying(“}?%) > 2tm1 + 1, so

d < [(12tmq)"?] < 3tY%m}/?,

assuming (as above) that; is sufficiently large.

Choosingc to be large enough, we may assume thiat> 18d.
(This will hold if we ensure thatt > 54t'/3.) This implies that
p vanishes at more thail points on each parabold € C;, and
therefore it vanishes identically on each of these parabola

As in the previous analysis, we factor out the special patyiad
factors ofp, obtaining a square-free polynomjalof degree at most
d, with no special polynomial factors. L&, ..., Z denote the
special surfaces on whigh vanishes identically (the zero sets of
the special polynomial factors @), for somek < d/3.

LetC> C C) (resp.,P» C Pp) denote the set of those parabolas
of C; (resp., rotations of?;) which are not contained in any of the
vanishing surfaceg;. PutCs = C, \ Cz andP; = Py \ Pa.

For each parabola® € Cs, p vanishes identically oh™, and, as
argued in the proof of Theorem 11, at mdsttations of P, N h*
lie in the surface&;. Henceh* contains more thafd rotations of
P», and, arguing as in the preceding proof, each of these ooati
is either critical or flat forp. Hence, either more thati of these
rotations are critical, and théti is a critical parabola fof, or more
than6d of these rotations are flat, and thehis a flat parabola for
p. Applying Propositions 6 and 10, the overall number of palabd
in C5 is therefore at most

d(d — 1) + d(3d — 4) < 4d°.

We now apply Theorem 14 6> and P, with the bound4d? on
the size ofC>. Arguing as before, the conditions of this theorem



are easily seen to hold for these sets. Theorem 14 then srthké s points, is
the number of incidences betweé&h andC’2, which is also equal (/2 56 1)1 25 13 1/
to the number of incidences betweBnand(Cy, is o (m" n> s T 4+ mTn s n) ,

I(P2,C1) = I(P,C2) = O((4d%)*'?) = O(d®) = O(m) . where theO* (-) notation hides polylogarithmic factors. In partic-

2. . .
Moreover, since each parabola@$ contains at least eight times ular, when alln = 5= h-parabolas are considered, the bound is

more rotations of>, than of P, this bound also applies to the num- o* (m5/1257/4 n 32)
ber of incidences betweeh; andCs. '
It therefore remains to bound the number of incidences teiwe
P; andC%, namely, between the rotations and parabolas contained

in the vanishing special surfacgs. To do so, we iterate over the

surfaces, say, in the ord&h, . .., Zx. For each surfacg; in turn,

we process the rotations and parabolas containes; iand then

remove them from further processing on subsequent surfaces
Let us then consider a special surfate Letm; andn; denote

respectively the number of rotations and parabolas coeddir=;,

which were not yet removed when processing previous swgface

The number of incidences between these rotations and pasabo s giways a problematic issue in analyzing point-planedentes).
can be bounded by the classical Szemerédi-Trotter incedleoand Fortunately, the special geometric structure in our setiowa us

[20] (see also (2), which i©(m?*n?"* + m; + n;). Summing o control this situation, and get the bound asserted intterem.
these bounds over all the special surfa€gsand using Holder’s See [7] for full details 0
inequality and the fact, established in Lemma 5, that< s, we

Brief sketch of the proof: We dualize the problem, mapping each
h-parabola into a point in parametric 4-space, so that eath ro
tion becomes a 2-plane. We project the dual points and planes
onto some generic 3-space, and bound the number of incislence
between these points andm planes. We do this using @ /r)-
cutting of the arrangement of these planes, for an apprteppa-
rameterr, and use the bound of Theorem 13 within each cell of
the cutting. We need to pay special attention to situatiohsres
many points lie on a line which is contained in many planes¢ivh

get an overall bound of COROLLARY 16. LetC be a set ofs h-parabolas andP a set
of rotations, with respect to a planar ground $ebf s points. Then,
o (81/3 Zm?/gn}/g n Z(mi + m)) _ for any k£ > 3, the number)/> of rotations of P incident to at

