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Geometric Incidences

Janos Pach and Micha Sharir

ABSTRACT. We survey recent progress in the combinatorial analysis of inci-
dences between points and curves and in estimating the total combinatorial
complexity of a set of faces in arrangements of curves. We also discuss several
higher dimensional analogues of these problems, and many related geometric,
number theoretic, and algorithmic questions concerning repeated patterns and
distance distributions.

1. Introduction

1.1. The problem and its relatives. Let P be a set of m distinct points,
and let L be a set of n distinct lines in the plane. Let I(P, L) denote the number
of incidences between the points of P and the lines of L, i.e.,

I(P,L) = |{(p,t) [pe P, L€ L,pel}.

See Figure 1 for an illustration. How large can I(P, L) be? More precisely, deter-
mine or estimate max|pj=m,|5|=n I (P, L).

This simplest formulation of the incidence problem, due to Erd6s and first
settled by Szemerédi and Trotter, has been the starting point of extensive research
that has picked up considerable momentum during the past two decades. It is
the purpose of this survey to review the results obtained so far, describe the main
techniques used in the analysis of this problem, and discuss many variations and
extensions.

The problem can be generalized in many natural directions. One can ask the
same question when the set L of lines is replaced by a set C' of n curves of some
other simple shape; the two cases involving respectively unit circles and arbitrary
circles are of particular interest—see below.

A related problem involves the same kind of input—a set P of m points and a
set C of n curves, but now we assume that no point of P lies on any curve of C'. Let
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FiGUure 1. Eight lines and nine points with 24 incidences between them.

A(C) denote the arrangement of the curves of C, i.e., the decomposition of the plane
into connected open cells of dimensions 0, 1, and 2 induced by drawing the elements
of C; each cell is a maximal connected set contained in the intersection of a fixed
subset of the curves and avoiding all other curves. These cells are called vertices,
edges, and faces of the arrangement, respectively. The total number of these cells
is said to be the combinatorial complexity of the arrangement. The combinatorial
complexity of a single face is defined as the number of lower dimensional cells (i.e.,
vertices and edges) belonging to its boundary. The points of P then mark certain
faces in the arrangement A(C') of the curves, and the goal is to establish an upper
bound on K (P, (), the combined combinatorial complexity of the marked faces.
This problem is often referred to in the literature as the Many-Faces Problem.

One can extend the above questions to d-dimensional spaces, for d > 2. Here we
can either continue to consider incidences between points and curves, or incidences
between points and (d—1)-dimensional surfaces or manifolds of codimension greater
than 1. In the case of surfaces, we may wish to study the natural generalization of
the ‘many-faces problem’ described in the previous paragraph: to estimate the total
combinatorial complexity of n marked (d-dimensional) cells in the arrangement of
surfaces.

All of the above problems have algorithmic variants. Perhaps the simplest
question of this type is Hopcroft’s problem: Given m points and n lines in the plane,
how fast can one determine whether there exists any point that lies on any line?
One can consider more general problems, like counting or reporting the incidences,
doing the same for a collection of curves rather than lines, computing m marked
faces in an arrangement of n curves, and so on.

It turned out that two exciting metric problems (involving interpoint distances)
proposed by Erdés in 1946 are strongly related to problems involving incidences.

(1) Repeated Distances Problem: Given a set P of n points in the plane, what
is the maximum number of pairs that are at distance exactly 1 from each
other? To see the connection, let C' be the set of unit circles centered at
the points of P. Then two points p,q € P are at distance 1 apart if and
only if the circle centered at p passes through ¢ and vice versa. Hence,
I(P,C) is twice the number of unit distances determined by P.

(2) Distinct Distances Problem: Given a set P of n points in the plane, at
least how many distinct distances must there always exist between its
point pairs? Later we will show the connection between this problem and
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the problem of incidences between P and an appropriate set of circles of
different radii.

Some other applications of the incidence problem and the many-faces prob-
lem will be reviewed at the end of this paper. They include the analysis of the
maximum number of isosceles triangles, or triangles with a fixed area or perime-
ter, whose vertices belong to a planar point set; estimating the maximum number
of mutually congruent simplices determined by a point set in higher dimensions;
and several more surprising applications to number theory, Fourier analysis, and
measure theory.

1.2. Historical perspective and overview. The first derivation of the tight
upper bound

I(P,L) = O(m?*n?® + m +n)

(for sets P of m points and L of n lines) was given by Szemerédi and Trotter
in their 1983 seminal paper [95]. They proved Erdds’ conjecture, who found the
matching lower bound (which was rediscovered many years later by Edelsbrunner
and Welzl [45]). A different lower bound construction was exhibited by Elekes [46]
(see Section 2).

The original proof of Szemerédi and Trotter is rather involved, and yields a
rather astronomical constant of proportionality hidden in the O-notation. Accord-
ing to Cs. Téth [98], their technique can be extended to the complex plane to give
precisely the same bound, apart from the constant. A considerably simpler proof
was found by Clarkson, Edelsbrunner, Guibas, Sharir and Welzl [38] in 1990, us-
ing extremal graph theory combined with a geometric partitioning technique based
on random sampling (see Section 3). Their paper contains many extensions and
generalizations of the Szemerédi-Trotter theorem. In particular, the same upper
bound holds for sets of pseudo-lines and of unit circles. Many further extensions
can be found in subsequent papers by Edelsbrunner, Guibas and Sharir [42, 43],
by Agarwal and Aronov [2], by Aronov, Edelsbrunner, Guibas and Sharir [13], and
by Pach and Sharir [77].

The next breakthrough occurred in 1997. In a surprising paper, Székely [94]
gave an embarrassingly short proof of the upper bound on I(P, L) using a simple
lower bound of Ajtai, Chvétal, Newborn and Szemerédi [10] and of Leighton [70]
on the crossing number of a graph G, i.e., the minimum number of edge crossings
in the best drawing of G in the plane, where the vertices are represented by points
and the edges by Jordan arcs. In the literature this result is often referred to as
the ‘Crossing Lemma.” Székely’s method could easily be extended to several other
variants of the problem, but appears to be less general than the previous technique
of Clarkson et al. [38].

Székely’s paper has triggered an intensive re-examination of the problem. In
particular, several attempts were made to improve the existing upper bound on
the number of incidences between m points and n circles of arbitrary radii in the
plane [78]. This was the simplest instance where Székely’s proof technique failed.
By combining Székely’s method with a seemingly unrelated technique of Tamaki
and Tokuyama [96] for cutting circles into ‘pseudo-segments’, Aronov and Sharir
[17] managed to obtain an improved bound for this variant of the problem. Their
work has then been followed by Agarwal, Aronov and Sharir [3], who studied the
complexity of many faces in arrangements of circles and pseudo-segments, and
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by Agarwal, Nevo, Pach, Pinchasi, Sharir and Smorodinsky [7], who extended
this result to arrangements of pseudo-circles (see Section 5). Aronov, Koltun and
Sharir [14] generalized the problem to higher dimensions, while Sharir and Welzl
[85] studied incidences between points and lines in three dimensions (see Section 8).

The related problems involving distances in a point set have also witnessed
considerable progress recently. As for the Repeated Distances Problem in the plane,
the best known upper bound on the number of times the same distance can occur
among n points is O(n4/3), which was obtained nearly 20 years ago by Spencer et
al. [92]. This is far from the best known lower bound of Erdés, which is only slightly
super-linear [76]. The best known upper bound for the 3-dimensional case, due to
Clarkson et al. [38], is roughly O(n®/?), while the corresponding lower bound of
Erdés is Q(n*/?loglogn) [75]. Other variants of the problem have been studied
in [24, 51, 52, 61, 87, 93].

More progress has been made on the companion problem of Distinct Distances.
In the planar case, L. Moser [74] and Chung, Szemerédi and Trotter [37] proved
that the number of distinct distances determined by n points in the plane is at
least Q(n?/?) and n*/® divided by a polylogarithmic factor, respectively. Székely
[94] managed to get rid of the polylogarithmic factor, while Solymosi and Cs. Téth
[89] improved this bound to Q(n%/7). This was a real breakthrough. Their analysis
was subsequently refined by Tardos [97] and then by Katz and Tardos [68], who
obtained the current record of Q(n(48-14)/(35=16¢)=¢) " for any ¢ > 0, which is
Q(n°8641) " This is getting close to the best known upper bound of O(n/+/logn),
due to Erdés [50], but there is still a considerable gap. See Section 9 for more details.
In three dimensions, a recent result of Aronov, Pach, Sharir and Tardos [16] yields
a lower bound of Q(n/1*1=¢) for any ¢ > 0, which is Q(n%5%6). This has been
improved by Solymosi and Vu [91] to Q(n°?%*), but this new bound is still far from
the best known upper bound of O(n?/3).

The argument of Solymosi and Téth as well as the higher dimensional version
of the Distinct Distances Problem are discussed in Section 9. For other surveys on
related subjects, consult [72], [75], [76], and [29].

2. Lower Bounds

We describe a simple construction due to Elekes [46] of a set P of m points
and a set L of n lines, such that I(P, L) = Q(m?/?n?/? + m +n). We fix two integer
parameters £,17. We take P to be the set of all lattice points in {1,2,...,&} x
{1,2,...,2¢n}. The set L consists of all lines of the form y = ax + b, where a is
an integer in the range 1,...,7, and b is an integer in the range 1,...,&n. Clearly,
each line in L passes through exactly ¢ points of P. See Figure 2.

We have m = |P| = 2%, n = |L| = &n?, and

I(P,L) = ¢|L] = €07 = Qm®*n®/?).

Given any sizes m,n so that n'/? < m < n?, we can find &, n that give rise to sets
P, L whose sizes are within a constant factor of m and n, respectively. If m lies
outside this range then m?2/3n2/3 is dominated by m + n, and then it is trivial to
construct sets P, L of respective sizes m,n so that I(P,L) = Q(m + n). We have
thus shown that

I(P,L) = Q(m**n*® + m +n).
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FIGURE 2. Elekes’ construction.

We note that this construction is easy to generalize to incidences involving other
curves. For example, we can take P to be the grid {1,2,...,¢} x {1,2,...,3¢%n},
and define C' to be the set of all parabolas of the form y = az® + bx + ¢, where
a€{l,....,n},be{1,....6n}, c € {1,...,62n}. Now we have m = |P| = 3£,
n=|C| = &n?, and

I(P,0) = €|0| = &' = Q(m'*n®/%).

Note that in the construction we have m = O(n). When m is larger, we use the
preceding construction for points and lines, which can be easily transformed into a
construction for points and parabolas, to obtain the overall lower bound for points
and parabolas:

_ Q(m>3n*/3 +m), ifm>n
I(P,C) = { Q(m/2n5/6 4 ), it m <n.

From incidences to many faces. Let P be a set of m points and L a set of n
lines in the plane, and put I = I(P,L). Fix a sufficiently small parameter ¢ > 0,
and replace each line £ € L by two lines £, ¢, obtained by translating ¢ parallel
to itself by distance e in the two possible directions. We obtain a new collection L'
of 2n lines. If ¢ is sufficiently small then each point p € P that is incident to k& > 2
lines of L becomes a point that lies in a small face of A(L') that has 2k edges; note
also that the circle of radius € centered at p is tangent to all these edges. Moreover,
these faces are distinct for different points p, when ¢ is sufficiently small.

We have thus shown that K(P,L') > 2I(P,L) — 2m (where the last term
accounts for points that lie on just one line of L). In particular, in view of the
preceding construction, we have, for |P| =m, |L| = n,

K(P,L) = Q(m?**n*? + m +n).
An interesting consequence of this construction is as follows. Take m = n and

sets P, L that satisfy I(P, L) = ©(n*/?). Let C be the collection of the 2n lines of L/
and of the n circles of radius € centered at the points of P. By applying a circular
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inversion, we can turn all the curves in C into circles. We thus obtain a set C' of
3n circles with ©(n*/?) tangent pairs. If we replace each of the circles centered at
the points of P by circles with a slightly larger radius, we obtain a collection of 3n
circles with ©(n*/3) empty lenses, namely faces of degree 2 in their arrangement.
Empty lenses play an important role in the analysis of incidences between points
and circles; see below.

