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Abstract

We study the shape matching problem under the Hausdorff distance and its variants.
In the first part of the paper, we consider two sets A, B of balls in R

d, d = 2, 3, and wish
to find a translation t that minimizes the Hausdorff distance between A + t, the set of
all balls in A shifted by t, and B. We consider several variants of this problem. First,
we extend the notion of Hausdorff distance from sets of points to sets of balls, so that
each ball has to be matched with the nearest ball in the other set. We also consider
the problem in the standard setting, by computing the Hausdorff distance between
the unions of the two sets (as point sets). Second, we consider either all possible
translations t (as is the standard approach), or consider only translations that keep the
balls of A + t disjoint from those of B. We propose several exact and approximation
algorithms for these problems. In the second part of the paper, we note that the
Hausdorff distance is sensitive to outliers, and thus consider two more robust variants—
the root-mean-square (rms) and the summed Hausdorff distance. We propose efficient
approximation algorithms for computing the minimum rms and the minimum summed
Hausdorff distances under translation, between two point sets in Rd. In order to obtain
a fast algorithm for the summed Hausdorff distance, we propose a deterministic efficient
dynamic data structure for maintaining an ε-approximation of the 1-median of a set of
points in R

d, under insertions and deletions.
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1 Introduction

The problem of shape matching in two and three dimensions arises in a variety of applica-
tions, including computer graphics, computer vision, pattern recognition, computer aided
design, and molecular biology [6, 15, 23]. For example, proteins with similar shapes are likely
to have similar functionalities, therefore classifying proteins (or their fragments) based on
their shapes is an important problem in computational biology. Similarly, the proclivity of
two proteins binding with each other also depends on their shapes, so shape matching is
central to the so-called docking problem in molecular biology [15].

Informally, the shape-matching problem can be described as follows: Given a distance
measure between two sets of objects in R

2 or R
3, determine a transformation, from an

allowed set, that minimizes the distance between the sets. In many applications, the allowed
transformations are all possible rigid motions. However, in certain applications there are
constraints on the allowed transformations. For example, in matching the pieces of a jigsaw
puzzle, it is important that no two pieces overlap each other in their matched positions.
Another example is the aforementioned docking problem, where two molecules bind together
to form a compound, and, clearly, at this docking position the molecules should occupy
disjoint portions of space [15]. Moreover, because of efficiency considerations, one sometimes
restricts further the set of allowed transformations, most typically to translations only.

Several distance measures between objects have been proposed, varying with the kind
of input objects and the application. One common distance measure is the Hausdorff
distance [6], originally proposed for point sets. In this paper we adopt this measure, extend
it to sets of non-point objects (mainly, disks and balls), and apply it to several variants of
the shape matching problem, with and without constraints on the allowed transformations.
In many applications (e.g., molecular biology), shapes can be approximated by a finite union
of balls [7], which is therefore the main type of input assumed in the first part of this paper.

1.1 Problem statement

Let A and B be two (possibly infinite) sets of geometric objects (e.g., points, balls, simplices)
in R

d, and let d : A × B → R be a distance function between objects in A and in B. For
a ∈ A, we define d(a,B) = infb∈Bd(a, b). Similarly, we define d(b,A) = infa∈A d(a, b), for
b ∈ B. The directional Hausdorff distance between A and B is defined as

h(A,B) = sup
a∈A

d(a,B),

and the Hausdorff distance between A and B is defined as

H(A,B) = max{h(A,B), h(B,A)}.

(It is important to note that in this definition each object in A or in B is considered as a
single entity, and not as the set of its points.) In order to measure similarity between A

and B, we compute the minimum value of the Hausdorff distance over all translates of A
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within a given set T ⊆ R
d of allowed translation vectors. Namely, we define

σ(A,B;T ) = inf
t∈T

H(A + t,B),

where A + t = {a + t | a ∈ A}. In our applications, T will either be the entire R
d or

the set of collision-free translates of A at which none of its objects intersects any object
of B. The collision-free matching between objects is useful for applications (such as those
mentioned above) in which the goal is to locate a transformation where the collective shape
of one set of objects best complements that of the other set. We will use σ(A,B) to denote
σ(A,B; Rd).

As already mentioned, our definition of (directional) Hausdorff distance is slightly dif-
ferent from the one typically used in the literature [6], in which one considers the two unions
∪A, ∪B as two (possibly infinite) point sets, and computes the standard Hausdorff distance

H(∪A,∪B) = max{h(∪A,∪B), h(∪B,∪A)},

where
h(∪A,∪B) = sup

p∈∪A

d(p,∪B) = sup
p∈∪A

inf
q∈∪B

d(p, q).

We will denote ∪A (resp., ∪B) as UA (resp., UB), and use the notation hU (A,B) to denote
h(UA, UB). Analogous meanings hold for the notations HU (A,B) and σU (A,B;T ).

A drawback of the directional Hausdorff distance (and thus of the Hausdorff distance)
is its sensitivity to outliers in the given data. One possible approach to circumvent this
problem is to use “partial matching” [12], but then one has to determine how many (and
which) of the objects in A should be matched to B. Another possible approach is to use
the root-mean-square (rms, for brevity) Hausdorff distance between A and B, defined by

hR(A,B) =

(∫
A

d2(a,B)da∫
A

da

)1/2

and

HR(A,B) = max{hR(A,B), hR(B,A)},

with an appropriate definition of integration (usually, summation over a finite set or the
Lebesgue integration over infinite point sets). Define σR(A,B;T ) = inft∈T HR(A + t,B).
Finally, as in [19], we define the summed Hausdorff distance to be

hS(A,B) =

∫
A

d(a,B)da∫
A

da
,

and similarly define HS and σS . Informally, h(A,B) can be regarded as an L∞-distance over
the sets of objects A and B. The two new definitions replace L∞ by L2 and L1, respectively.
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1.2 Previous results

It is beyond the scope of this paper to discuss all the results on shape matching. We refer
the reader to [6, 15, 23] and references therein for a sample of known results. Here we
summarize known results on shape matching using the Hausdorff distance measure.

Most of the early work on computing Hausdorff distance focused on finite point sets. Let
A and B be two families of m and n points, respectively, in R

d. In the plane, H(A,B) can be
computed in O((m+n) log mn) time using Voronoi diagrams [4]. In R3, it can be computed
in time O((m + n)4/3+ε), where ε > 0 is an arbitrarily small constant, using the data
structure of Agarwal and Matoušek [1]. Huttenlocher et al. [18] showed that σ(A,B) can be
computed in time O(mn(m + n)α(mn) log mn) in R

2, and in time O((mn)2(m + n)1+ε) in
R

3, for any ε > 0. Chew et al. [12] presented an O((m + n)d3d/2e+1 log3 mn)-time algorithm
to compute σ(A,B) in R

d for any d ≥ 2. The minimum Hausdorff distance between A and
B under rigid motion in R

2 can be computed in O((m + n)6 log mn) time [17].
Faster approximation algorithms to compute σ(A,B) were first proposed by Goodrich

et al. [14]. Aichholzer et al. proposed a framework of approximation algorithms us-
ing reference points [3]. In R

2, their algorithm approximates the optimal Hausdorff dis-
tance within a constant factor, in O((m + n) log mn) time over all translations, and in
O(mn log(mn) log∗ mn) time over rigid motions. The reference point approach can be ex-
tended to higher dimensions. However, it neither approximates the directional Hausdorff
distance over a set of transformations, nor can it cope with the partial-matching problem.

Indyk et al. [19] study the partial matching problem, i.e., given a query r > 0, com-
pute a rigid transform τ so that the number of points p ∈ A for which d(τ(p),B) ≤ r
is maximized. They present algorithms for ε-approximating the maximum-size partial
matching over the set of rigid motions in O(mn∆/(rε2) polylog(n∆

εr )) time in R
2, and in

O(mn∆3/(r3ε3) polylog(n∆
εr )) time in R

3, where ∆ is the maximum of the spreads of the
two point sets.1 Their algorithm can be extended to approximate the minimum summed
Hausdorff distance over rigid motions. Similar results were independently achieved in [11]
using a different technique.