; p leastk parabolas ofC' satisfies

m2/3p B33 L n) 7 § n10/741/7 ns  n
0( +m+ Msp =0 Q?EF_+F+E)
where we use the facts thaf, m; < m and)_, n; < n, which
follow since in this analysis each parabola and rotationésgssed ~ For n = s?, the bound becomes
at most once. The two linear terms satisfy= O(m'/?n) (the &3
bound obtained in the pruning process), and= O(m?*/n!/3s'/?) My = 0" <W) :
sincem = O(ns); see Remark (2) following Theorem 11.
We are not done yet, because each rotatiof?pfs processed Proof: We havel(P,C) > kMs. Comparing this bound with

only once, within the first surfacg; containing it. This, however, the upper bounds in Theorem 15 yields the asserted boands.
can be handled as in [6]. That is, lebe a rotation which was pro-

cessed within the first surfaég containing it. Suppose thatalso
lies on some later surfacg;, with j > 4, and leth* be a parabola 6. CONCLUSION

contained irE;, which has not been removed yet; in particuldr, In this paper we have reduced the problem of obtaining a near-
is not contained irE;, and thus meets it transversally, so the inci- linear lower bound for the number of distinct distances mpkane
dence betweeh™ andr can be regarded as one of the transversal to a problem involving incidences between points and a speci
incidences irg;, which we have been ignoring so far. To count class of parabolas (or helices) in three dimensions. We imace

them, we simply recall that each parabola, whethetobr of Cs, significant progress in obtaining upper bounds for the nunabe
has at most three transversal intersections with a sulactor a such incidences, but we are still short of tightening thesends to
total of at mostd crossings with all the vanishing surfaces. Since meet the conjectures on these bounds made in the introductio
each of these parabolas contains at l&astotations of P, those To see how far we still have to go, consider the bound in Corol-
“transversal incidences” are only a fraction of the totanier of lary 16, for the case: = s, which then become®* (s*/k'*/T).
incidences, and we simply ignore them altogether. (Here M, coincides withV>, as defined in (H3).) Moreover, we
To recap, we obtain the following bound on the number of inci- also have the Szemerédi-Trotter bouns* /£°), which is smaller
dences betweeR; andC: than the previous bound far> s7/°. Substituting these bounds in

the analysis of (H3) and (H4), we get
I(P1,Ch)=0 (ml/gn + m2/3n1/381/3> .
[s(s —1) —a]?

x

) <|K|=
Adding the boundcm'/3n on the incidences lost during the prun- < K]
ing process, we get the asserted bound.

N>o + Z(k — 1)N2k =

5. FURTHER IMPROVEMENTS k>3
In this section we further improve the bound in Theorem 13 us- s7/9 1
. L . 3 L
ing more standard space decomposition techniques. We show: N>o +0(s”) - [1+ Z 5T + Z 2| =
k=3 k>s7/9

THEOREM 15. The number of incidences betweerarbitrary 29/9
rotations andn h-parabolas, defined for a planar ground set with N>z +O(s777).



It is fairly easy to show thal~ is O(s'%/?), by noting thatVss
can be upper bounded I8y (3, |Ei|*), whereE; is as defined in
(H1). Using the upper boundz;| = O(s*/?) [18], we get

Nz2=0 <Z IEil2> =0(s"*)-0 <Z |Ei|> = 0(s"/3).

Thus, at the momenty>, is the bottleneck in the above bound,
and we only get the (weak) lower boufis>/) on the number of
distinct distances. Showing thats» = O(s%*/?) too (hopefully,
a rather modest goal) would improve the lower boun€{e™?),
still a rather weak lower bound.

Nevertheless, we feel that the reduction to incidences rieeth
dimensions is fruitful, because
(i) It sheds new light on the geometry of planar point setmteel
to the distinct distances problem.
(ii) It gave us a new, and considerably more involved setwphiith
the new algebraic technique of Guth and Katz could be apphed
such, the analysis in this paper might prove useful for olngi
improved incidence bounds for points and other classesmwesu
in three dimensions. The case of points and circles is an airate
next challenge.

Another comment is in order. Our work can be regarded as a spe-

cial variant of the complex version of the Szemerédi-Tratteo-
rem on point-line incidences [20]. In the complex plane,dhaa-
tion of a line (in complex notation) i& = pz + ¢. Interpreting this
equation as a transformation of the real plane, we dntraothetic

map i.e., a rigid motion followed by a scaling. We can therefore

rephrase the complex version of the Szemerédi-Trotteré¢neas
follows. We are given a seP of m pairs of points in the (real)

plane, and a set/ of n homothetic maps, and we seek an upper

bound on the number of times a mage M and a paia, b) € P
“coincide”, in the sense that(a) = b. In our work we only con-
sider “complex lines” whose “slopej has absolute valug (these
are our rotations), and the sBtis simply .S x S.

The main open problems raised by this work are:
(a) Obtain a cubic upper bound for the number of rotationsctvhi
map only two points of the given ground planar Seb another pair
of points of S. Any upper bound smaller tha@(s**>%) would
already be a significant step towards improving the currenef
bound ofQ(s%-#¢*!) on distinct distances [11].
(b) Improve further the upper bound on the number of incidenc

between rotations andparabolas. Ideally, establish Conjectures 1

and 2.
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