Lower bounds for incidences with unit circles. As noted, this problem is
equivalent to the problem of Repeated Distances. Erdés [50] has shown that, for
the vertices of an n'/2xn'/? grid, there exists a distance that occurs Q(n!+e/loglogn)
times, for an appropriate absolute constant ¢ > 0. More precisely, according to a
well-known result of Euler and Fermat, every prime of the form 4k+1 can be written
as the sum of two squares. Combining this theorem with the fact that primes of
this form are “uniformly distributed” among all prime numbers, it can be deduced
that there exists an integer m smaller than n that can be written as the sum of the
two squares in at least n¢/1°81°8 " different ways. Consequently, from each point of
the n!/2 x n'/2 grid there are at least n®/1°81°8" other points of the grid at distance
m'/2. Reducing the configuration to m~'/2 of its original size, we obtain a set of
n points determining Q(n'T¢/1°glo87) ynit distances. The number-theoretic details
of this analysis can be found in the monographs [76] and [72].

Lower bounds for incidences with arbitrary circles. As we will see later,
we are still far from a sharp bound on the number of incidences between points
and circles, especially when the number of points is small relative to the number of
circles.

By taking sets P of m points and L of n lines with I(P, L) = O(m?*/3n*/? +m+
n), and by applying inversion to the plane, we obtain a set C' of n circles and a set
P’ of m points with I(P',C) = ©(m?/3n?/3 +m 4n). Hence the maximum number
of incidences between m points and n circles is Q(m?>/3n?/3 4+ m + n). However, we
can slightly increase this lower bound, as follows.

Let P be the set of vertices of the m'/2 x m!/? integer lattice. As shown by
Erdés [50], there are t = ©(m/+/logm) distinct distances between pairs of points
of P. Draw a set C of mt circles, centered at the points of P and having as radii
the t possible inter-point distances. Clearly, the number of incidences I(P,C) is
exactly m(m — 1). If the bound on I(P,C) were O(m?/*n?/®> +m + n), then we
would have

m(m — 1) = I(P,C) = O(m?/®(mt)*/® + mt) = O(m?/(logm)'/?),

a contradiction. This shows that, under the most optimistic conjecture, the maxi-
mum value of I(P,C) should be larger than the corresponding bound for lines by
at least some polylogarithmic factor.

3. Upper Bounds for Incidences via the Partition Technique

The approach presented in this section is due to Clarkson et al. [38]. It
predated Székely’s method, but it seems to be more flexible, suitable for general-
izations. It can also be used for the refinement of some proofs based on Székely’s
method.

We exemplify this technique by establishing an upper bound for the number
of point-line incidences. Let P be a set of m points and L a set of n lines in the
plane. First, we give a weaker bound on I(P, L), as follows. Consider the bipartite
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graph H C P x L whose edges represent all incident pairs (p, ), for p € P, £ € L.
Clearly, H does not contain Ky » as a subgraph. By the Kévari-Sés-Turan Theorem
in extremal graph theory (see [76]), we have

(3.1) I(P,L) = O(mn'/? +n).

To improve this bound, we partition the plane into subregions, apply this bound
within each subregion separately, and sum up the bounds. We fix a parameter
r,1 < r < n, whose value will be determined shortly, and construct a so-called
(1/r)-cutting of the arrangement A(L) of the lines of L. This is a decomposition of
the plane into O(r?) vertical trapezoids with pairwise disjoint interiors, such that
each trapezoid is crossed by at most n/r lines of L. The existence of such a cutting
has been established by Chazelle and Friedman [35] and later refined by Chazelle
[33], following earlier and somewhat weaker results of Clarkson and Shor [39]. The
idea is roughly the following. Take a random sample R of r lines of L, form their
arrangement A(R), and triangulate each of its faces. We obtain O(r?) triangles
(cells). Using standard probabilistic arguments [39], one can show that, with high
probability, no cell is crossed by more than O(% logr) lines of L. Moreover, the
expected number of lines crossing a cell is only O(2). Chazelle and Friedman show
that the expected number of cells that are crossed by more than tT” lines decays
exponentially with ¢. These “heavy” cells are then cut further into subcells, using
additional random samples of the lines that cross them, so as to guarantee that no
cell is crossed by more than n/r lines. The exponential decay is then used to show
that the overall number of cells remains O(r?). See [72] and [84] for more details.

For each cell T of the cutting, let P, denote the set of points of P that lie in
the interior of 7, and let L. denote the set of lines that cross 7. Put m, = |P;| and
nr = |L;| <n/r. Using (3.1), we have

1/2
1Py, L) = Ofment?” 4 1) =0 (m (%) 42).

r

Summing this over all O(r?) cells 7, we obtain a total of

Z:I(PT,LT) -0 <m (;)1/2 + nr)

incidences. This does not quite complete the count, because we also need to consider
points that lie on the boundary of the cells of the cutting. A point p that lies in
the relative interior of an edge e of the cutting lies on the boundary of at most two
cells, and any line that passes through p, with the possible exception of the single
line that contains e, crosses both cells. Hence, we may simply assign p to one of
these cells, and its incidences (except for at most one) will be counted within the
subproblem associated with that cell. Consider then a point p which is a vertex
of the cutting, and let £ be a line incident to p. Then £ either crosses or bounds
some adjacent cell 7. Since a line can cross the boundary of a cell in at most two
points, we can charge the incidence (p, /) to the pair (¢,7), use the fact that no
cell is crossed by more than n/r lines, and conclude that the number of incidences
involving vertices of the cutting is at most O(nr). See Figure 3 for an illustration.
We have thus shown that

I(P,I)=0 <m (2)1/2 + nr> :

r



8 JANOS PACH AND MICHA SHARIR

F1GURE 3. The incidence between p and ¢ is charged to the cross-
ing of 7 by /.

Choose 7 = m?/3 /n'/3. This choice makes sense provided that 1 <r < n. If r < 1,
then m < n'/? and (3.1) implies that I(P,L) = O(n). Similarly, if 7 > n then
m > n? and (3.1) implies that I(P,L) = O(m). If r lies in the desired range, we get
I(P,L) = O(m?/*n?/3). Putting all these bounds together, we obtain the bound

I(P,L) = O(m?/*n?/® + m + n),

as required.

We remark that the actual analysis of Clarkson et al. [38] uses a partition
formed only by the first decomposition stage (which constructs A(R) and triangu-
lates its cells). This in general is not a (1/r)-cutting. Nevertheless, using improved
bounds on the expected number of lines that cross a cell, Clarkson et al. managed
to pull through the analysis along the lines described above. However, using the
refined construction of Chazelle and Friedman [35] simplifies the analysis.
Remark. An equivalent statement of the Szemerédi-Trotter theorem is that, for a
set P of n points in the plane, and for any integer k£ < n, the number of lines that
contain at least k points of P is at most

n? n
O(ﬁ-l'%)'

Moreover, the number of incidences between these lines and the points of P is at

most
n?

Discussion. The cutting-based method is quite powerful, and can be extended in
various ways. The crux of the technique is to derive somehow a weaker (but easier)
bound on the number of incidences, construct a (1/r)-cutting of the set of curves,
obtain the corresponding decomposition of the problem into O(r?) subproblems,
apply the weaker bound within each subproblem, and sum up the bounds to obtain
the overall bound. The work by Clarkson et al. [38] contains many such extensions.

Let us demonstrate this method to obtain an upper bound for the number of
incidences between a sett P of m points and a set C of n arbitrary circles in the
plane. Consider the incidence graph H C P x C consisting of all pairs (edges)
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(p,c), p € P,c € C such that p is incident to ¢, and notice that it does not contain
K5 5 as a subgraph. Thus (see, e.g., [76]), we have

I(P,C) = O(mn®/® +n).

We construct a (1/r)-cutting for C', apply this weak bound within each cell 7 of the
cutting, and handle incidences that occur on the cell boundaries exactly as above,

to obtain 23
I(P,C):ZI(PT,CT)=O<m (2) +nr>.

r
With an appropriate choice of r, this becomes
I(P,C) = O(m*"n*> + m + n).

However, as we shall see later, this bound can be considerably improved.

The case of a set C' of n unit circles is handled similarly, observing that in this
case the intersection graph H does not contain K, 3. This yields the same upper
bound I(P,C) = O(mn'/? +n), as in (3.1). The analysis then continues exactly as
in the case of lines, and yields the bound

I(P,C) = O(m?"*n?® + m + n).

We can apply this bound to the Repeated Distances Problem, recalling that the
number of pairs of points in an n-element set of points in the plane that lie at
distance exactly 1 from each other, is half the number of incidences between the
points and the unit circles centered at them. Substituting m = n in the above
bound, we thus obtain that the number of times that the same distance can be
repeated among n points in the plane is at most O(n*/?). This bound is far from
the best known lower bound, mentioned in Section 2.

As a matter of fact, this approach can be extended to any collection C' of
curves that have “d degrees of freedom”, in the sense that any d points in the plane
determine at most ¢ = O(1) curves from the family that pass through all of them,
and any pair of curves intersect in only O(1) points [77]. The incidence graph does
not contain Kg .41 as a subgraph, which implies that

I(P,C) = O(mn* Y% 4 p).
Combining this bound with a cutting-based decomposition yields the bound
I(P, C) — O(md/(del)n(2d72)/(2d71) +m+ n)

Note that this bound extrapolates the previous bounds for the cases of lines (d = 2),
unit circles (d = 2), and arbitrary circles (d = 3). See [78] for a slight generalization
of this result, using Székely’s method, outlined in the following section. See also
[28] for an application of similar ideas in higher dimensions.

4. Incidences via Crossing Numbers—Székely’s Method

A graph @ is said to be drawn in the plane if its vertices are mapped to distinct
points in the plane, and each of its edges is represented by a Jordan arc connecting
the corresponding pair of points. It is assumed that no edge passes through any
vertex other than its endpoints, and that when two edges meet at a common interior
point, they properly cross each other there, i.e., each curve passes from one side of
the other curve to the other side. Such a point is called a crossing. In the literature,
a graph drawn in the plane with the above properties is often called a topological
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graph. If; in addition, the edges are represented by straight-line segments, then the
drawing is said to be a geometric graph.

As we have indicated before, Székely discovered that the analysis outlined in
the previous section can be substantially simplified, applying the following so-called
Crossing Lemma, for graphs drawn in the plane.

Crossing Lemma. [Leighton [70], Ajtai et al. [10]] Let G be a simple graph drawn
in the plane with V wvertices and E edges. If E > 4V then there are Q(E?/V?)
crossing pairs of edges.

To establish the lemma, denote by cr(G) the minimum number of crossing pairs
of edges in any ‘legal’ drawing of G. Since G contains too many edges, it is not
planar, and therefore cr(G) > 1. In fact, using Euler’s formula, a simple counting
argument shows that cr(G) > E—3V +6 > E — 3V. We next apply this inequality
to a random sample G' of G, which is an induced subgraph obtained by choosing
each vertex of G independently with some probability p. By applying expectations,
we obtain Elcr(G')] > E[E'] — 3E[V'], where E', V' are the numbers of edges and
vertices in G', respectively. This can be rewritten as cr(G)p* > Ep? — 3Vp, and
choosing p = 4V/E completes the proof of the Crossing Lemma.