Algorithms for computing HU (A,B) and σU (A,B), where A and B are sets of segments
in the plane, or sets of simplices in higher dimensions are presented in [2, 4, 5]. Atallah [10]
presents an algorithm for computing HU (A,B) for two convex polygons in R

2. Agarwal et
al. [2] provide an algorithm for computing σU (A,B), where A and B are two sets of m and
n segments in R

2, respectively, in time O((mn)2 log3 mn). If rigid motions are allowed, the
minimum Hausdorff distance between two sets of points in the plane Micha says: Right? ←−
can be computed in time O((mn)3 log2(mn)) (Chew et al. [13]). Aichholzer et al. [3] present
algorithms for approximating the minimum Hausdorff distance under different families of
transformations for sets of points or of segments in R

2, and for sets of triangles in R
3, using

reference points. Other than that, little is known about computing σU (A,B) or σ(A,B)
where A and B are sets of simplices or other geometric shapes in higher dimensions.

1The spread of a set of points is the ratio of its diameter to the closest-pair distance.

3



1.3 Our results

In this paper, we develop efficient algorithms for computing σ(A,B;T ) and σU (A,B;T ) for
sets of balls, and for approximating σR(A,B), σS(A,B) for sets of points in R

d. Conse-
quently, the paper consists of three parts, where the first two deal with the two variants of
Hausdorff distances for balls, and the third part studies the rms and summed Hausdorff-
distance problems for point sets.

Let D(c, r) denote the ball in Rd of radius r centered at c. Let A = {A1, . . . , Am} and
B = {B1, . . . , Bn} be two families of balls in R

d, where Ai = D(ai, ρi) and Bj = D(bj, rj),
for each i and j. Let F be the set of all translation vectors t ∈ R

d so that no ball of A + t
intersects any ball of B. We note, though, that balls of the same family can intersect each
other, as is typically the case, e.g., in modeling molecules as collections of balls.

Section 2 considers the problem of computing the Hausdorff distance between two sets
A and B of balls under the collision-free constraint, where the distance between two disjoint
balls Ai ∈ A and Bj ∈ B is defined as d(Ai, Bj) = d(ai, bj) − ρi − rj . We can regard this
distance as an additively weighted Euclidean distance between the centers of Ai and Bj ,
and it is a common way of measuring distance between atoms in molecular biology [15].
In Section 2 we describe algorithms for computing σ(A,B;F) in two and three dimensions.
The running time is O(mn(m+n) log4 mn) in R

2, and O(m2n2(m+n) log4 mn) in R
3. The

approach can be extended to solve the (collision-free) partial-matching problem under this
variant of Hausdorff distance in the same asymptotic time complexity.

Section 3 considers the problem of computing σU (A,B) and σU (A,B;F), i.e., of com-
puting the Hausdorff distance between the union of A and the union of B, minimized over
all translates of A in R

d or in F. We first describe an O(mn(m+n) log4 mn)-time algorithm
for computing σU (A,B) and σU (A,B;F) in R

2, which relies on several geometric properties
of the medial axis of the union of disks. Micha says: Add [REFS] A straightforward ex- ←−
tension of our algorithm to R

3 is harder to analyze, and does not yield efficient bounds on
its running time, mainly because little is known about the complexity of the medial axis of
the union of balls in R

3 [?]. We therefore consider approximation algorithms. In particular,
given a parameter ε > 0, we compute a translation t, in time O(((m + n)/ε2) log3 mn) in
R

2 and in time O(((m2 +n2)/ε3) log2 mn) in R
3, such that HU(A+ t,B) ≤ (1+ε)σU (A,B).

We also present a “pseudo-approximation” algorithm for computing σU (A,B;F): Given an
ε > 0, the algorithm computes a region X ⊆ R

d that serves as an ε-approximation of F (in
a sense defined formally in Section 3). It then returns a placement t ∈ X such that

HU (A + t,B;X) ≤ (1 + ε)σU (A,B;X),

in time O(((m2 + n2)/ε3) log2 mn) in R
3. This variant of approximation makes sense in

applications where the data is noisy and shallow penetrations between objects are allowed,
as is the case in the docking problem [15].

Finally, we turn, in Section 4, to the two variants of rms and summed Hausdorff dis-
tances. Given two sets of points A and B in R

d of size m and n, respectively, Section 4
describes an O((mn/εd) log(mn/ε))-time algorithm for computing an ε-approximation of
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σR(A,B).2 It also provides a data structure so that, for a query vector t ∈ R
d, an ε-

approximation of HR(A + t,B) can be computed in O(log(mn/ε)) time. In fact, we solve
a more general problem, which is interesting in its own right. Given a family P1, . . . , Pl of
point sets in R

d, with a total of N points, we construct a decomposition of R
d into O(N/εd)

cells, which is an ε-approximation of each of the Voronoi diagrams of P1, . . . , Pl, in the
sense defined in [9, 16]. Moreover, given a semigroup operation +, we can preprocess this
decomposition in O((N/εd) log(N/ε)) time, so that for a query point q, an ε-approximation
of

∑l
i=1 d2(q, Pi) can be computed in O(log(N/ε)) time. We also extend the approach to

obtain an algorithm that ε-approximates σS(A,B) in O((mn/ε2d) polylog(mn, 1/ε)) time.
This result relies on an efficient dynamic data structure, which we propose, for maintaining
an ε-approximation of the 1-median of a point set in R

d, under insertion and deletion of
points.

2 Collision-Free Hausdorff Distance between Sets of Balls

Let A = {A1, . . . , Am} and B = {B1, . . . , Bn} be two sets of balls in R
d, d = 2, 3. For two

disjoint balls Ai = D(ai, ρi) ∈ A and Bj = D(bj , rj) ∈ B, we define

d(Ai, Bj) = d(ai, bj)− ρi − rj ,

namely, the (minimum) distance between Ai and Bj as point sets. Let F be the set of
placements t of A such that no ball in A + t intersects any ball of B. In this section, we
describe an exact algorithm for computing σ(A,B;F), and show that it can be extended to
partial matching.

2.1 Computing σ(A, B; F) in R2 and R3

As is common in geometric optimization, we first present an algorithm for the decision
problem, namely, given a parameter δ > 0, we wish to determine whether σ(A,B;F) ≤ δ.
We then use the parametric-searching technique [2, 21] to compute σ(A,B;F). Given δ > 0,
for 1 ≤ i ≤ m, let Vi ⊆ R

d be the set of vectors t ∈ R
d such that

(V) 0 < min1≤j≤n d(Ai + t, Bj) ≤ δ.

(In particular, Ai + t does not intersect the interior of any Bj ∈ B.)
Let D−

ij = D(bj − ai, ρi + rj) and D+
ij = D(bj − ai, ρi + rj + δ). Then U+

i =
⋃

j≤n D+
ij is

the set of vectors that satisfy min1≤j≤n d(Ai +t, Bj) ≤ δ, and the interior of U−
i =

⋃
j≤n D−

ij

violates 0 < min1≤j≤n d(Ai + t, Bj). Hence, Vi = cl(U+
i \ U−

i ). Let

V (A,B) =
⋂

1≤i≤m

Vi = cl
((⋂

i

U+
i

)
\

(⋃

i

U−
i

))
.

2Indyk et al. [19] outline an approximation algorithm for computing σR(A, B) without providing any
details. We believe that if we work out the details of their algorithm, the running time of our algorithm is
better. Moreover, our algorithm is more direct.
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rj

bj − ai

(a) (b)

Figure 1: (a) Inner, middle and outer disks are Bj − ai, D−
ij , and D+

ij , respectively; (b) an

example of Vi (dark region), which is the difference between U+
i (the whole union) and U−

i

(inner light region).

See Figure 1 for an illustration. By definition, V (A,B) ⊆ F is the set of vectors t ∈ F such
that h(A + t,B) ≤ δ. Similarly, we define

V (B,A) ⊆ F = {t ∈ F | h(B,A + t) ≤ δ}.

