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h and Mi
ha SharirAbstra
t. We survey re
ent progress in the 
ombinatorial analysis of in
i-den
es between points and 
urves and in estimating the total 
ombinatorial
omplexity of a set of fa
es in arrangements of 
urves. We also dis
uss severalhigher dimensional analogues of these problems, and many related geometri
,number theoreti
, and algorithmi
 questions 
on
erning repeated patterns anddistan
e distributions. 1. Introdu
tion1.1. The problem and its relatives. Let P be a set of m distin
t points,and let L be a set of n distin
t lines in the plane. Let I(P;L) denote the numberof in
iden
es between the points of P and the lines of L, i.e.,I(P;L) = jf(p; `) j p 2 P; ` 2 L; p 2 `gj:See Figure 1 for an illustration. How large 
an I(P;L) be? More pre
isely, deter-mine or estimate maxjP j=m;jLj=n I(P;L).This simplest formulation of the in
iden
e problem, due to Erd}os and �rstsettled by Szemer�edi and Trotter, has been the starting point of extensive resear
hthat has pi
ked up 
onsiderable momentum during the past two de
ades. It isthe purpose of this survey to review the results obtained so far, des
ribe the mainte
hniques used in the analysis of this problem, and dis
uss many variations andextensions.The problem 
an be generalized in many natural dire
tions. One 
an ask thesame question when the set L of lines is repla
ed by a set C of n 
urves of someother simple shape; the two 
ases involving respe
tively unit 
ir
les and arbitrary
ir
les are of parti
ular interest|see below.A related problem involves the same kind of input|a set P of m points and aset C of n 
urves, but now we assume that no point of P lies on any 
urve of C. Let2000 Mathemati
s Subje
t Classi�
ation. 52C10, 52C30, 52C35, 52C45, 68R05, 68R10,68Q25, 05C35, 05C62, 05D40, 11H99.Work on this paper has been supported by a joint grant from the U.S.{Israel BinationalS
ien
e Foundation, and by NSF Grants CCR-97-32101 and CCR-00-98246.J�anos Pa
h has also been supported by PSC-CUNY Resear
h Award 65392-0034 and byOTKA T-032452.Mi
ha Sharir has also been supported by a grant from the Israeli A
ademy of S
ien
es fora Center of Ex
ellen
e in Geometri
 Computing at Tel Aviv University, and by the HermannMinkowski{MINERVA Center for Geometry at Tel Aviv University. 

0000 (
opyright holder)1



2 J�ANOS PACH AND MICHA SHARIR
Figure 1. Eight lines and nine points with 24 in
iden
es between them.A(C) denote the arrangement of the 
urves of C, i.e., the de
omposition of the planeinto 
onne
ted open 
ells of dimensions 0; 1; and 2 indu
ed by drawing the elementsof C; ea
h 
ell is a maximal 
onne
ted set 
ontained in the interse
tion of a �xedsubset of the 
urves and avoiding all other 
urves. These 
ells are 
alled verti
es,edges, and fa
es of the arrangement, respe
tively. The total number of these 
ellsis said to be the 
ombinatorial 
omplexity of the arrangement. The 
ombinatorial
omplexity of a single fa
e is de�ned as the number of lower dimensional 
ells (i.e.,verti
es and edges) belonging to its boundary. The points of P then mark 
ertainfa
es in the arrangement A(C) of the 
urves, and the goal is to establish an upperbound on K(P;C), the 
ombined 
ombinatorial 
omplexity of the marked fa
es.This problem is often referred to in the literature as the Many-Fa
es Problem.One 
an extend the above questions to d-dimensional spa
es, for d > 2. Here we
an either 
ontinue to 
onsider in
iden
es between points and 
urves, or in
iden
esbetween points and (d�1)-dimensional surfa
es or manifolds of 
odimension greaterthan 1. In the 
ase of surfa
es, we may wish to study the natural generalization ofthe `many-fa
es problem' des
ribed in the previous paragraph: to estimate the total
ombinatorial 
omplexity of n marked (d-dimensional) 
ells in the arrangement ofsurfa
es.All of the above problems have algorithmi
 variants. Perhaps the simplestquestion of this type is Hop
roft's problem: Givenm points and n lines in the plane,how fast 
an one determine whether there exists any point that lies on any line?One 
an 
onsider more general problems, like 
ounting or reporting the in
iden
es,doing the same for a 
olle
tion of 
urves rather than lines, 
omputing m markedfa
es in an arrangement of n 
urves, and so on.It turned out that two ex
iting metri
 problems (involving interpoint distan
es)proposed by Erd}os in 1946 are strongly related to problems involving in
iden
es.(1) Repeated Distan
es Problem: Given a set P of n points in the plane, whatis the maximum number of pairs that are at distan
e exa
tly 1 from ea
hother? To see the 
onne
tion, let C be the set of unit 
ir
les 
entered atthe points of P . Then two points p; q 2 P are at distan
e 1 apart if andonly if the 
ir
le 
entered at p passes through q and vi
e versa. Hen
e,I(P;C) is twi
e the number of unit distan
es determined by P .(2) Distin
t Distan
es Problem: Given a set P of n points in the plane, atleast how many distin
t distan
es must there always exist between itspoint pairs? Later we will show the 
onne
tion between this problem and