We remark that the actual lower bound yielded by this analysis is E?/(64V?2).
The constant of proportionality has been improved by Pach and Téth [80] and
it is now within a factor of three from its best possible value. They proved that
cr(G) > E?/(33.75V2) whenever E > 7.5V. In fact, the slightly weaker inequality
cr(G) > E3/(33.75V2) — 0.9V holds without any extra assumption. We also note
that it is crucial that the graph G be simple (i.e., any two vertices be connected by
at most one edge), for otherwise no crossing can be guaranteed, regardless of how
large E is.

Let P be a set of m points and L a set of n lines in the plane. We associate with
P and L the following plane drawing of a graph G. The vertices of (this drawing of)
G are the points of P. For each line ¢ € L, we connect each pair of points of PN/
that are consecutive along ¢ by an edge of G, drawn as the straight segment between
these points (which is contained in £). See Figure 4 for an illustration. Clearly, G is
a simple graph, and, assuming that each line of L contains at least one point of P,
we have V = m and E = I(P,L) — n (the number of edges along a line is smaller
by 1 than the number of incidences with that line). Hence, either £ < 4V, and
then I(P,L) < 4m +n, or cr(G) > E3/(cV?) = (I(P,L) —n)?/(cm?). However, we
have, trivially, cr(G) < (%), because any crossing between edges of G is a crossing
between the lines that support them, and any such line crossing can appear at mos
once as a crossing in G. This implies that I(P,L) < (¢/2)"/*m?/3n?/3 4 n. Using
c = 33.75, the coefficient of the leading term becomes at most 2.57.

Extensions: Many faces and unit circles. The simple idea behind Székely’s
proof is quite powerful, and can be applied to many variants of the problem, as
long as the corresponding graph G is simple, or, alternatively, has a bounded edge
multiplicity. For example, consider the case of incidences between a set P of m
points and a set C' of n unit circles. Draw the graph G exactly as in the case of
lines, but only along circles that contain more than two points of P, to avoid loops
and multiple edges along the same circle. We have V =m and E > I(P,C)—2n. In
this case, G need not be simple, but the maximum edge multiplicity is at most two;
see Figure 5. Hence, by deleting at most half of the edges of G we make it into a
simple graph. Moreover, cr(G) < n(n—1), so we get I(P,C) = O(m?/*n?/3+m+4n).
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F1GURE 4. Székely’s graph for points and lines in the plane.

FIGURE 5. Székely’s graph for points and unit circles in the plane:
The maximum edge multiplicity is two—see the edges connecting
p and q.

It is interesting to note that Székely’s technique yields bounds that depend on
the actual number X of crossings between the curves in C. In the case of lines,
X is generally ©(n?). However, for other classes of curves, X can be considerably
smaller. In the case of unit circles, we obtain I(P,C) = O(m**X'/3 4 m + n).
Such a dependence on X can also be obtained using the analysis of Section 3.

We can also apply this technique to obtain an upper bound on the total com-
plexity of a set of faces in an arrangement of lines. Let P be a set of m points and
L a set of n lines in the plane, so that no point lies on any line and each point lies
in a distinct face of A(L). The graph G is now constructed in the following slightly
different manner. Its vertices are the points of P. For each ¢ € L, we consider all
faces of A(L) that are marked by points of P, are bounded by ¢ and lie on a fixed
side of £. For each pair fi, fo of such faces that are consecutive along ¢ (the portion
of ¢ between Jf; and 0fs does not meet any other marked face on the same side),
we connect the corresponding marking points py, pe by an edge, and draw it as a
polygonal path piqigep2, where g1 € £NOf; and g2 € LN Af. We actually shift
the edge slightly away from /¢ so as to avoid its overlapping with edges drawn for
faces on the other side of /. The points ¢1, g2 can be chosen in such a way that a
pair of edges meet each other only at intersection points of pairs of lines of L. See
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FIGURE 6. Székely’s graph for face-marking points and lines in the
plane. The maximum edge multiplicity is two—see, e.g., the edges
connecting p and g.

Figure 6. The resulting graph G has V' = m vertices, E > K (P, L) — 2n edges, and
cr(G) < 2n(n — 1) (each pair of lines can give rise to at most four pairs of crossing
edges, near the same intersection point). Again, G is not simple, but the maximum
edge multiplicity is at most two, because, if two faces fi, fo are connected along
a line /¢, then £ is a common external tangent to both faces. Since f; and f, are
disjoint convex sets, they can have at most two external common tangents. Hence,
arguing as above, we obtain K (P, L) = O(m?/*n?/®> + m 4+ n), where the coefficient
of the leading term is at most 4.08. We remark that the same upper bound can also
be obtained via the partition technique, as shown by Clarkson et al. [38]. Moreover,
in view of the discussion in Section 2, this bound is tight.

However, Székely’s technique does not always apply as such. The simplest
example where it fails is when we want to establish an upper bound on the number
of incidences between points and circles of arbitrary radii. If we follow the same
approach as for equal circles, and construct a graph analogously, we may now create
edges with arbitrarily large multiplicities, as is illustrated in Figure 7.

Another case where the technique fails is when we wish to bound the total
complexity of many faces in an arrangement of line segments. If we try to construct
the graph in the same way as we did for full lines, the faces may not be convex any
more, and we can create edges of high multiplicity; see Figure 8.

Neither of these failures are fatal, though, and can be overcome by combining
Székely’s technique with other tools, as we describe next.

5. Improvements by Cutting into Pseudo-segments

5.1. Making the Székely’s graph simple: Cutting into pseudo-segments.
Consider the case of incidences between points and circles of arbitrary radii. One
way to overcome the technical problem in applying Székely’s technique in this case is
to cut the given circles into subarcs so that any two of them intersect at most once.
We refer to such a collection of subarcs as a collection of pseudo-segments. Then, if
one draws the Székely graph only along these pseudo-segments, the resulting graph
is guaranteed to be simple; see below for more details.
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FIGURE 7. Székely’s graph need not be simple for points and ar-
bitrary circles in the plane.

/

———

FIcURE 8. Székely’s graph need not be simple for marked faces
and segments in the plane: An arbitrarily large number of segments
bounds all three faces marked by the points p,q,r, so the edges
(p,r) and (r,q) in Székely’s graph have arbitrarily large multiplic-
ity.

The first step in this direction has been taken by Tamaki and Tokuyama [96],
who have shown that any collection C of n pseudo-circles, namely, closed Jordan
curves, each pair of which intersect at most twice, can be cut into O(ns/ 3) subarcs
that form a family of pseudo-segments.! To discuss this result and its subsequent
improvements, let x(C) denote the minimum number of points that can be removed
from the curves of C, so that any two members of the resulting family of subarcs
have at most one point in common. y(C) can be given the following equivalent
interpretation.

The actual motivation of Tamaki and Tokuyama has not been to count incidences, but to
bound the complexity of a single level in an arrangement of such curves.
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FI1GURE 9. Cutting every lens yields an arrangement of pseudo-segments.

FiGURE 10. The boundaries of the shaded regions are nonoverlap-
ping lenses in an arrangement, of pseudo-circles.

The union of two arcs that belong to distinct pseudo-circles and connect the
same pair of points is called a lens. Consider a hypergraph H whose vertex set
consists of the edges of the arrangement A(C'), i.e., the arcs between two consecutive
crossings. Assign to each lens a hyperedge consisting of all arcs that belong to the
lens. We are interested in finding the transversal number (or the size of the smallest
“hitting set”) of H, i.e., the smallest number of vertices of H that can be picked
with the property that every hyperedge contains at least one of them. We now cut
the curves of C' at the arcs that belong to the hitting set. Since every lens has
been hit, any pair of the resulting subcurves intersect at most once. See Figure 9.
Hence, x(C) is the transversal number of H.

Using Lovdsz’ analysis [71] (see also [76]) of the greedy algorithm for bounding
the transversal number from above (i.e., for constructing a hitting set), Tamaki and
Tokuyama have shown that this quantity is not much bigger than the size of the
largest matching in H, i.e., the maximum number of pairwise disjoint hyperedges.
This is the same as the largest number of pairwise non-overlapping lenses, that
is, the largest number of lenses, no two of which share a common edge of the
arrangement A(C') (see Figure 10). Viewing such a family of nonoverlapping lenses
as a graph G, whose edges connect pairs of curves that form a lens in the family,
Tamaki and Tokuyama proved that G' does not contain K33 as a subgraph, and
this leads to the asserted bound on the number of cuts.
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F1GURE 11. The modified Székely graph construction.

In order to establish an upper bound on the number of incidences between a
set P of m points and a set L of n circles (or pseudo-circles), let us construct a
modified version G’ of Székely’s graph: its vertices are the points of P, and its edges
connect, adjacent pairs of points along the new pseudo-segment arcs. That is, we
do not connect a pair of points that are adjacent along an original curve, if the arc
that connects them has been cut by some point of the hitting set. See Figure 11.
Moreover, as in the original analysis of Székely, we do not connect points along
pseudo-circles that are incident to only one or two points of P, to avoid loops and
trivial multiplicities.

Clearly, the graph G’ is simple, and the number E’ of its edges is at least
I(P,C) — x(C) — 2n. The crossing number of G’ is, as before, at most the number
of crossings between the original curves in C, which is at most n(n — 1). Using the
Crossing Lemma, we thus obtain

I(P,C) = O(m?*n23 4+ x(C) +m +n).
Hence, applying the Tamaki-Tokuyama bound on x(C'), we can conclude that
I(P,C) = O(m?*n2® + £ m).

An interesting property of this bound is that it is tight when m > n®/2. In this case,
the bound becomes I(P, C) = O(m?/*n?/? 4+ m), matching the lower bound for inci-
dences between points and lines, which also serves as a lower bound for the number
of incidences between points and circles or parabolas. However, for smaller values
of m, the term O(n°/3) dominates, and the dependence on m disappears. This can
be rectified by combining this bound with a cutting-based problem decomposition,
similar to the one used in Section 3, and we shall do so shortly.

Before proceeding, though, we note that Tamaki and Tokuyama’s bound is not
tight. The best known lower bound is Q(n*/?), which follows from the lower bound
construction for incidences between points and lines. (That is, we have already
seen that this construction can be modified so as to yield a collection C' of n circles
with @(n4/ 3) empty lenses. Clearly, each such lens requires a separate cut, so
x(C) = Q(n*/?).) Recent work by Alon, Last, Pinchasi and Sharir [12], Aronov
and Sharir [17], and Agarwal et al. [7] has led to improved bounds. Specifically, it
was shown in [7] that x(C) = O(n®/?), for families C of pseudo-parabolas (graphs of
continuous everywhere defined functions, each pair of which intersect at most twice),
and, more generally, for families of z:-monotone pseudo-circles (closed Jordan curves
with the same property, so that the two portions of their boundaries connecting
their leftmost and rightmost points are graphs of two continuous functions, defined
on a common interval).
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In certain special cases, including the cases of circles and of vertical parabolas
(i.e., parabolas of the form y = az? + bx + ¢), one can do better, and show that

X(C) = O(n**k(n)),

where

A(n) = (logm) ("),
and where a(n) is the extremely slowly growing inverse Ackermann’s function.
This bound was established by Agarwal et al. [7], and it improves a slightly weaker
bound obtained by Aronov and Sharir [17]. The technique used for deriving this
improved bound on x(C) is interesting in its own right, and raises several deep
open problems.

5.2. Cutting circles into pseudo-segments. We will review this analysis
for the case of circles, although several steps of the analysis apply to more general
families of pseudo-circles and pseudo-parabolas.