Thus σ(A,B;F) ≤ δ if and only if V (A,B) ∩ V (B,A) 6= ∅.

Lemma 2.1 The combinatorial complexity of V (A,B) in R
2 is O(m2n).

Proof: If an edge of ∂V (A,B) is not adjacent to any vertex, then it is the entire circle
bounding a disk of D+

ij or D−
ij . There are O(mn) such disks, so it suffices to bound the

number of vertices in V (A,B).
Let v be a vertex of V (A,B); v is either a vertex of Vi, for some 1 ≤ i ≤ m, or an

intersection point of an edge in Vi and an edge in Vk, for some 1 ≤ i 6= k ≤ m. In the latter
case,

v ∈ Vi ∩ Vk = (U+
i ∩ U+

k ) \ (U−
i ∪ U−

k ).

In other words, a vertex of V (A,B) is a vertex of U+
i ∩U+

k , U+
i \U−

k , U+
k \U−

i , or U−
i ∪U−

k ,
for 1 ≤ i, k ≤ m. Observe that a vertex of U+

i ∩ U+
k (resp., of U+

i \ U−
k ) that lies on both

∂U+
i and ∂U+

k (resp., ∂U−
k ) is also a vertex of U+

i ∪U+
k (resp., U+

i ∪U−
k ). Therefore, every

vertex in V (A,B) is a vertex of U+
i ∪ U+

k , U+
i ∪ U−

k , U+
k ∪ U−

i , or U−
i ∪ U−

k , for some
1 ≤ i, k ≤ m. Since each U+

i , U−
i is the union of a set of n disks, each of U−

i ∪U+
k , U+

i ∪U−
k ,

U+
k ∪U−

i , U−
i ∪U−

k is the union of a set of 2n disks and thus has O(n) vertices [20]. Hence,
V (A,B) has O(m2n) vertices.

Lemma 2.2 The combinatorial complexity of V (A,B) in R
3 is O(m3n2).

Proof: The number of faces or edges of V (A,B) that do not contain any vertex is O(n2m2)
since they are defined by at most two balls in a family of 2mn balls. We therefore focus
on the number of vertices in V (A,B). As in the proof of Lemma 2.1, any vertex V (A,B)
satisfies:

v ∈ Vi ∩ Vj ∩ Vk = (U+
i ∩ U+

j ∩ U+
k ) \ (U−

i ∪ U−
j ∪ U−

k ),
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for some 1 ≤ i ≤ j ≤ k ≤ m. Again, such a vertex is also a vertex of Xi∪Xj ∪Xk, where Xi

is U+
i or U−

i , and similarly for Xj , Xk. Since the union of r balls in R
3 has O(r2) vertices,

Xi ∪Xj ∪Xk has O(n2) vertices, thereby implying that V (A,B) has O(m3n2) vertices.
Similarly, we can prove that the complexity of V (B,A) is O(n2m) in R

2 and O(n3m2)
in R

3. Extending the preceding arguments a little, we obtain the following.

Lemma 2.3 V (A,B) ∩ V (B,A) has a combinatorial complexity of O(mn(m + n)) in R
2,

and O(m2n2(m + n)) in R
3.

Remark. The above argument in fact bounds the complexity of the arrangement of V =
{V1, V2, . . . , Vm}. For example, in R

2, any intersection point of ∂Vi and ∂Vk lies on the
boundary of ∂(Vi ∩ Vk), and we have argued that Vi ∩ Vk has O(n) vertices. Hence, the
entire arrangement has O(m2n) vertices in R

2.
Micha says: More space here. ←−
We exploit a divide-and-conquer approach, combined with a plane-sweep, to compute

V (A,B), V (B,A), and their intersections in R
2. For example, to compute V (A,B), we

compute V ′ =
⋂n/2

i=1 Vi and V ′′ =
⋂n

i=n/2+1 Vi recursively, and merge V (A,B) = V ′ ∩ V ′′ by
a plane-sweep method. The overall running time is O((m + n)mn log mn).

To decide whether V (A,B) ∩ V (B,A) = ∅ in R
3, it suffices to check whether

ΓD = V (A,B) ∩ V (B,A) ∩ ∂D

is empty for all balls D ∈ {D−
ij ,D

+
ij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Using the fact that

the various D−
ij ,D

+
ij meet any ∂D in a collection of spherical caps, we can compute ΓD

in time O(mn(m + n) log mn), by the same divide-and-conquer approach as computing
V (A,B) ∩ V (B,A) in R

2. Therefore we can determine in O(m2n2(m + n) log mn) time
whether σ(A,B;F) ≤ δ in R

3.
Finally, the optimization problem can be solved by the parametric search technique [2].

In order to apply the parametric search technique, we need a parallel version of the above
procedure. However, this divide-and-conquer paradigm uses plane-sweep during the conque
stage, which is not easy to parallelize. Instead, we use the algorithm of [2] to compute the
union/intersection of two planar or spherical regions. It yields an overall parallel algorithm
for determining whether V (A,B) ∩ V (B,A) is empty in O(log2 mn) time using O(mn(m +
n) log mn) processors in R

2, and O(m2n2(m + n) log mn) processors in R
3. The standard

technique of parametric searching then implies the following result.

Theorem 2.4 Given two sets A and B of m and n disks (or balls), we can compute
σ(A,B;F) in time O(mn(m + n) log4 mn) in R

2, and in time O(m2n2(m + n) log4 mn)
in R

3.

2.2 Partial matching

Extending the definition of partial matching in [19], we define the partial collision-free
Hausdorff distance problem as follows.
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Given an integer k, let hk(A,B) denote the kth largest value in the set {d(a,B) | a ∈ A};
note that h(A,B) = h1(A,B). We define hk(B,A) in a fully symmetric manner, and
then define Hk(A,B), σk(A,B;T ) as above. The preceding algorithm can be extended to
compute σk(A,B;F) in the same asymptotic time complexity. We briefly illustrate the
two-dimensional case. Let V = {V1, V2, . . . , Vm} be as defined above, and let Ξ(V) be the
arrangement of V. For each cell ∆ ∈ Ξ(V), let χ(∆) be the number of Vi’s that fully contain
∆. Note that for any point t in a cell ∆ with χ(∆) > (m−k), hk(A+t,B) ≤ δ, and vice versa.
Hence, we compute Ξ(V) and χ(∆) for each cell ∆ ∈ Ξ(V), and then discard all the cells ∆
for which χ(∆) ≤ (m − k). The remaining cells form the set T1 = {t | hk(A + t,B) ≤ δ}.
By the Remark following Lemma 2.2, Ξ has O(m2n) vertices, and it can be computed in
O(m2n log mn) time. Therefore, T1 can be computed in O(m2n log mn) time. Similarly, we
can compute T2 = {t | hk(B,A + t) ≤ δ} in O(mn2 log mn) time, and we can determine
in O(mn(m + n) log mn) time whether T1 ∩ T2 6= ∅. Similar arguments can solve the
partial matching problem in R

3, by computing the sets T1, T2, and by checking for their
intersection along the boundary of each of the balls D+

ij , D−
ij . Micha says: How do we test ←−

for intersection in three dimensions? Putting everything together, we obtain the following.

Theorem 2.5 Let A and B be two families of m and n balls, respectively, and let k ≥ 0
be an integer, we can compute σk(A,B;F) in O(mn(m + n) log4 mn) time in R

2, and in
O(m2n2(m + n) log4 mn) time in R

3.

3 Hausdorff Distance between Unions of Balls

In Section 3.1 we describe an algorithm for computing σU (A,B) in R
2. The same approach

can be extended to compute σU (A,B;F) within the same asymptotic time complexity. In
Section 3.2, we present approximation algorithms for the same problem in R

2 and R
3.