GEOMETRIC INCIDENCES 3the problem of in
iden
es between P and an appropriate set of 
ir
les ofdi�erent radii.Some other appli
ations of the in
iden
e problem and the many-fa
es prob-lem will be reviewed at the end of this paper. They in
lude the analysis of themaximum number of isos
eles triangles, or triangles with a �xed area or perime-ter, whose verti
es belong to a planar point set; estimating the maximum numberof mutually 
ongruent simpli
es determined by a point set in higher dimensions;and several more surprising appli
ations to number theory, Fourier analysis, andmeasure theory.1.2. Histori
al perspe
tive and overview. The �rst derivation of the tightupper bound I(P;L) = O(m2=3n2=3 +m+ n)(for sets P of m points and L of n lines) was given by Szemer�edi and Trotterin their 1983 seminal paper [95℄. They proved Erd}os' 
onje
ture, who found themat
hing lower bound (whi
h was redis
overed many years later by Edelsbrunnerand Welzl [45℄). A di�erent lower bound 
onstru
tion was exhibited by Elekes [46℄(see Se
tion 2).The original proof of Szemer�edi and Trotter is rather involved, and yields arather astronomi
al 
onstant of proportionality hidden in the O-notation. A

ord-ing to Cs. T�oth [98℄, their te
hnique 
an be extended to the 
omplex plane to givepre
isely the same bound, apart from the 
onstant. A 
onsiderably simpler proofwas found by Clarkson, Edelsbrunner, Guibas, Sharir and Welzl [38℄ in 1990, us-ing extremal graph theory 
ombined with a geometri
 partitioning te
hnique basedon random sampling (see Se
tion 3). Their paper 
ontains many extensions andgeneralizations of the Szemer�edi-Trotter theorem. In parti
ular, the same upperbound holds for sets of pseudo-lines and of unit 
ir
les. Many further extensions
an be found in subsequent papers by Edelsbrunner, Guibas and Sharir [42, 43℄,by Agarwal and Aronov [2℄, by Aronov, Edelsbrunner, Guibas and Sharir [13℄, andby Pa
h and Sharir [77℄.The next breakthrough o

urred in 1997. In a surprising paper, Sz�ekely [94℄gave an embarrassingly short proof of the upper bound on I(P;L) using a simplelower bound of Ajtai, Chv�atal, Newborn and Szemer�edi [10℄ and of Leighton [70℄on the 
rossing number of a graph G, i.e., the minimum number of edge 
rossingsin the best drawing of G in the plane, where the verti
es are represented by pointsand the edges by Jordan ar
s. In the literature this result is often referred to asthe `Crossing Lemma.' Sz�ekely's method 
ould easily be extended to several othervariants of the problem, but appears to be less general than the previous te
hniqueof Clarkson et al. [38℄.Sz�ekely's paper has triggered an intensive re-examination of the problem. Inparti
ular, several attempts were made to improve the existing upper bound onthe number of in
iden
es between m points and n 
ir
les of arbitrary radii in theplane [78℄. This was the simplest instan
e where Sz�ekely's proof te
hnique failed.By 
ombining Sz�ekely's method with a seemingly unrelated te
hnique of Tamakiand Tokuyama [96℄ for 
utting 
ir
les into `pseudo-segments', Aronov and Sharir[17℄ managed to obtain an improved bound for this variant of the problem. Theirwork has then been followed by Agarwal, Aronov and Sharir [3℄, who studied the
omplexity of many fa
es in arrangements of 
ir
les and pseudo-segments, and



4 J�ANOS PACH AND MICHA SHARIRby Agarwal, Nevo, Pa
h, Pin
hasi, Sharir and Smorodinsky [7℄, who extendedthis result to arrangements of pseudo-
ir
les (see Se
tion 5). Aronov, Koltun andSharir [14℄ generalized the problem to higher dimensions, while Sharir and Welzl[85℄ studied in
iden
es between points and lines in three dimensions (see Se
tion 8).The related problems involving distan
es in a point set have also witnessed
onsiderable progress re
ently. As for the Repeated Distan
es Problem in the plane,the best known upper bound on the number of times the same distan
e 
an o

uramong n points is O(n4=3), whi
h was obtained nearly 20 years ago by Spen
er etal. [92℄. This is far from the best known lower bound of Erd}os, whi
h is only slightlysuper-linear [76℄. The best known upper bound for the 3-dimensional 
ase, due toClarkson et al. [38℄, is roughly O(n3=2), while the 
orresponding lower bound ofErd}os is 
(n4=3 log logn) [75℄. Other variants of the problem have been studiedin [24, 51, 52, 61, 87, 93℄.More progress has been made on the 
ompanion problem of Distin
t Distan
es.In the planar 
ase, L. Moser [74℄ and Chung, Szemer�edi and Trotter [37℄ provedthat the number of distin
t distan
es determined by n points in the plane is atleast 
(n2=3) and n4=5 divided by a polylogarithmi
 fa
tor, respe
tively. Sz�ekely[94℄ managed to get rid of the polylogarithmi
 fa
tor, while Solymosi and Cs. T�oth[89℄ improved this bound to 
(n6=7). This was a real breakthrough. Their analysiswas subsequently re�ned by Tardos [97℄ and then by Katz and Tardos [68℄, whoobtained the 
urrent re
ord of 
(n(48�14e)=(55�16e)�"), for any " > 0, whi
h is
(n0:8641). This is getting 
lose to the best known upper bound of O(n=plogn),due to Erd}os [50℄, but there is still a 
onsiderable gap. See Se
tion 9 for more details.In three dimensions, a re
ent result of Aronov, Pa
h, Sharir and Tardos [16℄ yieldsa lower bound of 
(n77=141�"), for any " > 0, whi
h is 
(n0:546). This has beenimproved by Solymosi and Vu [91℄ to 
(n0:564), but this new bound is still far fromthe best known upper bound of O(n2=3).The argument of Solymosi and T�oth as well as the higher dimensional versionof the Distin
t Distan
es Problem are dis
ussed in Se
tion 9. For other surveys onrelated subje
ts, 
onsult [72℄, [75℄, [76℄, and [29℄.2. Lower BoundsWe des
ribe a simple 
onstru
tion due to Elekes [46℄ of a set P of m pointsand a set L of n lines, su
h that I(P;L) = 
(m2=3n2=3+m+n). We �x two integerparameters �; �. We take P to be the set of all latti
e points in f1; 2; : : : ; �g �f1; 2; : : : ; 2��g. The set L 
onsists of all lines of the form y = ax + b, where a isan integer in the range 1; : : : ; �, and b is an integer in the range 1; : : : ; ��. Clearly,ea
h line in L passes through exa
tly � points of P . See Figure 2.We have m = jP j = 2�2�, n = jLj = ��2, andI(P;L) = �jLj = �2�2 = 
(m2=3n2=3):Given any sizes m;n so that n1=2 � m � n2, we 
an �nd �; � that give rise to setsP;L whose sizes are within a 
onstant fa
tor of m and n, respe
tively. If m liesoutside this range then m2=3n2=3 is dominated by m + n, and then it is trivial to
onstru
t sets P;L of respe
tive sizes m;n so that I(P;L) = 
(m + n). We havethus shown that I(P;L) = 
(m2=3n2=3 +m+ n):
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2�� 
olumns