Let C' be a family of n circles. Recall that the main technical step in the
analysis is to estimate the maximum size of a family of pairwise nonoverlapping
lenses in A(C'). The first step towards this goal is to consider the family L of all
empty lenses (faces of degree 2 in the arrangement), in the special case where every
pair of circles in C' intersect. It was shown in [12] that the number of such lenses is
O(n). In fact, if one further assumes that all circles in C' contain a common point in
their interior, then the graph G whose vertices are the circles in C' and whose edges
connect pairs of circles that induce empty lenses is planar, from which the linear
bound on its size (in this special case) is immediate. As a matter of fact, as shown
in [12], the following natural plane embedding of G is crossing-free: Associate each
circle of C with its center. For each empty lens, formed by a pair of circles ¢, ¢/, we
draw the corresponding edge of G as the straight segment connecting the centers
of ¢ and ¢’. The linear bound in the general case of pairwise intersecting circles
(whose interiors need not have a common point) then follows by a simple inductive
argument.

It is interesting to note that this linear bound on the number of empty lenses
in the pairwise intersecting case also holds for arbitrary pseudo-circles or pseudo-
parabolas. Here, too, the proof uses a planarity argument. Specifically, the empty-
lens graph in an arrangement of n pairwise intersecting pseudo-parabolas is shown
in [7] to be planar.

The drawing rule in this case is considerably more intricate than in the case
of circles. Let ¢ be some fixed vertical line that lies to the left of all intersections
between the pseudo-parabolas. Represent each pseudo-parabola ¢ by its crossing
with ¢, denoted by v.. Connect two points, v., and v., by a y-monotone curve
(edge) if and only if the corresponding pseudo-parabolas enclose an empty lens.
This edge has to navigate to the left or to the right of each of the intermediate
points v. between v., and v., along £. This navigation is governed by the following
drawing rule (see Figure 12): Assume that v, lies below v, along £. Let W(cy, ¢2)
denote the left wedge formed by ¢; and ¢y, consisting of all points that lie above
c1 and below ¢s and to the left of the first intersection between them. Let ¢ be a
pseudo-parabola for which v. lies between v., and v.,. Clearly, ¢ has to exit the
left wedge W (c1,ca) at least once. If its first exit point lies on ¢; (resp., ¢2), then
we draw the y-monotone curve (edge) connecting v., and v., to pass to the right
(resp., to the left) of v.. Except for these requirements, this edge can be drawn
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(ii)

FIcURE 12. Drawing the empty-lenses graph of pairwise-
intersecting pseudo-parabolas: (i) The drawing rule. (ii) A drawing
of the graph. Empty lenses are represented by tangencies.

arbitrarily. It turns out that in the resulting graph G’ any two edges cross an even
number of times. Therefore, by a theorem of Hanani [63] and Tutte [99], G is a
planar graph. One can also show that G is bipartite, and so its number of edges,
i.e., the number of empty lenses, is at most 2n —4. The case of pairwise-intersecting
pseudo-circles (rather than pseudo-parabolas) require additional steps that reduce
it to the case of pseudo-parabolas; see [7] for more details.

The next step is to bound the maximum size of a family L of pairwise nonover-
lapping lenses in an arrangement of pairwise intersecting circles (or pseudo-parabolas,
or pseudo-circles). A simple analysis of such a bound proceeds as follows. Define
the depth of a lens to be the number of circles of C' that intersect it. Since the
lenses in L are pairwise nonoverlapping, the number of lenses in L with depth
larger than n'/? is O(n3/?) (each such lens contains Q(n'/?) vertices out of the
O(n?) vertices of A(C)). The number of so-called “shallow” lenses, i.e., those of
depth at most n'/2, can be estimated using the Clarkson-Shor probabilistic analysis
[39], which bounds the number of lenses of depth at most k by O(k?) times the
number of lenses of depth 0 (i.e., empty lenses) in an arrangement of a sample of
n/k curves of C. Consequently, for k& = n'/2?, the number of shallow lenses in L
s O(k* - (n/k)) = O(nk) = O(n?/?). A more refined analysis, whose details are
omitted in this survey, shows that the maximum size of L is at most O(n4/3); see
[7]. We now apply the analysis of Tamaki and Tokuyama [96] to deduce that x(C)
is also O(n*/?). Actually, to facilitate the next step of the analysis, this result is
extended to the bichromatic case, where we have two families C, C' of curves (cir-
cles, pseudo-circles, etc.) so that each curve in C intersects every curve in C'. It is
shown in [7] that in this case the circles in C'UC" can be cut into O(n*/?) arcs, so
that every bichromatic lens, formed by a circle of C' and a circle of C', is cut.

So far we have assumed that the curves in C are pairwise intersecting. To handle
the general case, we consider the intersection graph H = {(c, ) € CxC | enc’ # B},
and decompose it into a union of complete bipartite graphs H = |J, 4; x B;. For
each subgraph A; x B;, each circle in A; intersects every circle in B;, so the result
just stated implies that all lenses formed between circles of A; and circles of B; can
be cut using O((|4;| + |Bi|)*/?) cuts. Repeating this procedure for all subgraphs,
we eliminate all lenses in A(C), using a total of

0 (Zw + |Bi|>4/3>

2
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cuts.

It remains to obtain a complete bipartite decomposition of the intersection
graph for which the above sum is small. This can be done for circles, for vertical
parabolas, and, more generally, for any family C' of xz-monotone pseudo-circles or
pseudo-parabolas that admit a 3-parameter algebraic representation, in the sense
that each curve is defined in terms of three real parameters, so that the loci of all
curves in C' that are tangent to a fixed curve, or pass through a fixed point, or
satisfy similar properties, can be represented as algebraic surfaces or semi-algebraic
surface patches of constant degree in the 3-dimensional parametric space; see [7] for
a more precise definition. The decomposition is obtained using standard techniques
in geometric partitioning, shortly described below, which are based on the notion
of cuttings, as reviewed in Section 3.

5.3. Finding all intersecting pairs of circles. The task of decomposing
the intersection graph of C' can be accomplished as a special case of batched range
searching, which we review next. We regard each member v € C' as a point v* in
a 3-dimensional parametric space, e.g., by representing a circle v with center (a,b)
and radius p as the point v* = (a,b,p) € R3. Let C* denote the set of points v*.
We also map each circle vy € C' to a surface o(7), consisting of all points (a,b,r)
that represent circles that are tangent to 7. The removal of o(v) partitions R® into
two (not necessarily connected) sets, one of which, denoted by o¥ (), consists of
points that represent circles that intersect v, while the other set, denoted o~ (),
consists of points that represent circles that are disjoint from 7. Let ¥ denote the
set of these surfaces. The problem is thus reduced to the batched range searching
problem that asks for reporting all pairs (p,o) € C* x X such that p € oT.

To solve this problem, we apply the following (standard) space decomposi-
tion technique. We fix a sufficiently large constant parameter r, and construct a
(1/r)-cutting of the arrangement A(X). In analogy with the 2-dimensional case (as
discussed in Section 3), this is a decomposition of space into relatively open cells
(of dimension 0,1,2 or 3) such that each cell is crossed by (i.e., intersected by but
not contained in) at most |X|/r surfaces of ¥. A standard probabilistic argument,
based on random sampling of ¥, shows that there exists a (1/r)-cutting consisting
of O(r*B(r)log®r) cells, where B(r) = 20(2*(") is an extremely slowly growing
function of r; see [4, 76, 84] for details. As in the planar case, a more refined
argument (see [5, 84]) reduces the size of the cutting to O(r33(r)). By refining
the partitioning further, if needed, we may also assume that each cell contains at
most |C*|/r® points of C*, without changing the asymptotic bound on the number
of cells. Finally, if we assume that no pair of circles in C' are tangent, we may
construct the cutting so that all points of C* lie in the interiors of 3-dimensional
cells of the cutting.

Let 7 be a 3-dimensional cell of the cutting. Put C* = C* N7, let ¥, denote
the set of surfaces that cross 7, and let ¥+ denote the set of surfaces o for which
7 C ot. We note that each of the complete bipartite graphs C* x ¥F, for 7 a
cell of the cutting, is fully contained in the intersection graph H of C'. Any other
intersecting pair of circles in €' must appear as an element of some C7 x ¥, and
we obtain them recursively, by applying the above procedure, for each cell 7, with
the set C* of points and the set ¥, of surfaces.

In fact, since the problem is symmetric, we can somewhat simplify the analysis,
as follows. In the second step, we take each pair C, ¥, and switch the roles of
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points and surfaces. That is, we map each point v* € C* to the corresponding
surface o(), and map each surface o(y) € X to the corresponding point v*. We
apply a similar decomposition step, using the same parameter r, to the resulting
sets of points and surfaces. Repeating this over all cells 7 of the first cutting, we
obtain a total of O(r®3%(r)) subproblems, each involving two families of circles, each
of size at most |C'|/r*. In addition, we have produced, in the nonrecursive portions
of the procedure, a collection of complete bipartite intersection graphs, where the
sum of the sizes of their vertex sets is O(|C|) (with a constant of proportionality
that depends on ). The number of cuts needed to eliminate all bichromatic lenses
within each of these graphs, summed over all of them, is, by the preceding analysis,
O(|C|**).

Hence, if we denote by F'(n) the maximum number of cuts needed to eliminate
all bichromatic lenses in an arrangement of two families of n circles each, we obtain
the recurrence relation

F(n) = O(r°8*(r)) - F(n/r*) + On*/®),

where the constant of proportionality in the overhead term O(n4/ %) depends on r.
It is easily seen that the solution of this recurrence is F(n) = O(n®/?¢), for any
e > 0. (Actually, this bound can be slightly improved, by choosing r to be a power
of n, so that the depth of the recursion is only O(loglogn). The solution of the
recurrence then becomes

F(n) =0 (n3/2(10g n)0<l°gﬁ<n))) -0 (n3/2(log n)0<a2<"))) — O(n*/2k(n)).
This clearly also bounds the number of cuts for a single family of n circles.

5.4. Bounding the number of point-circle incidences. Having developed
the preceding machinery, the modification of Székely’s method reviewed above
yields, for a set C of n circles and a set P of m points,

I(P,C) = O(m**n?? £ n®k(n) + m).

As already noted, this bound is tight when it is dominated by the first or last
terms, which happens when m is larger than roughly n%/*. For smaller values of m,
we decompose the problem into subproblems, using the following so-called “dual”
partitioning technique. We map each circle (z — a)? + (y — b)? = p? in C to the
“dual” point (a,b, p*> —a® — b%) in 3-space,”> and map each point (£,7) of P to
the “dual” plane z = -2z — 2ny + (€2 + n?). As is easily verified, each incidence
between a point of P and a circle of C' is mapped to an incidence between the dual
plane and point. We now fix a parameter r, and construct a (1/r)-cutting of the
arrangement of the dual planes, which partitions R?® into O(r?) cells (which is a
tight bound in the case of planes), each crossed by at most m/r dual planes and
containing at most n/r® dual points (the latter property, which is not an intrinsic
property of the cutting, can be enforced by further partitioning cells that contain
more than n/r® points). We apply, for each cell 7 of the cutting, the preceding
bound for the set P, of points of P whose dual planes cross 7, and for the set C
of circles whose dual points lie in 7. (Some special handling of circles whose dual
points lie on boundaries of cells of the cutting is needed, as in Section 3, but we

2This is different from the mapping used in finding all pairs of intersecting circles.
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omit the routine treatment of this special case.) This yields the bound

oo ()" ()" (3)""(3) ) -

3/2
2/3,2/3.1/3 | 1 n 2
O<m n*’r +r3/2ﬁ(r3)+mr>.
Assume that m lies between n'/3 and n®/4; it is not hard to handle the comple-
mentary cases. Choosing r = n/'* /m*/'! in the last bound, we obtain

I(P,C) = O(m**n23 4 mS/ M p® M (m® /n) + m +n).