3.1 The exact 2D algorithm

Let A = {A1, . . . , Am} and B = {B1, . . . , Bn} be two sets of disks in the plane. Write, as
above, Ai = D(ai, ρi), for i = 1, . . . ,m, and Bj = D(bj , rj), for j = 1, . . . , n. Let UA (resp.,
UB) be the union of the disks in A (resp., B). As in Section 2, we focus on the decision
problem for a given distance parameter δ > 0.

For any point p, we have

d(p, UB) = min
q∈UB

d(p, q) = min
1≤j≤n

d(p,Bj)

= min
1≤j≤n

max{d(p, bj)− rj , 0}.

This value is greater than δ if and only if

min
1≤j≤n

(
d(p, bj)− (rj + δ)

)
> 0.
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ξ

V (ξ) V�(�)�
(a) (b) (c)

Figure 2: (a) The medial axis (dotted segments) of the union of four disks centered at
the solid points: The Voronoi diagram of the boundary decomposes the union into 8 cells;
(b) shrinking by ρ the Voronoi cell V (ξ) of each boundary element ξ of the union; (c)
The boundary of the lighter-colored disk contains a convex arc, and the boundary of the
darker-colored disk contains a concave arc.

In other words, hU (A + t,B) > δ if and only if there exists a point p ∈ UA such that
p + t /∈ UB(δ) =

⋃n
j=1 Bj(δ), where Bj(δ) = D(bj , rj + δ) is the disk Bj expanded by δ.

Let
T1 = {t | hU (A + t,B) ≤ δ};

T1 is the set of all translations t such that UA+t ⊆ UB(δ). Our decision procedure computes
the set T1 and the analogously defined set

T2 = {t | hU (B,A + t) ≤ δ},

and then tests whether T1 ∩ T2 6= ∅. To understand the structure of T1, we first study the
case in which A consists of just one disk A, with center a and radius ρ. For simplicity of
notation, we denote UB(δ) temporarily by U . Let Q denote the set of vertices of ∂U , and
Γ the set of (relatively open) edges of ∂U ; we have |Q| ≤ |Γ| ≤ 6n− 12 [20].

Consider the Voronoi diagram Vor(Q ∪ Γ) of the boundary features of U , clipped to
within U . This is a decomposition of U into cells, so that, for each ξ ∈ Q ∪ Γ, the cell
V (ξ) of ξ is the set of points x ∈ U such that d(x, ξ) ≤ d(x, ξ′), for all ξ′ ∈ Q ∪ Γ. The
diagram is closely related to the medial axis of ∂U . See Figure 2(a). For each γ ∈ Γ, let
W (γ) denote the circular sector spanned by γ within the disk Bj(δ) whose boundary is γ,
and let U ′ = U \⋃

γ∈Γ W (γ). The diagram has the following structure. (A variant of the
following lemma was observed in [7].)

Lemma 3.1 (a) For each γ ∈ Γ, we have V (γ) = W (γ).
(b) For each ξ ∈ Q, we have V (ξ) = U ′ ∩ V ′(ξ), where V ′(ξ) is the Voronoi cell of ξ in the
Voronoi diagram Vor(Q) of Q. Moreover, V (ξ) is a convex polygon.

Micha says: No proof? ←−
Lemma 3.1 implies that Vor(Q ∪ Γ) yields a convex decomposition of U of linear size.

The medial axis of ∂U consists of all the edges of those cells V ′(ξ), for ξ ∈ Q, that are also
edges of Vor(Q ∪ Γ) (the dashed cells of Figure 2(a)).

9



Returning to the study of the structure of T1, we have, by definition, A + t ⊆ U if and
only if d(a+ t, ξ) ≥ ρ, where ξ is the feature of Q∪Γ whose cell contains a+ t. This implies
that the set T1(A) of all translations t of A for which A + t ⊆ U is given by

T1(A) =




⋃

ξ∈Q∪Γ

Vρ(ξ)



− a,

where
Vρ(ξ) = {x ∈ V (ξ) | d(x, ξ) ≥ ρ}.

For γ ∈ Γ, Vρ(γ) is the sector obtained from W (γ) by shrinking it by distance ρ towards its
center. For ξ ∈ Q, Vρ(ξ) = V (ξ) \D(ξ, ρ). See Figure 2(b) for an illustration.

Now return to the original case in which A consists of m disks; we obtain

T1 =

m⋂

i=1

T1(Ai) =

m⋂

i=1

⋃

ξ∈Q∪Γ

(Vρi
(ξ)− ai) .

Note that each T1(Ai) is bounded by O(n) circular arcs, some of which are convex (those
bounding shrunk sectors), and some are concave (those bounding shrunk Voronoi cells of
vertices). Convex arcs are bounded by disks D(bk − ai, rk + δ − ρi), for some 1 ≤ k ≤ n,
while concave arcs are bounded by disks D(ξ − ai, ρi) for ξ ∈ Q. Furthermore, since
T1(Ai) is obtained by removing all points x ∈ U such that the nearest distance from x
to ∂U is smaller than ρi, we have that: (i) D(bk − ai, rk + δ − ρi) ⊆ T1(Ai); and (ii)
D(ξ − ai, ρi) ∩ (T1(Ai) \ ∂(T1(Ai)) = ∅. See Figure 2 (c) for an illustration.

Lemma 3.2 For any pair of disks Ai, Aj ∈ A, the complexity of T1(Ai) ∩ T1(Aj) is O(n).

Proof: Clearly, T1(Ai) ∩ T1(Aj) is bounded by circular arcs, whose endpoints are either
vertices of T1(Ai) or T1(Aj), or intersection points between an arc of ∂T1(Ai) and an arc of
∂T1(Aj). It suffices to estimate the number of vertices of the latter kind.

Consider the set B′
ij of the 2n + 2|Q| disks

{D(bk − ai, rk + δ − ρi),D(bk − aj , rk + δ − ρj)}1≤k≤n

⋃
{D(ξ − ai, ρi),D(ξ − aj , ρj)}ξ∈Q.

We claim that any intersection point between two arcs, one from ∂T1(Ai) and one from
∂T1(Aj), lies on ∂(∪B′

ij). Indeed, assume that x is such an intersection point that does not
lie on ∂(∪B′

ij). Then it has to lie in the interior of ∪B′
ij. That is, there is a disk D ∈ B′

ij

that contains x. There are two possibilities for the choice of D.

(i) D = D(bk − ai, rk + δ − ρi) (resp., D = D(bk − aj , rk + δ − ρj)), for some 1 ≤ k ≤ n.
The boundary of such a disk contains some convex arc on ∂T1(Ai) (resp., ∂T1(Aj)),
and D ⊆ T1(Ai) (resp., D ⊆ T1(Aj)). As such, x cannot appear on the boundary of
∂T1(Ai) (resp., ∂T1(Aj)), contrary to assumption.
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(ii) D = D(ξ − ai, ρi) (resp., D = D(ξ− aj , ρj)), for some ξ ∈ Q. Recall that Q is the set
of vertices on the boundary of ∂U . Therefore, by definition, Ai + x (resp., Aj + x)
contains ξ in its interior, so it cannot be fully contained in U , implying that x /∈ T1(Ai)
(resp., x /∈ T1(Aj)), again a contradiction.

These contradictions imply the claim. It then follows, using the bound of [20], that the
number of intersections under consideration is at most 6 · (2n + 2|Q|)− 12 = O(n).

Each vertex of T1 is also a vertex of some T1(Ai) ∩ T1(Aj). Applying the preceding
lemma to all the O(m2) pairs Ai, Aj , we obtain the following.

Lemma 3.3 The complexity of T1 is O(m2n), and it can be computed in O(m2n log mn)
time.

Similarly, the set T2 has complexity O(mn2) and can be computed in time O(mn2 log mn).
Finally, we can determine whether T1∩T2 6= ∅, by plane sweep, in time O(mn(m+n) log mn).
Using parametric search, as in [2], σU (A,B) can be computed in O(mn(m + n) log4 mn)
time.