� rowsFigure 2. Elekes' 
onstru
tion.We note that this 
onstru
tion is easy to generalize to in
iden
es involving other
urves. For example, we 
an take P to be the grid f1; 2; : : : ; �g � f1; 2; : : : ; 3�2�g,and de�ne C to be the set of all parabolas of the form y = ax2 + bx + 
, wherea 2 f1; : : : ; �g, b 2 f1; : : : ; ��g, 
 2 f1; : : : ; �2�g. Now we have m = jP j = 3�3�,n = jCj = �3�3, and I(P;C) = �jCj = �4�3 = 
(m1=2n5=6):Note that in the 
onstru
tion we have m = O(n). When m is larger, we use thepre
eding 
onstru
tion for points and lines, whi
h 
an be easily transformed into a
onstru
tion for points and parabolas, to obtain the overall lower bound for pointsand parabolas: I(P;C) = � 
(m2=3n2=3 +m); if m � n
(m1=2n5=6 + n); if m � n.From in
iden
es to many fa
es. Let P be a set of m points and L a set of nlines in the plane, and put I = I(P;L). Fix a suÆ
iently small parameter " > 0,and repla
e ea
h line ` 2 L by two lines `+; `�, obtained by translating ` parallelto itself by distan
e " in the two possible dire
tions. We obtain a new 
olle
tion L0of 2n lines. If " is suÆ
iently small then ea
h point p 2 P that is in
ident to k � 2lines of L be
omes a point that lies in a small fa
e of A(L0) that has 2k edges; notealso that the 
ir
le of radius " 
entered at p is tangent to all these edges. Moreover,these fa
es are distin
t for di�erent points p, when " is suÆ
iently small.We have thus shown that K(P;L0) � 2I(P;L) � 2m (where the last terma

ounts for points that lie on just one line of L). In parti
ular, in view of thepre
eding 
onstru
tion, we have, for jP j = m, jLj = n,K(P;L) = 
(m2=3n2=3 +m+ n):An interesting 
onsequen
e of this 
onstru
tion is as follows. Take m = n andsets P;L that satisfy I(P;L) = �(n4=3). Let C be the 
olle
tion of the 2n lines of L0and of the n 
ir
les of radius " 
entered at the points of P . By applying a 
ir
ular



6 J�ANOS PACH AND MICHA SHARIRinversion, we 
an turn all the 
urves in C into 
ir
les. We thus obtain a set C 0 of3n 
ir
les with �(n4=3) tangent pairs. If we repla
e ea
h of the 
ir
les 
entered atthe points of P by 
ir
les with a slightly larger radius, we obtain a 
olle
tion of 3n
ir
les with �(n4=3) empty lenses, namely fa
es of degree 2 in their arrangement.Empty lenses play an important role in the analysis of in
iden
es between pointsand 
ir
les; see below.Lower bounds for in
iden
es with unit 
ir
les. As noted, this problem isequivalent to the problem of Repeated Distan
es. Erd}os [50℄ has shown that, forthe verti
es of an n1=2�n1=2 grid, there exists a distan
e that o

urs 
(n1+
= log logn)times, for an appropriate absolute 
onstant 
 > 0. More pre
isely, a