Remark: The preceding analysis can be adapted to yield the above upper bound
for the number of incidences between m points and n vertical parabolas (of the form
y = ax®+br+c). It can also be adapted to yield weaker, but still nontrivial bounds
for incidences between points and graphs of polynomials of any fixed degree, and a
few other classes of curves. The analysis relies, as above, on subquadratic bounds
for the number of cuts needed to turn such a collection of curves into pseudo-
segments. Bounds of this kind have recently been obtained by Chan [31, 32]. See
[7, 17] for details.

6. Complexity of Many Faces in Planar Arrangements

In this section we briefly review the state of the art in the companion problem
of estimating the combined complexity K (P, C) of faces, marked by a set P of m
points, in an arrangement, of a family C' of n curves in the plane.

Lines and pseudo-lines. We have already discussed the case where C' = L is a set,
of lines. Using Székely’s technique, we have shown that K (P,L) = O(m?/3n?/® +
m + n), and the observation in Section 2 implies that this bound is tight in the
worst case. As follows from Székely’s analysis, this bound also holds for families of
pseudo-lines (see also [38]).

Segments and pseudo-segments. The problem becomes considerably more in-
volved for other types of curves. It is not easy to apply the above methods even in
the case when C'is a collection of n line segments rather than full lines. Indeed, as
illustrated in Figure 8, Székely’s technique does not extend to this case, because of
the potential presence of edges with arbitrarily large multiplicity, and the cutting-
based analysis of Section 3 faces technical difficulties of its own. (In contrast, in
the incidence problem there is no real difference between the cases of lines and of
line segments.)

The case of segments has been studied by Aronov, Edelsbrunner, Guibas and
Sharir [13], who have obtained the upper bound K (P,C) = O(m?*/*n?*/® + na(n) +
nlogm), and the lower bound Q(m?/3n?/? 4+ na(n)). Hence, the upper bound is
optimal in the worst case, except for a small range of m near the value n'/2,

Recently, Agarwal, Aronov and Sharir [3] have shown that the complexity
of m distinct faces in an arrangement of n estendible pseudo-segments® with X
intersecting pairs is O(m>/3X'/3 4+ nlogn). Since the lower bound of Aronov,
Edelsbrunner, Guibas and Sharir can be refined to Q(m?/? X'/? 4+ na(n)), this upper
bound is asymptotically sharp when the first term dominates, and is otherwise
within a logarithmic factor of the lower bound. In general, since X = O(n?), the

3A family of z-monotone pseudo-segments is called eztendible if each of them is contained in
an z-monotone unbounded curve, so that these curves form a family of pseudo-lines.
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upper bound is O(m2/3n?/3 + nlogn), which is optimal for m = Q(n'/21log®? n).
There is a tiny range of m where the upper bound of [13] is better than that of [3],
but the second proof is simpler. Although not explicitly asserted, the analysis of
[13] also applies to the case of extendible pseudo-segments.

By Chan’s analysis [31], the bound of [3] implies an upper bound of O(m?/3 X1/3 4
nlog’ n) for the complexity of m faces in an arrangement of n arbitrary z-monotone
pseudo-segments; this bound also holds when the pseudo-segments are not z-
monotone, but each of them has only O(1) locally z-extremal points. Again, this
is asymptotically sharp, unless m is small. For example, substituting X = O(n?),
the bound becomes O(m?/3>n?/? 4+ nlog?n), which cannot be improved if m =
Q(n'/?1og® n).

Circles. For the case where C' is a set of circles in the plane, Agarwal, Aronov and
Sharir [3] have shown that

K(P,C)=0 (m2/3n2/3 +mS g (m? n) + nlogn) ,

which is almost identical to the upper bound for point-circle incidences, presented
in Section 5.

In a nutshell, the analysis proceeds as follows: We first cut the circles into

pseudo-segments, then cut the pseudo-segments further into extendible pseudo-
segments, and then apply the bound stated above for marked faces in an arrange-
ment of extendible pseudo-segments. This yields an initial weak bound, which is
then refined by means of a cutting, in the same spirit as the analysis of point-
circle incidences. However, the analysis of marked faces imposes several additional
technical problems that need to be addressed. Specifically, the incidence problem
is fully “decomposable”: If we partition C' into a disjoint union Cy U Cs, then,
trivially, I(P,C) = I(P,C1) + I(P,C>). However, obtaining a similar relationship
for K(P,C) is rather nontrivial, and a considerable portion of the analysis in [3] is
devoted to this issue, which arises when we decompose the problem into subprob-
lems by means of a cutting. See [3] for more details, and for additional bounds for
K (P,C) in certain special cases.
Unit circles. If all the circles in C are congruent (the case of “unit circles”), then,
as shown in [3], K(P,C) = O(m*/3X'/3 4 n), where X is, as above, the number of
intersecting pairs of circles. This bound is asymptotically tight in the worst case,
in contrast with the same asymptotic upper bound for the case of incidences, which
is far away from the best-known, near-linear lower bound (see Section 2).

7. Incidences between Points and Surfaces in Higher Dimensions

It is natural to extend the study of incidences to higher dimensions, where
instead of curves we may take surfaces of a fixed dimension. In this section, we
discuss the case when C' consists of hyperplanes or unit spheres.

7.1. Incidences between points and hyperplanes. Edelsbrunner, Guibas
and Sharir [43] were the first to consider incidences between points and planes in
three dimensions. It is important to note that, without imposing some restrictions
either on the set P of points or on the set H of planes, one can easily obtain
|P| - |H| incidences, simply by placing all the points of P on a line, and making all
the planes of H pass through that line. Some natural restrictions are to require that
no three points be collinear, or that no three planes be collinear, or that the points
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be vertices of the arrangement A(H), and so on. Different assumptions lead to
different bounds. For example, Agarwal and Aronov [2] obtained an asymptotically
tight bound ©(m?/3n%/3 4+ n4=1) for the number of incidences between m vertices
of the arrangement of n hyperplanes in d dimensions and these hyperplanes (see
also [43]), as well as for the number of facets bounding m distinct cells in such
an arrangement. Other upper bounds are obtained in [43] for other restricted
instances of the problem. These bounds have been refined in a recent paper by Brafl
and Knauer [28], showing that the number of incidences between m points and n
hyperplanes in d dimensions is O((m + n) log(m 4 n) + m®¥ (@D pd/(d+1) 1og(mn)),
provided that their incidence graph contains no K, ., for any fixed r.
Edelsbrunner and Sharir [44] considered the problem of incidences between
points and hyperplanes in four dimensions, under the assumption that all points lie
on the upper envelope of the hyperplanes. They obtained the bound O(m2/3n2/3 +
m + n) for the number of such incidences, and applied the result to establish the
same upper bound on the number of bichromatic minimal distance pairs between
a set of m blue points and a set of n red points in three dimensions.
Complexity of many cells. For a set L of lines in the plane, there is a strong con-
nection between the companion problems of (1) bounding the number of incidences
between the elements of L and a set of points and (2) bounding the combined
complexity of a collection of marked faces in A(L). For a set H of hyperplanes
in d > 3 dimensions, the connection is much weaker. The transformation from
incidences to many faces, as reviewed in Section 2, can be repeated in R?, but
then incidences correspond to facets ((d — 1)-dimensional faces) of the marked cells
in A(H). However, since these cells are convex polyhedra in d-space, their over-
all complexity (number of bounding faces of all dimensions) can be much larger
than the number of their facets. This makes the analysis of the complexity of m
marked cells in an arrangement of n hyperplanes in d-space a considerably harder
task, and very little is known about this quantity. In addition to the above men-
tioned paper of Agarwal and Aronov [2], deriving bounds on the total number of
facets in m marked cells, the general problem has been addressed by Aronov, Ma-
tousek and Sharir [15] and by Aronov and Sharir [18]. They have shown that the
overall complexity of m marked cells in an arrangement of n hyperplanes in R? is
at most O(m!/2n/210gl4/21=2/2 p) with the implied constant of proportionality
depending on d. This bound was used to show that the sum of squares of the
complexities of all cells in an arrangement of n hyperplanes in d dimensions, for
d>4,is O(n? logl?/21-1 n). Clearly, this latter bound is almost tight, up to the
polylogarithmic factor.

7.2. Incidences with unit spheres: The Repeated Distances Problem.
Let P be a set of n points in R?. To estimate the number of pairs of points of P at
distance exactly 1 from each other, we transform the problem, as in the planar case,
to an incidence problem, by drawing a unit sphere o, around each point p € P, and
by observing that the number of unit distances in P is half the number of incidences
I(P,S) between P and the set S of these spheres.

Consider the general incidence problem, involving a set P of m points and a set,
S of n unit spheres in R*. We first note that the incidence graph {(p,0) € P x S |
p € g} does not contain K33 as a subgraph, so I(P,S) = O(mn?/ 4+n) [76]. Next,
we partition the problem into subproblems using a 3-dimensional cutting of the
arrangement, of the given spheres. The construction of such a cutting, which has
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already been mentioned in a different context in Section 5, is more involved than of
its planar counterpart. Roughly speaking, it is based on the vertical decomposition
of the arrangement of a random sample of the spheres (see [84]). Clarkson et al. [38]
show that one can construct a (1/r)-cutting in this manner, that has O(r®3(r)) cells,
each crossed by at most n/r spheres of S, where §(r) = 20(e*(") | and where a(r)
is the inverse Ackermann function. (Actually, similar to what we have remarked in
Section 3, Clarkson et al. establish a weaker result, where they only guarantee that
the expected number of spheres crossing a cell is O(n/r). However, their result can
be strengthened as stated above.)

Applying the weaker extremal graph-theoretic bound to each cell 7 of the cut-
ting, and handling incidences that occur along the boundary of the cells (we omit
here details of this handling), we obtain (where m, denotes the number of points
of P in a cell 7 of the cutting)

I(P,S) =0 (Z me (;)2/3 + ;) =0 (m (;)2/3 + nr2[3(r)> .

Now choose r = m3/8/n'/8. When n'/? < m < n®, this choice is valid. OQutside
this range one can easily show that I(P,S) = O(m + n). Altogether, we obtain

I(P,S) = O(m**n*/*B(m +n) + m +n).

In particular, the number of unit distances in P is O(n?/28(n)). As mentioned
in the introduction, this still leaves a gap with the best known lower bound of
Q(n*/3loglogn).

8. Incidences between Points and Curves in Higher Dimensions

The case of incidences between points and curves in higher dimensions has been
studied only recently. There are only two papers that address this problem. One
of them, by Sharir and Welzl [85], studies incidences between points and lines in 3-
space. The other, by Aronov, Koltun and Sharir [14], is concerned with incidences
between points and circles in higher dimensions. We briefly review these results in
the following two subsections.

8.1. Points and lines in three dimensions. Let P be a set of m points
and L a set of n lines in 3-space. Without making some assumptions on P
and L, the problem is trivial, for the following reason. Project P and L onto
some generic plane. Incidences between points of P and lines of L are bijec-
tively mapped to incidences between the projected points and lines, so we have
I(P,L) = O(m?/*n*/* + m 4 n). Moreover, this bound is tight, as is shown by the
planar lower bound construction. (As a matter of fact, this reduction holds in any
dimension d > 3.)

There are several ways in which the problem can be made interesting. First,
suppose that the points of P are joints in the arrangement A(L), namely, each
point is incident to at least three non-coplanar lines of L. In this case, one has
I(P,L) = O(n>/?) [85]. Note that this bound is independent of m. It is known that
the number of joints is at most O(n!12/6910g% % ) = O(n'6232) [58], improving
the previous bound O(n'-%%) of [83] (the best lower bound, based on lines forming
a cube grid, is only Q(n*/?)).
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£

F1cURE 13. Transforming incidences between points and equally
inclined lines to tangencies between circles in the plane.