To compute σU (A,B;F), we follow the same approach as computing σ(A,B;F) in the
preceding section. Specifically, we need to modify the definition of T1 and of T2, to require
also that no disk of A+t intersect any disk of B. This amounts, in the case of T1, to redefine
each T1(A) to consist of all t ∈ R

2 such that A + t ⊆ U and (A + t)∩UB = ∅. The latter is
equivalent to requiring that t /∈ UB(ρ)− a. Hence

T1 =
m⋂

i=1

T1(Ai) =
m⋂

i=1

⋃

ξ∈Q∪Γ

(Vρi
(ξ)− ai) . \

m⋃

i=1

(UB(ρi)− ai).

It is now easy to modify the arguments in the proof of Lemma ??, to conclude that the
complexity of T1 (and, symmetrically of T2) remains asymptotically the same, which then
implies the following result.

Theorem 3.4 Given two families A and B of m and n disks in R
2, we can compute both

σU (A,B) and σU (A,B;F) in time O(mn(m + n) log4 mn).

3.2 Approximation algorithms

No good bounds are known for the complexity of the Voronoi diagram of the boundary
of the union of n balls in R

3, or, more precisely, for the complexity of the portion of the
diagram inside the union [7]. The best known bound is O(n4). Hence, a näıve extension
of the preceding exact algorithm to R

3 yields an algorithm whose running time is hard
to calibrate, and only rather weak upper bounds can be derived. We therefore resort to
approximation algorithms.
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Approximating σU (A,B) in R
2 and R

3. Given a parameter ε > 0, we wish to compute
a translation t of A such that HU (A + t,B) ≤ (1 + ε)σU (A,B), i.e., HU(A + t,B) is an
ε-approximation of σU (A,B). Our approximation algorithm for σU (A,B) follows the same
approach as the one used in [3, 4]. That is, let r(A) (resp., r(B)) denote the point with
smallest coordinates, called the reference point, of the axis-parallel bounding box of UA

(resp., UB). Set τ = r(B) − r(A). It is shown in [4] that in R
d, HU(A + τ,B) ≤ (1 +√

d)σU (A,B), and that the optimal translation lies in Micha says: Complete! Computing ←−
τ takes O(m+n) time. We compute HU(A+τ,B) using the parametric search technique [2],
which is based on the following simple implementation of the decision procedure:

Fix a parameter δ > 0, and put UA(δ) =
⋃

i D(ai, ρi + δ) and UB(δ) =
⋃

j D(bj , rj + δ).
We observe that HU(A + t,B) ≤ δ if and only if UA + t ⊆ UB(δ) and UB ⊆ UA(δ) + t.
To test whether UA + t ⊆ UB(δ), we compute (UA + t) ∪ UB(δ), the union of the balls in
A + t and of the δ-expanded balls in B, and check whether any ball of A appears on its
boundary. If not, then UA + t ⊆ UB(δ). Similarly, we test whether UB ⊆ UA(δ) + t. The
total time spent is proportional to the time needed to compute the union of m + n balls,
which is O((m + n) log(m + n)) in R

2, and O((m + n)2) in R
3. Micha says: Add [REF]? ←−

In order to compute an ε-approximation of σU (A,B) from this constant-factor approx-
imation, we use the standard trick Micha says: Add [REF] of placing a grid of cell size ←−

ε
1+

√
d
· HU(A + τ,B) in the neighborhood of τ , and returning the smallest HU(A + t, B),

where t ranges over the grid points. We thus obtain the following result.

Theorem 3.5 Given two sets of balls, A and B, of size m and n, respectively, and ε > 0,
an ε-approximation of σU (A,B) can be computed in O(((m + n)/ε2) log3 mn) time in R

2,
and in O(((m2 + n2)/ε3) log2 mn) time in R

3.

Micha says: I dont understand where the log’s came from in the last theorem. Please add a ←−
sentence or two.

Pseudo-approximation for σU (A,B;F). Currently, we do not have an efficient algo-
rithm to ε-approximate σU (A,B;F) in R

3. Instead, we present a “pseudo-approximation”
algorithm, in the following sense.

The set K = UB ⊕ (−UA), where ⊕ denotes the Minkowski sum, is the set of all
placements of A at which UA intersects UB; we have K =

⋃
i,j D(bj − ai, ρi + rj), and

F = cl(R3 \K). For a parameter ε ≥ 0, let

K(ε) =
⋃

i,j

D(bj − ai, (1− ε)(ρi + rj)),

and F(ε) = cl(R3 \K(ε)). We call a region X ⊆ R
3 ε-free if F ⊆ X ⊆ F(ε).

This notion of approximating F is motivated by some applications in which the data
is noisy, and/or shallow penetration is allowed. For example, each atom in a protein is
best modelled as a “fuzzy” ball rather than a hard ball [15]. We can model this fuzziness
by allowing any atom D(b, r) to be intersected by other atoms, but only within the shell
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D(b, r) \ D(b, (1 − ε)r) for some ε > 0. In this way, the atoms of two docking molecules
may penetrate a little at the desired placement. Although F can have large complexity,
namely, up to O(m2n2) in R

3, we present a technique for constructing an ε-free region X
of considerably smaller complexity. We thus compute X and a placement t∗ ∈ X such that
HU (A + t∗,B) ≤ (1 + ε)σU (A,B;X). We refer to such an approximation HU (A + t∗,B) as
a pseudo-ε-approximation for σU (A,B;F).

Lemma 3.6 In three dimensions, an ε-free region X of size O(mn/ε3) can be computed in
time

O((mn/ε3) log(mn/ε)).

Proof: Let D = {Dij = D(bj − ai, ρi + rj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. We insert each ball
Dij ∈ D into an oct-tree T . Let Cv denote the cube associated with a node v of T . In order
to insert Dij , we visit T in a top-down manner. Suppose we are at a node v. If Cv ⊆ Dij ,
we mark v as black and stop. If Cv ∩Dij 6= ∅ and the size of Cv is at least ε(ρi + rj)/2, then
we recursively visit the children of v. Otherwise, we stop, leaving v unmarked. After we
insert all balls from D, if all eight children of a node v are marked black, we mark v as black
too. Let V = {v1, v2, . . . , vk} be the set of highest marked nodes, i.e., each vi is marked
black but none of its ancestors is black. It is easy to verify that each Dij marks at most
O(1/ε3) nodes as black, because the nodes a fixed Dij marks are disjoint and of size at least
ε(ρi + rj)/2; thus |V | = O(mn/ε3). The whole construction takes O((mn/ε3) log(mn/ε))
time, and obviously K(ε) ⊆ ⋃

v∈V Cv ⊆ K. Set X = cl(R3 \⋃
v∈V Cv); it is an ε-free region,

as claimed.
Furthermore, let r(B), r(A), and τ = r(B) − r(A) be as defined earlier in this section.

We prove the following result.

Lemma 3.7 Let t∗ ∈ X be the closest point of τ in X. Then

HU(A + t∗,B) ≤ (1 + 2
√

3)σU (A,B;X).

Proof: Let δ̂ = σU (A,B;X) and t̂ ∈ X the placement so that HU(A + t̂,B) = δ̂. Then

‖t̂− τ‖ = ‖t̂− r(B) + r(A)‖ = d(r(A) + t̂, r(B)).

A result in [3] implies that d(r(A) + t̂, r(B)) ≤
√

3δ̂. On the other hand,

Hu(A + t∗,B) ≤ δ̂ + ‖t̂− t∗‖ ≤ δ̂ + ‖t̂− τ‖+ ‖τ − t∗‖
≤ δ̂ + 2‖τ − t̂‖ ≤ δ̂ + 2

√
3δ̂ = (1 + 2

√
3)σU (A,B;X).