ording to awell-known result of Euler and Fermat, every prime of the form 4k+1 
an be writtenas the sum of two squares. Combining this theorem with the fa
t that primes ofthis form are \uniformly distributed" among all prime numbers, it 
an be dedu
edthat there exists an integer m smaller than n that 
an be written as the sum of thetwo squares in at least n
= log logn di�erent ways. Consequently, from ea
h point ofthe n1=2�n1=2 grid there are at least n
= log logn other points of the grid at distan
em1=2. Redu
ing the 
on�guration to m�1=2 of its original size, we obtain a set ofn points determining 
(n1+
= log logn) unit distan
es. The number-theoreti
 detailsof this analysis 
an be found in the monographs [76℄ and [72℄.Lower bounds for in
iden
es with arbitrary 
ir
les. As we will see later,we are still far from a sharp bound on the number of in
iden
es between pointsand 
ir
les, espe
ially when the number of points is small relative to the number of
ir
les.By taking sets P of m points and L of n lines with I(P;L) = �(m2=3n2=3+m+n), and by applying inversion to the plane, we obtain a set C of n 
ir
les and a setP 0 of m points with I(P 0; C) = �(m2=3n2=3+m+n). Hen
e the maximum numberof in
iden
es between m points and n 
ir
les is 
(m2=3n2=3+m+n). However, we
an slightly in
rease this lower bound, as follows.Let P be the set of verti
es of the m1=2 �m1=2 integer latti
e. As shown byErd}os [50℄, there are t = �(m=plogm) distin
t distan
es between pairs of pointsof P . Draw a set C of mt 
ir
les, 
entered at the points of P and having as radiithe t possible inter-point distan
es. Clearly, the number of in
iden
es I(P;C) isexa
tly m(m � 1). If the bound on I(P;C) were O(m2=3n2=3 + m + n), then wewould havem(m� 1) = I(P;C) = O(m2=3(mt)2=3 +mt) = O(m2=(logm)1=3);a 
ontradi
tion. This shows that, under the most optimisti
 
onje
ture, the maxi-mum value of I(P;C) should be larger than the 
orresponding bound for lines byat least some polylogarithmi
 fa
tor.3. Upper Bounds for In
iden
es via the Partition Te
hniqueThe approa
h presented in this se
tion is due to Clarkson et al. [38℄. Itpredated Sz�ekely's method, but it seems to be more 
exible, suitable for general-izations. It 
an also be used for the re�nement of some proofs based on Sz�ekely'smethod.We exemplify this te
hnique by establishing an upper bound for the numberof point-line in
iden
es. Let P be a set of m points and L a set of n lines in theplane. First, we give a weaker bound on I(P;L), as follows. Consider the bipartite



GEOMETRIC INCIDENCES 7graph H � P � L whose edges represent all in
ident pairs (p; `), for p 2 P , ` 2 L.Clearly, H does not 
ontainK2;2 as a subgraph. By the K}ovari-S�os-Tur�an Theoremin extremal graph theory (see [76℄), we have(3.1) I(P;L) = O(mn1=2 + n):To improve this bound, we partition the plane into subregions, apply this boundwithin ea
h subregion separately, and sum up the bounds. We �x a parameterr; 1 � r � n, whose value will be determined shortly, and 
onstru
t a so-
alled(1=r)-
utting of the arrangement A(L) of the lines of L. This is a de
omposition ofthe plane into O(r2) verti
al trapezoids with pairwise disjoint interiors, su
h thatea
h trapezoid is 
rossed by at most n=r lines of L. The existen
e of su
h a 
uttinghas been established by Chazelle and Friedman [35℄ and later re�ned by Chazelle[33℄, following earlier and somewhat weaker results of Clarkson and Shor [39℄. Theidea is roughly the following. Take a random sample R of r lines of L, form theirarrangement A(R), and triangulate ea
h of its fa
es. We obtain O(r2) triangles(
ells). Using standard probabilisti
 arguments [39℄, one 
an show that, with highprobability, no 
ell is 
rossed by more than O(nr log r) lines of L. Moreover, theexpe
ted number of lines 
rossing a 
ell is only O(nr ). Chazelle and Friedman showthat the expe
ted number of 
ells that are 
rossed by more than tnr lines de
aysexponentially with t. These \heavy" 
ells are then 
ut further into sub
ells, usingadditional random samples of the lines that 
ross them, so as to guarantee that no
ell is 
rossed by more than n=r lines. The exponential de
ay is then used to showthat the overall number of 
ells remains O(r2). See [72℄ and [84℄ for more details.For ea
h 
ell � of the 
utting, let P� denote the set of points of P that lie inthe interior of � , and let L� denote the set of lines that 
ross � . Put m� = jP� j andn� = jL� j � n=r. Using (3.1), we haveI(P� ; L� ) = O(m�n1=2� + n� ) = O�m� �nr �1=2 + nr� :Summing this over all O(r2) 
ells � , we obtain a total ofX� I(P� ; L�) = O�m�nr �1=2 + nr�in
iden
es. This does not quite 
omplete the 
ount, be
ause we also need to 
onsiderpoints that lie on the boundary of the 
ells of the 
utting. A point p that lies inthe relative interior of an edge e of the 
utting lies on the boundary of at most two
ells, and any line that passes through p, with the possible ex
eption of the singleline that 
ontains e, 
rosses both 
ells. Hen
e, we may simply assign p to one ofthese 
ells, and its in
iden
es (ex
ept for at most one) will be 
ounted within thesubproblem asso
iated with that 
ell. Consider then a point p whi
h is a vertexof the 
utting, and let ` be a line in
ident to p. Then ` either 
rosses or boundssome adja
ent 
ell � . Sin
e a line 
an 
ross the boundary of a 
ell in at most twopoints, we 
an 
harge the in
iden
e (p; `) to the pair (`; �), use the fa
t that no
ell is 
rossed by more than n=r lines, and 
on
lude that the number of in
iden
esinvolving verti
es of the 
utting is at most O(nr). See Figure 3 for an illustration.We have thus shown thatI(P;L) = O�m�nr �1=2 + nr� :
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`p �

Figure 3. The in
iden
e between p and ` is 
harged to the 
ross-ing of � by `.Choose r = m2=3=n1=3. This 
hoi
e makes sense provided that 1 � r � n. If r < 1,then m < n1=2 and (3.1) implies that I(P;L) = O(n). Similarly, if r > n thenm > n2 and (3.1) implies that I(P;L) = O(m). If r lies in the desired range, we getI(P;L) = O(m2=3n2=3). Putting all these bounds together, we obtain the boundI(P;L) = O(m2=3n2=3 +m+ n);as required.We remark that the a
tual analysis of Clarkson et al. [38℄ uses a partitionformed only by the �rst de
omposition stage (whi
h 
onstru
ts A(R) and triangu-lates its 
ells). This in general is not a (1=r)-
utting. Nevertheless, using improvedbounds on the expe
ted number of lines that 
ross a 
ell, Clarkson et al. managedto pull through the analysis along the lines des
ribed above. However, using there�ned 
onstru
tion of Chazelle and Friedman [35℄ simpli�es the analysis.Remark. An equivalent statement of the Szemer�edi-Trotter theorem is that, for aset P of n points in the plane, and for any integer k � n, the number of lines that
ontain at least k points of P is at mostO�n2k3 + nk� :Moreover, the number of in
iden
es between these lines and the points of P is atmost O�n2k2 + n� :Dis
ussion. The 
utting-based method is quite powerful, and 
an be extended invarious ways. The 
rux of the te
hnique is to derive somehow a weaker (but easier)bound on the number of in
iden
es, 
onstru
t a (1=r)-
utting of the set of 
urves,obtain the 
orresponding de
omposition of the problem into O(r2) subproblems,apply the weaker bound within ea
h subproblem, and sum up the bounds to obtainthe overall bound. The work by Clarkson et al. [38℄ 
ontains many su
h extensions.Let us demonstrate this method to obtain an upper bound for the number ofin
iden
es between a set P of m points and a set C of n arbitrary 
ir
les in theplane. Consider the in
iden
e graph H � P � C 
onsisting of all pairs (edges)
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); p 2 P; 
 2 C su
h that p is in
ident to 
, and noti
e that it does not 
ontainK3;2 as a subgraph. Thus (see, e.g., [76℄), we haveI(P;C) = O(mn2=3 + n):We 
onstru
t a (1=r)-
utting for C, apply this weak bound within ea
h 
ell � of the
utting, and handle in
iden
es that o

ur on the 
ell boundaries exa
tly as above,to obtain I(P;C) =X� I(P� ; C� ) = O�m�nr �2=3 + nr� :With an appropriate 
hoi
e of r, this be
omesI(P;C) = O(m3=5n4=5 +m+ n):However, as we shall see later, this bound 
an be 
onsiderably improved.The 
ase of a set C of n unit 
ir
les is handled similarly, observing that in this
ase the interse
tion graph H does not 
ontain K2;3. This yields the same upperbound I(P;C) = O(mn1=2+n), as in (3.1). The analysis then 
ontinues exa
tly asin the 
ase of lines, and yields the boundI(P;C) = O(m2=3n2=3 +m+ n):We 
an apply this bound to the Repeated Distan
es Problem, re
alling that thenumber of pairs of points in an n-element set of points in the plane that lie atdistan
e exa
tly 1 from ea
h other, is half the number of in
iden
es between thepoints and the unit 
ir
les 
entered at them. Substituting m = n in the abovebound, we thus obtain that the number of times that the same distan
e 
an berepeated among n points in the plane is at most O(n4=3). This bound is far fromthe best known lower bound, mentioned in Se
tion 2.As a matter of fa
t, this approa
h 
an be extended to any 
olle
tion C of
urves that have \d degrees of freedom", in the sense that any d points in the planedetermine at most t = O(1) 
urves from the family that pass through all of them,and any pair of 
urves interse
t in only O(1) points [77℄. The in
iden
e graph doesnot 
ontain Kd;t+1 as a subgraph, whi
h implies thatI(P;C) = O(mn1�1=d + n):Combining this bound with a 
utting-based de
omposition yields the boundI(P;C) = O(md=(2d�1)n(2d�2)=(2d�1) +m+ n):Note that this bound extrapolates the previous bounds for the 
ases of lines (d = 2),unit 
ir
les (d = 2), and arbitrary 
ir
les (d = 3). See [78℄ for a slight generalizationof this result, using Sz�ekely's method, outlined in the following se
tion. See also[28℄ for an appli
ation of similar ideas in higher dimensions.4. In
iden
es via Crossing Numbers|Sz�ekely's MethodA graph G is said to be drawn in the plane if its verti
es are mapped to distin
tpoints in the plane, and ea
h of its edges is represented by a Jordan ar
 
onne
tingthe 
orresponding pair of points. It is assumed that no edge passes through anyvertex other than its endpoints, and that when two edges meet at a 
ommon interiorpoint, they properly 
ross ea
h other there, i.e., ea
h 
urve passes from one side ofthe other 
urve to the other side. Su
h a point is 
alled a 
rossing. In the literature,a graph drawn in the plane with the above properties is often 
alled a topologi
al