For general point sets P, one can use a new measure of incidences, which aims
to ignore incidences between a point and many incident coplanar lines. Specifically,
we define the plane cover 7y, (p) of a point p to be the minimum number of planes
that pass through p so that their union contains all lines of L incident to p, and
define I.(P,L) = 3 pmr(p). It is shown in [85] that

I(P,L) = O(m* ™5™ + m + n),

which is smaller than the planar bound of Szemerédi and Trotter.

Another way in which we can make the problem “truly 3-dimensional” is to
require that all lines in L be equally inclined, meaning that each of them forms a
fixed angle (say, 45°) with the z-direction. In this case, every point of P that is
incident to at least three lines of L is a joint, but this special case admits better
upper bounds. Specifically, we have

I(P,L)=0 (min {m3/4n1/2/<a(m),m4/7n5/7} +m+ n) )

where (m) = (logm)C©@ (M) (see Section 5).
The best known lower bound is

I(P,L) = Q(m>**n'/?).

Let us briefly sketch the proof of the upper bound. For any p € P, let C}, denote
the (double) cone whose apex is p, whose symmetry axis is the vertical line through
p, and whose opening angle is 45°. Fix some generic horizontal plane my, and map
each p € P to the circle C), N my. Each line ¢ € L is mapped to the point £ N mo,
coupled with the projection £* of £ onto my. Note that an incidence between a point
p € P and a line ¢ € L is mapped to the configuration in which the circle dual
to p is incident to the point dual to ¢ and the projection of ¢ passes through the
center of the circle; see Figure 13. Hence, if a line £ is incident to several points
Di,...,Pr € P, then the dual circles py,...,p; are all tangent to each other at the
common point /Nmy. Viewing these tangencies as a collection of degenerate lenses,
we can bound the overall number of these tangencies, which is equal to I(P, L), by
O(n®/?k(n)). By a slightly more careful analysis, again based on cutting, one can
obtain the bound stated above.
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8.2. Points and circles in three and higher dimensions. Let C' be a set
of n circles and P a set of m points in 3-space. Unlike in the case of lines, there
is no obvious reduction of the problem to a planar one, because the projection
of C onto some generic plane yields a collection of ellipses, rather than circles,
which can cross each other at four points per pair. However, using a more refined
analysis, Aronov, Koltun and Sharir [14] have obtained the same asymptotic bound
of I(P,C) = O(m?/*n?/3 4+ mS/ "' g(m?/n) + m + n) for I(P,C). The same
bound applies in any dimension d > 3.

Here is a rough sketch of the analysis in [14]. First, by an appropriate inversion,
one may assume that no pair of circles of C' are coplanar. Next, let G be the Székely
graph constructed along the given circles in complete analogy with the planar case.
We note that the number of edges of G that have multiplicity 1 (their endpoints
are consecutive along just one circle) is easy to bound. One can simply project
the circles of C' onto some generic plane, and apply the Crossing Lemma to the
resulting projected subgraph of G, to conclude that the number of these edges is
O(m?*3n2/% 4+ m +n).

Bounding the number of edges of G with multiplicity greater than 1 (the
“heavy” edges) is more involved. We repeatedly look for a circle ¢ € C' that con-
tains more than n'/? heavy arcs (that have at least one sibling arc that connects
the same pair of points), and consider the system S of spheres that pass through ¢
and contain points of P\ ¢. The key observation is that any arc on another circle
that shares its endpoints with a heavy arc on ¢ must belong to a circle ¢’ that is
contained in a sphere of S. We then process each sphere o € S separately, con-
sider the set C, of all the circles of C' that it contains, and note that the spherical
arrangement, of C, is equivalent to a planar arrangement of circles, by means of a
stereographic projection. We now cut the circles of C, into O(ni/ ’k(n,)) pseudo-
segments, where n, = |C,|, as in the planar case. The sum of these bounds, over
o € S, bounds the overall number of those heavy arcs along the circles that lie
on spheres of S, for which at least one additional arc lies on the same sphere and
shares the same pair of endpoints. The only heavy arcs that are not counted are
those whose pair of endpoints are only shared with circles that cross the spheres
of S transversally. However, as shown by Aronov et al., the number of such arcs is
only O(n).

We now remove all the circles that lie in any sphere of S, and repeat the whole
step with the remaining circles. If v; circles are removed at step 4, then it follows
that the overall number of heavy arcs is at most ). O(n + 1/2.3 / ’k(v;)). Since the
number of steps is at most n'/2 (at least n'/2 +1 circles are removed at each step),
the overall bound is O(n®/?k(n)). At the end of the pruning process, we are left
with circles, each having at most n'/? heavy arcs, for a total of O(n?/?) additional
heavy arcs.

In other words, the size of G, and thus I(P, C), are O(m?/*n/?+n3/2k(n)+m).
This is the same bound as the initial weaker bound in the planar case. We improve
the bound using a 3-dimensional cutting, as follows. We map each circle ¢ € C' to
the point dual to the plane containing ¢ (since we made sure that no pair of circles
are coplanar, the resulting points are all distinct), and map each point p € P to
its dual plane. Clearly, each incidence p € ¢ is mapped to an incidence between
the dual plane and point (but not vice versa). We now partition the dual space
into O(r?) cells, each crossed by at most m/r dual planes, and apply the weaker
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incidence bound, mentioned at the beginning of this paragraph, within each cell
(to the circles and points that correspond respectively to the dual points in the cell
and to the dual planes that cross the cell). The expression that arises is identical to
that in the planar case, and the right choice of r yields the same asymptotic bound
as in the plane.

The same bound can be extended to bound the number of incidences between
m points and n circles in any dimension. We omit the description of this extension,
which can be found in [14].

8.3. Points and plane curves in three and higher dimensions. Let P
be a set of m points in R?, and let C' be a collection of n convex plane curves, each
lying in a distinct plane. The number I(P,C) of incidences between P and C has
been studied by Aronov, Koltun and Sharir [14], who have shown that

I(P,C) = O(m4/7n17/21 +m2/3n2/3 4 om + n).

In fact, this bound also holds in the case where C'is a collection of n algebraic plane
curves of bounded degree that lie in distinct planes.

An interesting application of this result yields a bound for the number of inci-
dences between lines and reguli in 3-space. A regulus is the 1-parameter family of
lines that pass through three given pairwise skew lines in 3-space. We use the well
known Pliicker representation of lines in 3-space as points and/or hyperplanes in real
projective 5-space (see, e.g., [34]). In this representation, a regulus can be viewed as
a quadratic plane curve in R®: it is the intersection of the three Pliicker hyperplanes
of the three generating lines of the regulus with the so-called Pliicker surface, which
is a 4-dimensional quadric that is the locus of all points in 5-space that are images
of lines in 3-space under the Pliicker transform. Hence, the number of incidences
between m lines and n reguli in 3-space is at most O(m*/ "n'7/2' +m?2/3n2/3 4 m+n).
This result has been used in [58] to obtain an improved upper bound on the number
of joints in an arrangement of lines in R?, mentioned in Section 8.1.

9. Applications

The problem of bounding the number of incidences between various geometric
objects is elegant and fascinating, and it has been mostly studied for its own sake.
However, it is closely related to a variety of questions in combinatorial and com-
putational geometry and in many other parts of mathematics. In this section, we
briefly review some of these connections and applications.

9.1. Algorithmic issues. There are two types of algorithmic problems re-
lated to incidences. The first group includes problems where we wish to actually
determine the number of incidences between certain objects, e.g., between given
sets of points and curves, or we wish to compute (describe) a collection of marked
faces in an arrangement of curves or surfaces. The second group contains com-
pletely different questions whose solution requires tools and techniques developed
for the analysis of incidence problems.

In the simplest problem of the first kind, known as Hopcroft’s problem, we are
given a set P of m points and a set L of n lines in the plane, and we ask whether
there exists at least one incidence between P and L. The best running time known
for this problem is O(m?/3n?/3 . 2000g™ (m+n))) [73] (see [56] for a matching lower
bound). Similar running time bounds hold for the problems of counting or reporting
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all the incidences in I(P,L). The solutions are based on constructing cuttings of
an appropriate size and thereby obtaining a decomposition of the problem into
subproblems, each of which can be solved by a more brute-force approach that uses
duality; see next paragraph for details. In other words, the solution can be viewed
as an implementation of the cutting-based analysis of the combinatorial bound for
I(P,L), as presented in Section 3. We note that in higher dimensions there is a
difference between counting and reporting incidences, e.g., between m points and
n hyperplanes. In this case, the number of incidences can be mn, so reporting
them could take Q(mn) time in the worst case, but counting them can be done
considerably faster, as shown by Braf and Knauer [28].

The case of incidences between a set P of m points and a set C' of n circles in
the plane is more interesting, because the analysis that leads to the current best
upper bound on I(P,C) is not easy to implement. In particular, suppose that we
have already cut the circles of C' into roughly O(n?/?) pseudo-segments (an inter-
esting and nontrivial algorithmic task in itself), and we now wish to compute the
incidences between these pseudo-segments and the points of P. Székely’s technique
is non-algorithmic, so instead we would like to apply the cutting-based approach
to these pseudo-segments and points. However, this approach, for the case of lines,
after decomposing the problem into subproblems, proceeds by duality. Specifically,
it maps the points in a subproblem to dual lines, constructs the arrangement of
these dual lines, and locates in the arrangement the points dual to the lines in
the subproblem. When dealing with the case of pseudo-segments, there is no ob-
vious incidence-preserving duality that maps them to points and maps the points
to pseudo-lines. Nevertheless, such a duality has been recently defined by Agarwal
and Sharir [9] (refining an earlier and algorithmically less efficient duality given by
Goodman [62]), which can be implemented efficiently for several special classes of
curves, including the case of circles. It thus yields an efficient algorithm for com-
puting I (P, C), whose running time is comparable with the bound on I(P,C) given
above.

Constructing many faces in an arrangement. The problem of construct-
ing marked faces in an arrangement of curves has been studied in several papers.
Edelsbrunner, Guibas and Sharir [42] consider the case of lines or of segments, and
present an algorithm that runs in time O(m?2/3=5n2/3+2¢logn 4 nlognlogm) for
the case of lines, and in time O(m?/3~n2/3t2%logn + na(n)log® nlogm) for the
case of segments, for any € > 0. The algorithms use duality. Consider the algorithm
for the case of lines. Let L a set of n lines and let P be a set of m face-marking
points. The lines of L are mapped to a dual set L* of points, and the points of P
are mapped to a dual set P* of lines. The algorithm then constructs a (1/r)-cutting
of A(P*), and solves recursively the problem within each cell of the cutting, where
the processing of a cell T involves the set P, of points whose dual lines cross 7, and
the set L, of lines whose dual points lie in 7. (Some additional “external” faces also
need to be computed, to cater to the contribution of lines in L, to faces marked
by points in P\ P;.) Then, back in the primal plane, the algorithm merges (inter-
sects) the resulting faces. That is, for each p € P, we obtain several “super-faces”
that contain p, one from each subproblem that corresponds to a cell crossed by the
line dual to p, and we need to intersect these super-faces to obtain the real face
containing p. Using a so-called Combination Lemma (see also [84]), Edelsbrunner,
Guibas and Sharir show that the merging step can be performed in time that is
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close to the overall face complexities produced by the recursive steps, and this leads
to the overall running time stated above. A more recent, simpler, and slightly more
efficient algorithm for arrangements of lines or of line sements, has been given by
Agarwal, Matousek and Schwarzkopf [6].

Extending this approach to the case of pseudo-lines, pseudo-segments, or circles,
is not straightforward, because of the lack of a natural duality transform for such
curves. This has been rectified only recently, with the duality transform between
points and pseudo-lines, proposed by Agarwal and Sharir [9]. Using this duality,
Agarwal and Sharir present an algorithm that computes m marked faces in an
arrangement of n circles in time

O(m2/3—sn2/3+25 +m6/11+35n9/11—5 +m1+5 +n1+5),

for any € > 0. If all circles have the same radius, then the running time can be
improved to O(m?/3=n2/3+t2 L ml+te £ pl+e) for any e > 0. Note that these
bounds are close to the best known upper bounds for the complexity of the m
corresponding faces.