The point t∗ ∈ X closest to τ can be computed as follows. Recall that in Lemma 3.6,
X = cl(R3 \⋃v∈V Cv). Set X̄ = cl(R3 \X) =

⋃
v∈V Cv; X̄ consists of a set of openly disjoint

cubes. We first check whether τ ∈ X̄ by a point-location operation. If the answer is no,
then τ ∈ X, and we return t∗ = τ . Otherwise, t∗ is a point on ∂X = ∂X̄ that is closest to
τ . In that case, t∗ is either a vertex of a cube in V , or lies in the interior of an edge or of
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a face of a cube in V . For each node v ∈ V and for each boundary feature ξ ⊂ Cv, that is,
a face, an edge, or a vertex of Cv, we compute the point in ξ closest to τ . Let Qv be the
resulting set of closest points. We then check, for each q ∈ Qv, whether q ∈ ∂X̄ , by testing
whether at least one neighboring cube is unmarked. This can be achieved by performing
point location operations in T . Finally, from among those points of Qv that lie on ∂X̄ (thus
on ∂X), we return the one that is closest to τ . There are O(mn/ε3) cubes, and each has
constant number of boundary features. Furthermore, at most a constant number of nodes
in V contain a given point, and each point location operation takes O(log(mn/ε)) time.
Hence, t∗ can be computed in O((mn/ε3) log(mn/ε)) time. Micha says: Is the thing inside ←−
the log ok?

We can compute HU(A+t∗,B) in O((n2+m2) log2 mn) time, as described in Section 3.2,
so we can approximate σU (A,B;X), up to a constant factor, in O((n2 +m2) log2 mn) time.
We then draw an appropriate grid around t∗ and use it to compute an ε-approximation of
σU (A,B;X), as in Section 3.2, with the difference that we only test those grid points that
lie in X. We thus obtain the following result.

Theorem 3.8 Given A, B in R
3 and ε > 0, we can compute in O(((n2 +m2)/ε3) log2 mn)

time, an ε-free region X ⊆ R
3 and a placement t ∈ X of A, such that

HU (A + t,B) ≤ (1 + ε)σU (A,B;X).

4 RMS and Summed Hausdorff Distance between Points

We first establish a result on simultaneous approximation of the Voronoi diagrams of several
point sets, which we believe to be of independent interest, and then we apply this result to
approximate σR(A,B) and σS(A,B) for point sets A = {a1, . . . , am} and B = {b1, . . . , bn}
in any dimension.

4.1 Simultaneous approximation of Voronoi diagrams

Given a family {P1, . . . , Pl} of point sets in R
d, with a total of N points, and a parameter

ε > 0, we wish to construct a subdivision of R
d, so that, for any x ∈ R

d, we can quickly
compute points pi ∈ Pi, for all 1 ≤ i ≤ l, with the property that d(x, pi) ≤ (1 + ε)d(x, Pi),
where d(x, Pi) = minq∈Pi

d(x, q). Our data structure is based on a recent result by Arya
and Malamatos [9]: Given a set P of n points and a parameter ε > 0, they construct a
partition Ξ of R

d into O(n/εd) cells; each cell ∆ ∈ Ξ is associated with a point φ(∆) ∈ P ,
so that for any point q ∈ ∆, d(q, φ(∆)) ≤ (1 + ε)d(q, P ). Ξ is the partition induced by the
leaves of a compressed quad tree T [22], built on an initial hypercube C that contains P . Ξ
and T can be constructed in O((n/εd) log(n/ε)) time, and the cell of Ξ containing a query
point can be located in O(log(n/ε)) time.
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Let C be a hypercube containing
⋃l

i=1 Pi. We construct the above compressed quad tree
Ti for point set Pi, and let Ξi be the resulting subdivision. We then merge T1, . . . , Tl into
a single compressed quad tree T [22] and thus effectively overlay Ξ1, . . . ,Ξl. In particular,
we start with T1 and insert cells of Ξi’s one by one, for 2 ≤ i ≤ l. We refine T after
each insertion so that we still maintain a compressed quad tree structure [9]. Since all
Ti’s are built using the same initial hypercube C, any two hypercubes from Ti’s are either
disjoint or one containing another. Hence the insertion of each hypercube creates at most
2d new leaves. Let Π be the resulting overlay of Ξ1, . . . ,Ξl; Π is a refinement of each Ξi

and |Π| = O(N/εd). Since the merged tree T is also a compressed quad tree, the cell of Π
containing any query point can be computed in O(log(N/ε)) time. For any cell ∆ ∈ Π, let
φi(∆) ∈ Pi denote the point associated with the cell ∆i ∈ Ξi that contains ∆. Recall that,
for any point q ∈ ∆, φi(∆) is an ε-nearest neighbor w.r.t. Pi, i.e.,

d(q, Pi) ≤ d(q, φi(∆)) ≤ (1 + ε)d(q, Pi).

If we store all the φi(∆)’s for each cell ∆ ∈ Π (i.e., in the leaf nodes of T ), we need
O(l ·N/εd) space, which we cannot afford. So we instead store φi at appropriate internal
nodes of T . More specifically, for a fixed 1 ≤ i ≤ n, and for any cell ∆i ∈ Ξi, let v ∈ T
be the node in the merged tree T associated with the hypercube of ∆i. We store φi(∆i)
at node v. Sariel: Please verify and fix it if necessary. Since |Ξi| = O(|Pi|)/εd), the
total storage needed to store φi(·)’s is

∑l
i=1 O(|Pi|)/εd) = O(N/εd). To query with a point

q lying in a cell ∆ ∈ Π, we collect φi(∆), 1 ≤ i ≤ l, while traversing the path from the root
to the leaf of T associated with ∆. As φi is stored at most twice along any path from the
root to a leaf of T (once due to the outer hypercube, and possibly once due to the inner
hypercube), we conclude the following.

Theorem 4.1 Given a family {P1, . . . , Pl} of point sets in R
d, with a total of N points, and

a parameter ε > 0, we can compute in O((N/εd) log(N/ε)) time a subdivision of R
d of size

O(N/εd) so that, for any point q ∈ R
d, one can ε-approximate d(q, Pi), for all 1 ≤ i ≤ l, in

O(log(N/ε) + l) time.

4.2 Approximating σR(A, B)

For 1 ≤ i ≤ m, let Pi = B − ai = {bj − ai | 1 ≤ j ≤ n}. We construct the preceding
decomposition, denoted as ΠA, and the associated compressed quad-tree TA, for P1, . . . , Pm,
with the given parameter ε; |ΠA| = O(mn/εd). Define

fi(t) = d2(t, Pi) = min
1≤j≤n

d2(t, bj − ai),

and let

FA(t) = m · h2
R(A + t,B) =

m∑

i=1

fi(t).
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For each cell ∆ ∈ ΠA, define

F̂A,∆(t) =

m∑

i=1

d2(t, φi(∆)).

By construction, for any t ∈ ∆,

FA(t) ≤ F̂A,∆(t) =
m∑

i=1

d2(t, φi(∆))

≤
m∑

i=1

(1 + ε)2 · d2(t, Pi) = (1 + ε)2FA(t),

implying that √
1

m
F̂A,∆(t) ≤ (1 + ε)hR(A + t,B).

Hence, it suffices to store F̂A,∆(t) at each cell ∆ ∈ ΠA. Since F̂A,∆ is a quadratic equation
in t ∈ R

d, it can be stored using O(1) space (where the constant depends on d) and updated
in O(1) time for each change in φi(∆).

If we compute F̂A,∆ for each cell ∆ ∈ ΠA independently, the total time is O(m2n/εd). We
therefore proceed as follows. We perform an in-order traversal of the compressed quadtree
TA. For the cell ∆ associated with the first leaf of TA visited by the procedure, we compute
F̂A,∆ in O(m) time. For the subsequent leaves we compute F̂A,∆ from the value previously
computed. Suppose we are currently visiting a cell ∆ of ΠA, let ∆′ be the previous cell
visited by the procedure, let z (resp., z′) be the leaf in TA associated with ∆ (resp., ∆′),
and let

k∆,∆′ = {i | φi(∆
′) 6= φ(∆)}.