10 J�ANOS PACH AND MICHA SHARIRgraph. If, in addition, the edges are represented by straight-line segments, then thedrawing is said to be a geometri
 graph.As we have indi
ated before, Sz�ekely dis
overed that the analysis outlined inthe previous se
tion 
an be substantially simpli�ed, applying the following so-
alledCrossing Lemma for graphs drawn in the plane.Crossing Lemma. [Leighton [70℄, Ajtai et al. [10℄℄ Let G be a simple graph drawnin the plane with V verti
es and E edges. If E > 4V then there are 
(E3=V 2)
rossing pairs of edges.To establish the lemma, denote by 
r(G) the minimum number of 
rossing pairsof edges in any `legal' drawing of G. Sin
e G 
ontains too many edges, it is notplanar, and therefore 
r(G) � 1. In fa
t, using Euler's formula, a simple 
ountingargument shows that 
r(G) � E� 3V +6 > E� 3V . We next apply this inequalityto a random sample G0 of G, whi
h is an indu
ed subgraph obtained by 
hoosingea
h vertex of G independently with some probability p. By applying expe
tations,we obtain E[
r(G0)℄ � E[E0℄ � 3E[V 0℄, where E0; V 0 are the numbers of edges andverti
es in G0, respe
tively. This 
an be rewritten as 
r(G)p4 � Ep2 � 3V p, and
hoosing p = 4V=E 
ompletes the proof of the Crossing Lemma.We remark that the a
tual lower bound yielded by this analysis is E3=(64V 2).The 
onstant of proportionality has been improved by Pa
h and T�oth [80℄ andit is now within a fa
tor of three from its best possible value. They proved that
r(G) � E3=(33:75V 2) whenever E � 7:5V . In fa
t, the slightly weaker inequality
r(G) � E3=(33:75V 2) � 0:9V holds without any extra assumption. We also notethat it is 
ru
ial that the graph G be simple (i.e., any two verti
es be 
onne
ted byat most one edge), for otherwise no 
rossing 
an be guaranteed, regardless of howlarge E is.Let P be a set of m points and L a set of n lines in the plane. We asso
iate withP and L the following plane drawing of a graph G. The verti
es of (this drawing of)G are the points of P . For ea
h line ` 2 L, we 
onne
t ea
h pair of points of P \ `that are 
onse
utive along ` by an edge of G, drawn as the straight segment betweenthese points (whi
h is 
ontained in `). See Figure 4 for an illustration. Clearly, G isa simple graph, and, assuming that ea
h line of L 
ontains at least one point of P ,we have V = m and E = I(P;L) � n (the number of edges along a line is smallerby 1 than the number of in
iden
es with that line). Hen
e, either E < 4V , andthen I(P;L) < 4m+n, or 
r(G) � E3=(
V 2) = (I(P;L)�n)3=(
m2). However, wehave, trivially, 
r(G) � �n2�, be
ause any 
rossing between edges of G is a 
rossingbetween the lines that support them, and any su
h line 
rossing 
an appear at moson
e as a 
rossing in G. This implies that I(P;L) � (
=2)1=3m2=3n2=3 + n. Using
 = 33:75, the 
oeÆ
ient of the leading term be
omes at most 2:57.Extensions: Many fa
es and unit 
ir
les. The simple idea behind Sz�ekely'sproof is quite powerful, and 
an be applied to many variants of the problem, aslong as the 
orresponding graph G is simple, or, alternatively, has a bounded edgemultipli
ity. For example, 
onsider the 
ase of in
iden
es between a set P of mpoints and a set C of n unit 
ir
les. Draw the graph G exa
tly as in the 
ase oflines, but only along 
ir
les that 
ontain more than two points of P , to avoid loopsand multiple edges along the same 
ir
le. We have V = m and E � I(P;C)�2n. Inthis 
ase, G need not be simple, but the maximum edge multipli
ity is at most two;see Figure 5. Hen
e, by deleting at most half of the edges of G we make it into asimple graph. Moreover, 
r(G) � n(n�1), so we get I(P;C) = O(m2=3n2=3+m+n).
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Figure 4. Sz�ekely's graph for points and lines in the plane.p
qFigure 5. Sz�ekely's graph for points and unit 
ir
les in the plane:The maximum edge multipli
ity is two|see the edges 
onne
tingp and q.It is interesting to note that Sz�ekely's te
hnique yields bounds that depend onthe a
tual number X of 
rossings between the 
urves in C. In the 
ase of lines,X is generally �(n2). However, for other 
lasses of 
urves, X 
an be 
onsiderablysmaller. In the 
ase of unit 
ir
les, we obtain I(P;C) = O(m2=3X1=3 + m + n).Su
h a dependen
e on X 
an also be obtained using the analysis of Se
tion 3.We 
an also apply this te
hnique to obtain an upper bound on the total 
om-plexity of a set of fa
es in an arrangement of lines. Let P be a set of m points andL a set of n lines in the plane, so that no point lies on any line and ea
h point liesin a distin
t fa
e of A(L). The graph G is now 
onstru
ted in the following slightlydi�erent manner. Its verti
es are the points of P . For ea
h ` 2 L, we 
onsider allfa
es of A(L) that are marked by points of P , are bounded by ` and lie on a �xedside of `. For ea
h pair f1; f2 of su
h fa
es that are 
onse
utive along ` (the portionof ` between �f1 and �f2 does not meet any other marked fa
e on the same side),we 
onne
t the 
orresponding marking points p1; p2 by an edge, and draw it as apolygonal path p1q1q2p2, where q1 2 ` \ �f1 and q2 2 ` \ �f2. We a
tually shiftthe edge slightly away from ` so as to avoid its overlapping with edges drawn forfa
es on the other side of `. The points q1; q2 
an be 
hosen in su
h a way that apair of edges meet ea
h other only at interse
tion points of pairs of lines of L. See
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p q