Related problems. The cutting-based approach has by now become a standard
tool in the design of efficient geometric algorithms in a variety of applications in
range searching, geometric optimization, ray shooting, and many others. It is
beyond the scope of this survey to discuss these applications, and the reader is
referred, e.g., to the survey of Agarwal and Erickson [4] and to the references
therein.

9.2. Distinct distances. The techniques described in the present survey can
be applied to obtain some nontrivial results concerning Erdés’ Distinct Distances
Problem [50] formulated in the Introduction: What is the minimum number of
distinct distances determined by n points in the plane? As we have indicated in
Section 4, after presenting the proof of the Crossing Lemma, a slight modification
of Székely’s idea can be used in several other situations where the underlying graph
is not simple, i.e., two vertices can be connected by more than one edge. However,
for the method to work, it is important to have an upper bound for the multiplicity
of the edges. Székely [94] explicitly formulated the following Generalized Crossing
Lemma (compare with the original lemma in Section 4): Let G be a multigraph
drawn in the plane with V vertices, E edges, and with maximal edge-multiplicity

M. Then there are (2 (ME—;Z) — O(M?V) crossing pairs of edges.

Székely applied this statement to the Distinct Distances Problem. He improved
by a polylogarithmic factor the best previously known lower bound of Chung, Sze-
merédi and Trotter [37] on the minimum number of distinct distances determined
by n points in the plane. His new bound was Q(n4/5). However, Solymosi and
Cs. Téth [89] have realized that an ingenious application of Székely’s method can
substantially improve this lower bound to Q(n%/7).

In what follows, we sketch the idea of Solymosi and Téth. Consider a set P of
n points in the plane, not all on a line, and denote the number of distinct distances
determined by them by t. Take a very small constant ¢ > 0 that will be specified
later, and call a straight line rich if it passes through at least M = en?/t? elements
of P.

According to an old theorem of Beck [20] (which is also a consequence of the
Szemerédi-Trotter theorem), if P is not collinear then there is a subset P’ C P
with |P'| = Q(n) such that there exist at least Q(n) distinct lines connecting each
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element of P’ to every other element of P. Fix an element p € P’, and connect it to
every other point of P by a straight line. Obviously, all other points of P lie on at
most ¢ distinct concentric circles around p. Divide the points on each of these circles
into groups of consecutive elements so that each group contains roughly g elements,
where g > 3 is a constant. For any two points ¢ and ¢’ in the same group, connect
q and ¢’ by the arc of the circle they belong to if and only if their perpendicular
bisector is not rich. The collection of these circular arcs for all elements p € P’
can be regarded as a multigraph G with maximum multiplicity M. Applying the
Generalized Crossing Lemma to G, observing that an upper bound on the number
of edge crossings is O((nt)?), one can conclude that if ¢ is small enough, then there
exists a subset P C P’ with |P"| = Q(n) such that for each point p € P", at least
Q(n) groups around p contribute no arc to G. This means that in each of these
groups all the (g) bisectors generated by the group elements are rich. Let us call
such a group empty.

Now Solymosi and Téth argue that every element p € P"” must be incident to
many rich bisectors. To see this, by drawing Q(n/t) rays from p, divide the plane
into sectors, each containing 3¢t points that belong to empty groups. Clearly,
each such sector fully contains at least ¢t empty groups around p. Each of these
groups generates (g) rich bisectors that pass through p, but these lines are not
necessarily distinct. Nevertheless, if, for example, we have g = 3, then the ¢ empty
groups belonging to the same sector generate Q(t'/3) distinct bisectors. (Indeed,
one group gives rise to three distinct bisectors, and this triple uniquely determines
the group, so fewer than t'/3 bisectors cannot determine ¢ different groups.) Since
two bisectors generated by groups belonging to different sectors can never coincide,
we can conclude that the total number of rich bisectors incident to p € P" is
Q(n/t)Q(t'/3) = Q(n/t?/?). Summing over all elements of P", we obtain that the
number of incidences between the elements of P" and the rich lines is Q(n?/t*/?).

On the other hand, it follows from the Szemerédi-Trotter theorem (see the Re-
mark in Section 3) that the same quantity is O(|P"|?/M?) = O(t* /n*). Comparing
the last two relations, we obtain the Solymosi-Téth bound t = Q(n®/7).

Tardos and Katz improved this bound by applying the same argument with
larger group sizes g. That is, they improved the “number theoretic” part of the proof
by showing that for larger group sizes the number of distinct bisectors generated by
t groups is much larger than #'/3 (see section 9.4). In their latest paper [68], they
combined their methods to prove that the minimum number of distinct distances
determined by n points in the plane is Q(n(48=14€)/(55=16¢)=¢) “for any ¢ > 0, which
is Q(n0-8641) (It is striking that the exponent in this bound is transcendental,
which is a very unusual phenomenon.) This is the best known result so far. A
construction of Ruzsa [82] shows that the above approach without any additional
geometric idea can never lead to a lower bound better than Q(n8/?).

For the d-dimensional version of the distinct distances problem, Solymosi and
Vu [90] have recently established a surprisingly good lower bound when d is large.

2 2
They proved that a set P of n points in d-space determine at least (2 (ng_d(d“))

distinct distances. The best known upper bound, due to Erdds, is O(n%). We
outline the idea of Solymosi and Vu [91] in the special case when the n points are

situated in a d-dimensional cube C' of volume n, and any unit cube contains only
O(1) of them.
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Partition C' into r? pairwise congruent little cubes by axis-parallel hyperplanes,
where r is a parameter to be fixed later. Suppose that the number of distinct
distances determined by point pairs in P is equal to t. We estimate in two different
ways the number N of pairs that belong to the same little cube. Since the elements
of P are almost uniformly distributed, we clearly have

N=OG”O§S>=O@WW)

To establish a lower bound on NV, consider the set S, of all spheres around p € P
that pass through at least one element of P, and set S = Upe p Sp. Obviously, we
have |S| < nt. The number of little cubes intersecting any sphere o € S, is at most
k= O(r¢ 1). Let n;(c) denote the number of points in P N o that belong to the

i-th little cube. Thus, we obtain

Nﬁﬁ%m22i0@>’

peEP oS, i=1

because the number of spheres o for which the same pair (p,p’) is counted is
O(nt4=1/4) 1Indeed, this follows from the fact the centers of all these spheres
lie on the perpendicular bisector hyperplane of p and p’, and, again by the unifor-
mity of the distribution, every hyperplane passes through O(n(¢~1/9) elements of
P. Tt follows from the last inequality that

_ 1 (n—1)/kt\\ _ (d+1)/d

provided that r is roughly (n/t)!/(?=1) (this choice of r is needed to ensure that
the average value of n;(c) is at least 2). Comparing the upper and lower bounds
on r, we obtain t = Q(n2/d*1/d2). If we drop the condition that the points are
nicely distributed then, instead of partitioning into little cubes, we have to follow
the cutting-based method described in Section 3, which yields the slightly weaker
bound ¢ = Q(n2/d—2/ld(@+2))y

In three dimensions, Aronov, Pach, Sharir and Tardos [16] have shown that
the number of distinct distances is Q(n”7/141=%), for any ¢ > 0, which is Q(n%->46).
This was improved by Solymosi and Vu [91] to Q(n0-564).

It is an exciting open problem to characterize those point sets that determine
only few distinct distances. It is conjectured that they must have a gridlike struc-
ture, and Freiman’s theorem (see Section 9.4) seems to support this belief. A step
in this direction was taken by Elekes and Roényai [49], who proved Purdy’s con-
jecture: If the number of distinct distances between two n-element collinear sets
is at most constant times n, then their supporting lines must be either parallel or
orthogonal to each other, provided that n is large enough. The major tool in the
proof is the following remarkable result: If a two-variable rational function assumes

only a linear number of distinct values on a large grid P x @), where |P| = |Q| = n,
then it must be of the form f(g(z) + h(y)), or f(g(x)-h(y)), or f (%) , for

some suitable rational functions f, g, h.

9.3. Equal-area, equal-perimeter, isosceles triangles, and congruent
simplices. Erd6s and Purdy [53, 54] generalized the Repeated Distances Problem
to other repeated patterns (that is, finite sets of points), including congruent and
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similar triangles. In the plane, every n-element set can contain at most O(n?)
similar copies of a given pattern, since a similarity is determined up to orientation
by the image of any pair of points. This bound can, of course, be attained, e.g.,
for equilateral triangles in a regular triangular lattice. In fact, a curious lattice-like
conjecture of Elekes and Erdds [47] indicates that the number of similar copies of
any given finite pattern P can be almost quadratic. Laczkovich and Ruzsa [69]
showed that the quadratic upper bound can be asymptotically attained if and only
if the cross ratio of every 4 points of P, interpreted as complex numbers, is algebraic.
Results of this kind found many applications in exact pattern matching [26].

Other variants of repeated patterns in point sets, which we now consider, involve
fixed-area, fixed-perimeter, or isosceles triangles.

Let P be a set of n points in the plane. We wish to bound the number of
triangles spanned by the points of P that have a given area, say 1. To do so, we note
that if we fix two points a,b € P, any third point p € P for which Area(Aabp) =1
lies on a fixed line £, parallel to ab. Pairs (a,b) for which the line ¢, contains
fewer than n'/? points of P generate at most O(n"/?) unit area triangles. For the
other pairs, we observe that the number of lines containing more than n'/? points
of P is, by the equivalent formulation of the Szemerédi-Trotter theorem, at most
O(n?/(n'/?)3) = O(n). The number of incidences between these lines and the
points of P is at most O(n*/3). We next observe that any line £ can be equal to £,
for at most n pairs a, b, because, given £ and a, there can be at most two points b
for which ¢ = /4. It follows that the lines containing more than n'/3 points of P
can be associated with at most O(n - n*/?) = O(n"/?) unit area triangles. Hence,
overall, P determines at most O(n"/?) unit area triangles. We do not know whether
this bound is tight. The best known lower bound is Q(n?logn) [53]. See also [77].

Next, consider the problem of estimating the number of unit perimeter triangles
determined by P. Here we note that if we fix a,b € P, with |ab| < 1, any third
point p € P for which Perimeter(Aabp) = 1 lies on an ellipse whose foci are a and b
and whose major axis is 1 — |ab|. Clearly, any two distinct pairs of points of P give
rise to distinct ellipses, and the number of unit perimeter triangles determined by
P is equal to one third of the number of incidences between these O(n?) ellipses and
the points of P. The set of these ellipses has four degrees of freedom, in the sense
of Pach and Sharir [78] (see also Section 3), and hence the number of incidences
between them and the points of P, and consequently the number of unit perimeter
triangles determined by P, is at most

O(n4/7(n2)6/7) — O(n16/7).

Again, we do not know whether this bound is tight. The best known lower bound
is as for the number of repeated distances, i.e., Q(n!*¢/1o8log ") [50] since the same
construction yields the same lower bound on the number of congruent triangles.

See Braf}, Rote and Swanepoel [30] for related work on triangles with extremal
area or perimeter spanned by a planar point set.

Finally, consider the problem of estimating the number of isosceles triangles
determined by P.

Recently, Pach and Tardos [79] proved that the number of isosceles triangles
induced by triples of an n-element point set in the plane is O(n(11—3®)/(=a))

provided that 0 < a < 19=2¢_ where the constant of proportionality depends on a.
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(The constant $9=2¢ comes from [68]; cf. section 9.4.) The proof proceeds through

three steps, outlined below.