The values of φi(∆) and φi(∆
′), for all i ∈ k∆,∆′ , are stored along the two paths from z and

z′ to their nearest common ancestor, which is the portion of T traversed between z and z′.
We can compute k∆,∆′ while traversing T and charge the time spent in computing k∆,∆′ to
the traversal of T . Since

F̂A,∆(t) = F̂A,∆′(t) +
∑

i∈k
∆,∆′

[d2(t, φi(∆))− d2(t, φi(∆
′))],

we can compute F̂A,∆ from F̂A,∆′ in O(|k∆,∆′ |) time. As
∑ |k∆,∆′ | = O(mn/εd), the total

time required to compute all F̂A,∆’s is O(mn/εd).
Next, we compute, in O(mn/εd) time, a subdivision ΠB on the family Qj = {bj − ai |

1 ≤ i ≤ m}, for 1 ≤ j ≤ n, and a quadratic function F̂B,∆ for each cell ∆ ∈ ΠB so that

F̂B,∆(t) ≤ (1 + ε)2FB(t). We overlay ΠA and ΠB. The same argument as the one used to
bound the complexity of ΠA shows that the resulting overlay Π has O(mn/εd) cells and that
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it can be computed in O((mn/εd) log(mn/ε)) time. Finally, for each cell ∆ in the overlay,
we compute

t∆ = arg min
t∈∆

max

{√
F̂A,∆(t)/m,

√
F̂B,∆(t)/n

}

≤ arg min
t∈∆

(1 + ε)HR(A + t,B)

and return

min
∆∈Π

HR(A + t∆,B) ≤ (1 + ε)σR(A,B).

Hence, we obtain the following.

Theorem 4.2 Given two sets A and B of m and n points in R
d and a parameter ε > 0,

we can:

i. compute a vector t∗ ∈ R
d in O((mn/εd) log(mn/ε)) time, so that

HR(A + t∗,B) ≤ (1 + ε)σR(A,B);

ii. construct a data structure of size O(mn/εd), in time O((mn/εd) log(mn/ε)), so that
for any query vector t ∈ R

d, we can compute an ε-approximate value of HR(A + t,B)
in O(log(mn/ε)) time.

4.3 Approximating σS(A, B)

Modifying the above scheme, we approximate σS(A,B) as follows. Let Pi, Qj, ΠA, and ΠB

be as defined above. We define

GA(t) =
m∑

i=1

d(t, Pi) = m · hS(A + t,B),

GB(t) =

n∑

j=1

d(t,Qj) = n · hS(B,A + t).

For each cell ∆ ∈ ΠA, let

ĜA,∆(t) =
m∑

i=1

d(t, φi(∆)) ≤ m(1 + ε)hS(A + t,B)

and for each cell ∆ ∈ ΠB , let

ĜB,∆(t) =

n∑

j=1

d(t, φj(∆)) ≤ n(1 + ε)hS(B,A + t).

17



As above, we overlay ΠA and ΠB . For each cell ∆ in the overlay, we wish to compute

H∆ = min
t∈∆

max

{
1

m
ĜA,∆(t),

1

n
ĜB,∆(t)

}
.

Since ĜA,∆ and ĜB,∆ are not simple algebraic functions, we do not know how to compute,
store, and update them efficiently. Nevertheless, we can compute an ε-approximation for
ĜA,∆ (resp., ĜB,∆) that is easier to handle. More precisely, for a given set P of points in
R

d, define the 1-median function

medP (t) =
∑

p∈P

d(p, t).

For any ∆ ∈ ΠA, ĜA,∆(t) = medΦ(∆)(t), where Φ(∆) = {φi(∆) | 1 ≤ i ≤ m}. The same is

true for ĜB,∆, where ∆ ∈ ΠB . In Section 4.4, we describe a dynamic data structure that,
given a point set P of size n, maintains an ε-approximation of the function medP (·) as a
function consisting of O((1/εd) log(1/ε)) pieces; the domain of each piece is a d-dimensional
(or the complement of a d-dimensional) hypercube. A point can be inserted into or deleted
from P in O(logd+1 n log2(n/ε)/εd) time. Furthermore, given two point sets P and Q in R

d,
this data structure can maintain an ε-approximation of maxt{medP (t),medQ(t)} within the
same time bound.

Using this data structure, we can traverse all cells of the overlay of ΠA and ΠB , as
in Section 4.2, and compute an ε-approximation of ĜA,∆ and ĜB,∆ (thus roughly a (2ε)-
approximation of GA and GB) for each cell ∆ of the overlay. However, given two adjacent
leaves during the traversal, associated with cells ∆ and ∆′ respectively, we now spend

O(k∆,∆′ · (1/εd) polylog(mn, 1/ε))

time to compute an ε-approximation of ĜA,∆′ from that of ĜA,∆. Putting everything
together, we conclude the following.

Theorem 4.3 Given two sets A and B of m and n points in R
d and a parameter 0 < ε ≤ 1,

we can compute:

i. a vector t∗ ∈ R
d in O(mn

ε2d polylog(mn, 1
ε )) time so that

HS(A + t∗,B) ≤ (1 + ε)σS(A,B);

ii. a data structure of O(mn
ε2d polylog(mn, 1

ε )) size in time O(mn
ε2d polylog(mn, 1

ε )), so that

for any query vector t ∈ R
d, we can ε-approximate HS(A+t,B) in time O(polylog(mn, 1

ε ).
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4.4 Maintaining the 1-median function

Let P be a set of n points in R
d and let ε > 0 be a parameter. For x ∈ R

d, define the 1-
median function medP (x) =

∑
p∈P d(p, x), as above. We describe a dynamic data structure

that maintains a function f : R
d → R as the points are inserted into or deleted from P so

that
medP (x) ≤ f(x) ≤ (1 + ε)medP (x), ∀x ∈ R

d.

We maintain a height-balanced binary tree T with n leaves, each storing a point of P .
For a node v ∈ T , let Pv ⊆ P be the set of points stored at the leaves of the subtree rooted
at v; set nv = |Pv |. For each node v of height i (leaves have height 0), set λi = iε/2h, where
h = O(log n) is the height of the tree T . We associate with a node v, at height i, a function
fv that is a λi-approximation of medPv , i.e.,

medPv(x) ≤ fv(x) ≤ (1 + λi)medPv(x), ∀x ∈ R
d.

The description complexity of fv is O((h/ε)d log(h/ε)). Finally, we maintain a function f
of description complexity O((1/εd) log(1/ε)) that is an (/ε/3)-approximation of froot and
thus an ε-approximation of medP (x).

More specifically, if a leaf v stores the point p ∈ P , then set fv(x) = d(x, p). For all
internal nodes v, we compute fv in a bottom-up manner as follows. Let w and z be the
children of v. By induction, suppose we have already computed the functions fw and fv,
each of descriptive complexity O((h/ε)d log(h/ε)). Set

gv(x) = fw(x) + fz(x).

Since medPv(x) = medPw(x) + medPz(x), by induction hypothesis,

gv ≤
(

1 +
(i− 1)ε

2h

)
medPv(x) ∀x ∈ R

d (1)

However, the description complexity of gv is more than what we desire. We therefore
approximate gv by a simpler function fv as follows. For x ∈ R

d and r ∈ R, let C(x, r) be
the hypercube of side length 2r centered at x. For simplicity, let λ = ε/2h. We compute
u = arg minx gv(x) and set µ = gv(u). Let Cj = C(u, (8µ/nv)2

j) for 1 ≤ j ≤ log(1/λ).
Partition each cubic shell Cj+1 \ Cj into hypercubes by a d-dimensional grid Gj in which
each cell has side length 2jλµ/(10

√
dnv); Gj has O(1/λd) cells. The union of Gj ’s is an

exponential grid with O(1/λd log(1/λ)) cells that covers the hypercube C = C(u, 8µ/(λnv)).
See Figure 3 (a) for an illustration. In each cell ∆ ∈ Gj , pick an arbitrary point y ∈ ∆ and
set

fv(x) = gv(y) + 2jλµ/4, ∀x ∈ ∆. (2)

For points outside C, we set

fv(x) = nvd(u, x) + µ, ∀x ∈ R
d \C. (3)

19



C2

C1

C3

u

C̃

C

(a) (b)

Figure 3: (a) An exponential grid with 3 layers. (b) The larger (resp., smaller) box is C

(resp., C̃), and the set of hollow circles is P̃v.