Figure 6. Sz�ekely's graph for fa
e-marking points and lines in theplane. The maximum edge multipli
ity is two|see, e.g., the edges
onne
ting p and q.Figure 6. The resulting graph G has V = m verti
es, E � K(P;L)� 2n edges, and
r(G) � 2n(n� 1) (ea
h pair of lines 
an give rise to at most four pairs of 
rossingedges, near the same interse
tion point). Again, G is not simple, but the maximumedge multipli
ity is at most two, be
ause, if two fa
es f1; f2 are 
onne
ted alonga line `, then ` is a 
ommon external tangent to both fa
es. Sin
e f1 and f2 aredisjoint 
onvex sets, they 
an have at most two external 
ommon tangents. Hen
e,arguing as above, we obtain K(P;L) = O(m2=3n2=3+m+n), where the 
oeÆ
ientof the leading term is at most 4:08. We remark that the same upper bound 
an alsobe obtained via the partition te
hnique, as shown by Clarkson et al. [38℄. Moreover,in view of the dis
ussion in Se
tion 2, this bound is tight.However, Sz�ekely's te
hnique does not always apply as su
h. The simplestexample where it fails is when we want to establish an upper bound on the numberof in
iden
es between points and 
ir
les of arbitrary radii. If we follow the sameapproa
h as for equal 
ir
les, and 
onstru
t a graph analogously, we may now 
reateedges with arbitrarily large multipli
ities, as is illustrated in Figure 7.Another 
ase where the te
hnique fails is when we wish to bound the total
omplexity of many fa
es in an arrangement of line segments. If we try to 
onstru
tthe graph in the same way as we did for full lines, the fa
es may not be 
onvex anymore, and we 
an 
reate edges of high multipli
ity; see Figure 8.Neither of these failures are fatal, though, and 
an be over
ome by 
ombiningSz�ekely's te
hnique with other tools, as we des
ribe next.5. Improvements by Cutting into Pseudo-segments5.1. Making the Sz�ekely's graph simple: Cutting into pseudo-segments.Consider the 
ase of in
iden
es between points and 
ir
les of arbitrary radii. Oneway to over
ome the te
hni
al problem in applying Sz�ekely's te
hnique in this 
ase isto 
ut the given 
ir
les into subar
s so that any two of them interse
t at most on
e.We refer to su
h a 
olle
tion of subar
s as a 
olle
tion of pseudo-segments. Then, ifone draws the Sz�ekely graph only along these pseudo-segments, the resulting graphis guaranteed to be simple; see below for more details.
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Figure 7. Sz�ekely's graph need not be simple for points and ar-bitrary 
ir
les in the plane.
p r q

Figure 8. Sz�ekely's graph need not be simple for marked fa
esand segments in the plane: An arbitrarily large number of segmentsbounds all three fa
es marked by the points p; q; r, so the edges(p; r) and (r; q) in Sz�ekely's graph have arbitrarily large multipli
-ity.The �rst step in this dire
tion has been taken by Tamaki and Tokuyama [96℄,who have shown that any 
olle
tion C of n pseudo-
ir
les, namely, 
losed Jordan
urves, ea
h pair of whi
h interse
t at most twi
e, 
an be 
ut into O(n5=3) subar
sthat form a family of pseudo-segments.1 To dis
uss this result and its subsequentimprovements, let �(C) denote the minimum number of points that 
an be removedfrom the 
urves of C, so that any two members of the resulting family of subar
shave at most one point in 
ommon. �(C) 
an be given the following equivalentinterpretation.1The a
tual motivation of Tamaki and Tokuyama has not been to 
ount in
iden
es, but tobound the 
omplexity of a single level in an arrangement of su
h 
urves.
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Figure 9. Cutting every lens yields an arrangement of pseudo-segments.