(i) Let P be a set of n distinct points and let C' be a set of ¢ distinct circles in the
plane, with m < £ distinct centers. Then, for any 0 < a < %, the number I of

incidences between the points in P and the circles of C' is

18 (n F 0+ ni08 £ im0 o tTse motiss (3T 4 nTite mTite (e )
where the constant of proportionality depends on «. Note that when m = ¢ this is
a weaker bound than the general point-circle incidence bound derived in Section 5.
However, when m is much smaller, this bound becomes better.

(ii) As a corollary, we obtain the following statement. Let P be a set of n distinct
points and let C' be a set of £ distinct circles in the plane such that they have at
most n distinct centers. Then, for any 0 < a < %2:32, the number of incidences
between the points in P and the circles in C' is

54+3a 5—a
0] (n T+a [THo -I-n).

(iii) Consider an n-element point set P in the plane, and let T' be the set of ordered
triples pgr that induce an isosceles triangle in P, with apex ¢q. For any pgr € T, let
¢(pgr) denote the circle centered at ¢, which passes through p and r. We classify
the elements of T according to the order of magnitude of |¢(pgr) N P|, and bound
the sizes of the classes separately. Setting a threshold ¢ := n(1=®)/(=2) Jet,

T' = {pgr € T | |c(pgr) N P| < t}, and
T; = {pqr € T | 2't <|c(pqr) N P| < 2%t}

fori =0,1,...,|log(n/t)]|. For any points p,q € P there are at most ¢t — 1 choices
for r such that pgr € T’. Thus, we have

T <n’t=ns-.
Let C; = {c(pgr) | pgr € T;}, for 0 < i < |log(n/t)]|. Letting ¢; := |C;|, we have at
least 2°t/; incidences between the n points in P and the /; circles in C;. Moreover,
the center of each circle in C; is among the n points of P, so we can apply the
bound in (ii), which yields

. o S—a
2tl; = 0, (nsﬁiz;*a + n> :

for any 0 < a < %g:gg. (The subscript « indicates that the constant hidden in the

O-notation depends on «.) Rearranging the terms, we get for every i that

=S

n o n

Zi = Oa N + — .
(Qit)m 2t

Using the fact that |T;| < (2°7'¢)%¢;, we obtain

ngiga nlé:Sa n2
|Tz| = Oa —3.3a& + 2’tn = Oa 3_ 34 + - .
(2it) 2+2a 2izgza  n/(27)

Adding up these bounds, it follows that

[log(n/t)]
TI=1T [+ > T =0a (n5 +02) = 0. (n5),

i=0
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as asserted.

A lower bound on the number of isosceles triangles is Q(n?y/logn), as yielded
by the set of vertices of a \/n x y/n lattice.

The following algorithmic application of the bound on the number of isosceles
triangles is due to Brafl [27]: If I(n) is an upper bound on the number of isosceles
triangles in an n-element point set, then the maximum symmetric subsets of an
n-point set can be listed in time O((I(n) + n?)logn).

Bounding the number of incidences between points and circles in higher di-
mensions can be applied to the following interesting problem posed by Erdds and
Purdy and studied by Agarwal and Sharir [8] (see also Braf} [25] and Abrego and
Fernandez-Merchant [1]): Determine the largest number of simplices congruent to
a fixed simplex o, which can be spanned by an n-element point set P C R%.

Here we consider only the case when P C R* and o = abed is a 3-simplex. Fix
three points p,q,r € P such that the triangle pgr is congruent to the face abc of
0. Then any fourth point v € P for which pgrv is congruent to ¢ must lie on a
circle whose plane is orthogonal to the triangle pgr, whose radius is equal to the
height of o from d, and whose center is at the foot of that height. Hence, bounding
the number of congruent simplices can be reduced to the problem of bounding the
number of incidences between circles and points in 4-space. (The actual reduction is
slightly more involved, because the same circle can arise for more than one triangle
pqr; see [8] for details.) Using the bound of [14], mentioned in Section 8, one can
deduce that the number of congruent 3-simplices determined by n points in 4-space
is O(n?°/9+=)  for any € > 0. The known lower bound is Q(n?), as follows from
Lenz’ construction (see, e.g., [76]).

See also Akutsu, Tamaki and Tokuyama [11] for related work, and Braf} [26]
for a general reference to this kind of problems.

9.4. Number theoretic applications. As we have seen before, the opti-
mum of most extremal problems involving distances or incidences are known or
conjectured to be attained for a portion of the integer lattice. Therefore, it is nat-
ural that additive number theory (e.g., Freiman’s theory of set addition [60, 81])
plays a crucial role in this area (see, e.g., [48, 51, 69]). It is somewhat surpris-
ing, however, that bounds on incidences can be used to establish number theoretic
statements. The prototype of such a result is Elekes’ theorem [46]: For any set A
of n reals, either the set of sums A+ A ={a+b|a,b€ A} or the set of products
A-A={ab|a,b€ A} has at least Q(n>/*) elements. In fact, Erdés and Szemerédi
[65], who raised this problem and established the first nontrivial estimate of this
type, conjectured that the theorem remains true if the exponent 5/4 is replaced by
any real number smaller than 2.

Elekes’ proof is the following. Apply the Szemerédi-Trotter theorem [95] to the
set of points P = (A+ A) x (A-A) C R? and to the set L of n? lines of the form y =
a(xz —b), where a,b € A. Observe that the line y = a(z — b) passes through at least
n elements of P, namely, all points of the form (c+ b, ac) for ¢ € A. Therefore, the
number of incidences between the elements of P and L is at least n®. On the other
hand, this quantity is at most O(|P|?/3|L|?/ +|P|+|L|) = O(|P|*/?n*/ +|P|+n?).
Comparing these two bounds, we obtain |P| = |A + A| x |4 - A] = Q(n°/?), as
required.
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Solymosi [88] has recently established the stronger result
maxc{| A+ AJ, |4- A} = n'/"" /1og* n),

applying the Szemerédi-Trotter theorem to the point set P = (A + A) x (A + A)
and a properly chosen set of lines. His argument also yields a similar statement for
the set of fractions A/A instead of the set of products A - A.

According to the above results, any finite subset A of the field of real numbers
is very far from being closed either under addition or under multiplication. The
same question can be asked for other fields F. If F has a subfield A, then we
cannot, expect such a result. However, for finite fields F' of prime order, Bourgain,
Katz, and Tao [23] proved that for any § > 0 there exists e = £(§) > 0 such that,
whenever |F|° < |A] < |F|'7%, we have

max{|A + A|,|A- A} = Q(|A'T).

The proof is based on a far-reaching generalization of the Szemerédi-Trotter theorem
on incidences. As a consequence, Bourgain et al. deduced a nontrivial lower bound
for the distinct distances problem in the finite field plane F? = F x F, where F
is of prime order. Given any two points (z,y), (z',y') € F?, define their distance
d((z,y), (z',y") as (x —2')2 + (y —y')%. (For technical reasons, it is better to avoid
using square roots.) It was shown in [23] that for any 0 < & < 2 there exists
e = £(8) > 0 such that any set P C F? of |F|® elements determine at least |P|'/2+¢
distinct distances. As we have seen before, Erdds conjectured that the Euclidean
analogue of this result is true with any £ < 1/2, but there is no obvious reason to
believe that this would also hold in the case of finite fields.

We close this subsection by formulating the following number theoretic problem,
explicitly stated by Tardos [97]. Its (partial) solution is involved in many of the
results mentioned in the previous two sections, including the lower bounds on the
Distinct Distances Problem. Given an n x k real matrix M = (m;;) all of whose
entries are distinct, let M (A) denote the set of all numbers that can be written as
the sum of two distinct entries from the same row. Let fi(n) be the minimum size
of |[M(A)| over all such matrices. It is easy to see that both f3(n) and f4(n) are
©(n'/?). The best known lower bounds so far have been established by Katz and
Tardos [68]: f5(n) > n™/™, fr(n) > n33/%9, fo(n) > n/1° . and, in general, for

every o < $9=2¢ there exists k = k() such that fi(n) > n®. The only nontrivial

upper bound is due to Ruzsa [82]: fi(n) = O(n%*TEZ) for even values of k.

9.5. Fourier analysis and measure theory. A number of interesting con-
nections between incidence geometry, Fourier analysis, and measure theory are
discussed in Tosevich’s survey [65]. Here we only mention two interesting problems
that have generated a lot of research.

Fuglede [59] conjectured that one can characterize all domains whose translates
can tile the Euclidean space, as follows. A domain D in Euclidean d-space is called
spectral if there exists a discrete set A in the space such that the set of exponential
functions {€2™®¢ | q € A} forms an orthogonal basis for the space L?(D) of all
square-integrable functions on D. Fuglede conjectured that the space can be tiled
with translates of D if and only if D is spectral.

For instance, if D is the unit cube, then A can be chosen to be the integer
lattice. On the other hand, Iosevich, Katz, and Pedersen [66] proved that the unit
ball is not spectral in any dimension. Their argument proceeds as follows. Assuming
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that a spectrum A exists, a careful analysis of the Fourier transform y(§) of the
characteristic function of the d-dimensional ball shows that A is a discrete set,
fairly uniformly distributed in d-space. Moreover, the assumption on orthogonality
implies that x(a —a') = 0 for any a,a’ € A. The Fourier transform x(£) depends
only on the absolute value |£]. Tt is not hard to prove (see, e.g., [86]) that the
zeroes of x(|¢]) are very close to the zeroes of cos(|¢| — wd/4). It follows that the
number of elements of A belonging to a ball of radius r is Q(r?), and these points
determine O(r) distinct distances. This contradicts the above surveyed results on
distinct distances.

Given a compact set S in R?, let dim(S) denote its Hausdorff dimension, and let
A(S) be the set of interpoint distances determined by S. According to a celebrated
conjecture of Falconer [57], if dim(S) > d/2, then the Lebesgue measure A(A(S)) is
positive. Falconer proved that this statement is true under the stronger assumption
that dim(S) > (d + 1)/2. In the plane, this assumption was weakened to dim(S) >
13/9 by Bourgain [21] and then to dim(S) > 4/3 by Wolff [101], who argued that
no further improvement is likely using a purely Fourier-analytic approach.

On the other hand, Arutyunyants and Iosevich [19] (and, in the plane, Hofmann
and Iosevich [64]) proved that if dim(S) > d/2, then A(A(T'S)) > 0, for almost
all transformations 7" with bounded positive eigenvalues. Roughly speaking, this
means that Falconer’s conjecture is almost surely true for randomly chosen affine
transformations of the Euclidean metric.

Erdés’ conjecture on the minimum number of distinct distances determined by
n points in R?, discussed above, has an interesting asymptotic version (see, e.g.,
[19, 66]): Let A C R? be a uniformly distributed set in the sense that (i) every
axis-parallel unit cube in R? contains at least one element of A, and (ii) the distance
between any two elements of A exceeds some positive constant 6. Then the number
of distinct distances determined by the points of A lying inside a cube of side
length r is Q(r?). It is not hard to see [19] that Falconer’s conjecture implies this
(weaker) form of Erdds’ conjecture on distinct distances. Some further discretized
conjectures and their relations with one another and with the Szemerédi-Trotter
theorem on incidences are discussed in [67].

These problems are also related to Kakeya’s problem [100]: A Kakeya set (or
Besicovitch set) is a subset of R? that contains a unit segment in every direction.
Besicovitch was the first to construct such sets with zero measure. Kakeya’s problem
is to decide whether the Hausdorff dimension of a Kakeya set is always at least d.
The planar version of this question was answered in the affirmative by Davies [41]
and, in a stronger form, by Cérdoba [40] and by Bourgain [22]. For d > 3, this is
a major unsolved problem.

Acknowledgments. We are grateful to Jirka Matousek and Peter Braf} for their
careful reading and valuable comments on the paper.
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