Hence, the function fv is piecewise-constant inside C and a quadratic function outside C.
The description complexity of fv is O((1/λd) log(1/λ)) = O((h/ε)d log(h/ε)). Since induc-
tively fw and fz also have the same structure, the point u can be computed by evaluating
the function gv at the vertices of the exponential grids drawn for fw and fz. At each point
x, we can evaluate gv(x) in time O(log(h/ε)) time by simply locating x in the two expo-
nential grids. Hence, we can compute the point u in time O((h/ε)d log2(h/ε)). We spend
another O((h/ε)d log(h/ε)) time to compute fv. That fv(·) is indeed a λi-approximation
of medPv(·) is proved in Lemmas 4.4 and 4.5. This finishes the induction step. Using the
same procedure, we compute an (ε/3)-approximation, f , of froot, of descriptive complexity
O((1/ε)d log(1/ε)). By construction, for all x ∈ R

d,

medP (x) ≤ f(x) ≤ (1 + ε/3)froot(x)

≤ (1 + ε/3)(1 + ε/2)medP (x)

≤ (1 + ε)medP (x).

Obviously, the size of the above data structure is O((n/εd) logd(n) log(n/ε)). To insert
or delete a point p, we follow a path from the leaf z storing p to the root of T and recom-
pute fv at all nodes along this path, and then compute f from froot. Hence, the update
time is O(logd+1 n log2(n/ε)/εd). The only missing component now is to show that fv, as
constructed above at each node v ∈ T , is indeed a λi-approximation of medPv .

Lemma 4.4 Let v be a node of T at height i. For any 1 ≤ j ≤ log(1/λ) and for any
∆ ∈ Gj ⊆ C,

medPv(x) ≤ fv(x) ≤ (1 + λi)medPv(x), ∀x ∈ ∆.
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Proof: The triangle inequality implies that for any x, y ∈ R
d,

| medPv(x)−medPv(y) | ≤ nvd(x, y) ≤ medPv(x) + medPv(y). (4)

Therefore, by construction of the exponential grid,

| medPv(x)−medPv(y) | ≤ 2jλµ

10
, ∀x, y ∈ ∆. (5)

Equation (2) and (5) imply that

fv(x) = gv(y) +
2jλµ

4
≥ medPv(y) + 2j−2λµ ≥ medPv(x).

Substituting u for y in (4), we obtain

medPv(x) ≥ nvd(x, u) −medPv(u) ≥ 2j−1 · 8µ− µ ≥ 2jµ, (6)

where the last inequality follows from the fact that for all x ∈ Cj\Cj−1, d(x, u) ≥ 2j−18µ/nv.
Hence, for any x ∈ ∆,

fv(x) = gv(y) + 2j−2λµ

≤
(
1 + (i− 1)

ε

2h

)
medPv(y) + 2j−2λµ (using 1)

≤
(
1 + (i− 1)

ε

2h

)[
medPv(x) +

2jλµ

10

]
+ 2j−2λµ ( using (5) )

≤
(
1 + (i− 1)

ε

2h

)
·medPv(x) + 2j−1λµ

≤
(

1 + (i− 1)
ε

2h
+

λ

2

)
·medPv(x) ( using (6) )

≤
(

1 +
iε

2h

)
medPv(x) = (1 + λi)medPv(x).

Lemma 4.5 Let v be a node of T at height i. Then for any x ∈ R
d \ C,

medPv(x) ≤ fv(x) ≤ (1 + λi)medPv(x).

Proof: By (4),

| medPv(x)−medPv(u) | ≤ nvd(x, u) ≤ medPv(x) + µ. (7)

The first inequality of the lemma is now immediate because

medPv(x) ≤ nvd(x, u) + medPv(u) ≤ nvd(x, u) + µ = fv(x).
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As for the second inequality, we first obtain an upper bound on µ in terms of medPv(x).
Let

C̃ = C(u, 4µ/(λnv))

and P̃v = Pv ∩ C̃ (see Figure 3 (b)). Then

µ ≥ medPv(u) =
∑

p∈Pv

d(p, u) ≥
∑

p/∈P̃v

d(p, u) ≥ |Pv \ P̃v | ·
4µ

λnv
.

Therefore

|P̃v| ≥ nv − λnv/4 = (1 − λ/4)nv .

On the other hand, for any x ∈ R
d \ C and y ∈ C̃, we have that

d(x, y) ≥ 8µ/λnv − 4µ/λnv = 4µ/λnv .

Hence, as long as λ = ε/2h ≤ 2, we have

medPv(x) ≥
∑

p∈P̃v

d(p, x) ≥
(

1− λ

4

)
nv ·

4µ

λnv
≥ 2µ

λ
,

thereby implying that 2µ ≤ λmedPv(x). Using (3) and (7),

fv(x) = nvd(x, u) + µ

≤ medPv(x) + 2µ

≤ medPv(x) + λmedPv(x) ≤ (1 + λi) ·medPv(x).

4.5 A randomized algorithm

We briefly describe below a simple randomized algorithm to approximate σR(A,B). The
algorithm of approximating σS(A,B) is similar. Let t∗ be the optimal translation, i.e.,
HR(A + t∗,B) = σR(A,B).

Lemma 4.6 For a random point ak from A, d(ak + t∗,B) ≤ 2σR(A,B), with probability
greater than 1/2. The same claim holds for σS(A,B).

Proof: Let ak be a random point from A, where each point of A is chosen with equal
probability. Let Y be the random variable Y = d(ak + t∗,B). Then E[Y ] = 1

m

∑m
i=1 d(ai +

t∗,B). Moreover,

σR(A,B) = HR(A + t∗,B) =
1

m

m∑

k=1

d(ak + t∗,B) = E[Y ].
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The lemma now follows immediately from Markov’s inequality.
Choose a random point ak ∈ A. Let tj = bj − ak and δj = HR(A+ tj,B), for 1 ≤ j ≤ n.

It then follows from Lemma 4.6 and the same argument as in Lemma 3.7, that minj δj is a
constant-factor approximation of σR(A,B), with probability greater than 1/2. Computing
δj exactly is expensive in R

d, therefore we compute an approximate value of δj , for 1 ≤ j ≤ n,
in time O((m+n) log mn), by performing approximate nearest-neighbor queries [9]. We can
improve this constant-factor approximation algorithm to compute a (1 + ε)-approximation
of σR(A,B) using the same technique as in Section 3. We thus obtain the following result.

Theorem 4.7 Given two sets A and B of m and n points, respectively, in R
d, and a param-

eter ε > 0, we can compute, in Micha says: randomized expected? time O((mn/εd) log mn), ←−
two translation vectors t1 and t2, such that, with probability greater than 1/2,

HR(A + t1,B) ≤ (1 + ε)σR(A,B) and HS(A + t2,B) ≤ (1 + ε)σS(A,B).

5 Conclusions

We provide in this paper some initial study of various problems related to minimizing
Hausdorff distance between sets of points, disks, and balls. One natural question following
our study is to compute exactly or approximately the smallest Hausdorff distance over all
possible rigid motions in R

2 and R
3. Given two sets of points A and B of size n and

m, respectively, let ∆ be the maximum of the diameters of A and B. We believe that
there is a randomized algorithm with roughly mn

√
∆ expected time, that approximates the

optimal summed-Hausdorff distance (or rms-Hausdorff distance) under rigid motions in the
plane. The algorithm combines our randomized approach from Section 4.5, a framework
to convert the original problem to a pattern matching problem [19], and a result by Amir
et al. on string matching [8]. However, this approach does not extend to families of balls.
We leave the problem of computing the smallest Hausdorff distance between sets of points
or balls under rigid motions as an open question for further research. Another question is
to approximate efficiently the best Hausdorff distance under certain transformations when
partial matching is allowed. The traditional approaches using reference points break down
with partial matching.

Micha says: Some comments about the bibliography too - not implemented yet. ←−
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