Figure 10. The boundaries of the shaded regions are nonoverlap-ping lenses in an arrangement of pseudo-
ir
les.The union of two ar
s that belong to distin
t pseudo-
ir
les and 
onne
t thesame pair of points is 
alled a lens. Consider a hypergraph H whose vertex set
onsists of the edges of the arrangementA(C), i.e., the ar
s between two 
onse
utive
rossings. Assign to ea
h lens a hyperedge 
onsisting of all ar
s that belong to thelens. We are interested in �nding the transversal number (or the size of the smallest\hitting set") of H , i.e., the smallest number of verti
es of H that 
an be pi
kedwith the property that every hyperedge 
ontains at least one of them. We now 
utthe 
urves of C at the ar
s that belong to the hitting set. Sin
e every lens hasbeen hit, any pair of the resulting sub
urves interse
t at most on
e. See Figure 9.Hen
e, �(C) is the transversal number of H .Using Lov�asz' analysis [71℄ (see also [76℄) of the greedy algorithm for boundingthe transversal number from above (i.e., for 
onstru
ting a hitting set), Tamaki andTokuyama have shown that this quantity is not mu
h bigger than the size of thelargest mat
hing in H , i.e., the maximum number of pairwise disjoint hyperedges.This is the same as the largest number of pairwise non-overlapping lenses, thatis, the largest number of lenses, no two of whi
h share a 
ommon edge of thearrangement A(C) (see Figure 10). Viewing su
h a family of nonoverlapping lensesas a graph G, whose edges 
onne
t pairs of 
urves that form a lens in the family,Tamaki and Tokuyama proved that G does not 
ontain K3;3 as a subgraph, andthis leads to the asserted bound on the number of 
uts.
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Figure 11. The modi�ed Sz�ekely graph 
onstru
tion.In order to establish an upper bound on the number of in
iden
es between aset P of m points and a set L of n 
ir
les (or pseudo-
ir
les), let us 
onstru
t amodi�ed version G0 of Sz�ekely's graph: its verti
es are the points of P , and its edges
onne
t adja
ent pairs of points along the new pseudo-segment ar
s. That is, wedo not 
onne
t a pair of points that are adja
ent along an original 
urve, if the ar
that 
onne
ts them has been 
ut by some point of the hitting set. See Figure 11.Moreover, as in the original analysis of Sz�ekely, we do not 
onne
t points alongpseudo-
ir
les that are in
ident to only one or two points of P , to avoid loops andtrivial multipli
ities.Clearly, the graph G0 is simple, and the number E0 of its edges is at leastI(P;C)� �(C)� 2n. The 
rossing number of G0 is, as before, at most the numberof 
rossings between the original 
urves in C, whi
h is at most n(n� 1). Using theCrossing Lemma, we thus obtainI(P;C) = O(m2=3n2=3 + �(C) +m+ n):Hen
e, applying the Tamaki-Tokuyama bound on �(C), we 
an 
on
lude thatI(P;C) = O(m2=3n2=3 + n5=3 +m):An interesting property of this bound is that it is tight when m � n3=2. In this 
ase,the bound be
omes I(P;C) = O(m2=3n2=3+m), mat
hing the lower bound for in
i-den
es between points and lines, whi
h also serves as a lower bound for the numberof in
iden
es between points and 
ir
les or parabolas. However, for smaller valuesof m, the term O(n5=3) dominates, and the dependen
e on m disappears. This 
anbe re
ti�ed by 
ombining this bound with a 
utting-based problem de
omposition,similar to the one used in Se
tion 3, and we shall do so shortly.Before pro
eeding, though, we note that Tamaki and Tokuyama's bound is nottight. The best known lower bound is 
(n4=3), whi
h follows from the lower bound
onstru
tion for in
iden
es between points and lines. (That is, we have alreadyseen that this 
onstru
tion 
an be modi�ed so as to yield a 
olle
tion C of n 
ir
leswith �(n4=3) empty lenses. Clearly, ea
h su
h lens requires a separate 
ut, so�(C) = 
(n4=3).) Re
ent work by Alon, Last, Pin
hasi and Sharir [12℄, Aronovand Sharir [17℄, and Agarwal et al. [7℄ has led to improved bounds. Spe
i�
ally, itwas shown in [7℄ that �(C) = O(n8=5), for families C of pseudo-parabolas (graphs of
ontinuous everywhere de�ned fun
tions, ea
h pair of whi
h interse
t at most twi
e),and, more generally, for families of x-monotone pseudo-
ir
les (
losed Jordan 
urveswith the same property, so that the two portions of their boundaries 
onne
tingtheir leftmost and rightmost points are graphs of two 
ontinuous fun
tions, de�nedon a 
ommon interval).
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ertain spe
ial 
ases, in
luding the 
ases of 
ir
les and of verti
al parabolas(i.e., parabolas of the form y = ax2 + bx+ 
), one 
an do better, and show that�(C) = O(n3=2�(n));where �(n) = (logn)O(�2(n));and where �(n) is the extremely slowly growing inverse A
kermann's fun
tion.This bound was established by Agarwal et al. [7℄, and it improves a slightly weakerbound obtained by Aronov and Sharir [17℄. The te
hnique used for deriving thisimproved bound on �(C) is interesting in its own right, and raises several deepopen problems.5.2. Cutting 
ir
les into pseudo-segments. We will review this analysisfor the 
ase of 
ir
les, although several steps of the analysis apply to more generalfamilies of pseudo-
ir
les and pseudo-parabolas.Let C be a family of n 
ir
les. Re
all that the main te
hni
al step in theanalysis is to estimate the maximum size of a family of pairwise nonoverlappinglenses in A(C). The �rst step towards this goal is to 
onsider the family L of allempty lenses (fa
es of degree 2 in the arrangement), in the spe
ial 
ase where everypair of 
ir
les in C interse
t. It was shown in [12℄ that the number of su
h lenses isO(n). In fa
t, if one further assumes that all 
ir
les in C 
ontain a 
ommon point intheir interior, then the graph G whose verti
es are the 
ir
les in C and whose edges
onne
t pairs of 
ir
les that indu
e empty lenses is planar, from whi
h the linearbound on its size (in this spe
ial 
ase) is immediate. As a matter of fa
t, as shownin [12℄, the following natural plane embedding of G is 
rossing-free: Asso
iate ea
h
ir
le of C with its 
enter. For ea
h empty lens, formed by a pair of 
ir
les 
; 
0, wedraw the 
orresponding edge of G as the straight segment 
onne
ting the 
entersof 
 and 
0. The linear bound in the general 
ase of pairwise interse
ting 
ir
les(whose interiors need not have a 
ommon point) then follows by a simple indu
tiveargument.It is interesting to note that this linear bound on the number of empty lensesin the pairwise interse
ting 
ase also holds for arbitrary pseudo-
ir
les or pseudo-parabolas. Here, too, the proof uses a planarity argument. Spe
i�
ally, the empty-lens graph in an arrangement of n pairwise interse
ting pseudo-parabolas is shownin [7℄ to be planar.The drawing rule in this 
ase is 
onsiderably more intri
ate than in the 
aseof 
ir
les. Let ` be some �xed verti
al line that lies to the left of all interse
tionsbetween the pseudo-parabolas. Represent ea
h pseudo-parabola 
 by its 
rossingwith `, denoted by v
. Conne
t two points, v
1 and v
2 by a y-monotone 
urve(edge) if and only if the 
orresponding pseudo-parabolas en
lose an empty lens.This edge has to navigate to the left or to the right of ea
h of the intermediatepoints v
 between v
1 and v
2 along `. This navigation is governed by the followingdrawing rule (see Figure 12): Assume that v
1 lies below v
2 along `. Let W (
1; 
2)denote the left wedge formed by 
1 and 
2, 
onsisting of all points that lie above
1 and below 
2 and to the left of the �rst interse
tion between them. Let 
 be apseudo-parabola for whi
h v
 lies between v
1 and v
2 . Clearly, 
 has to exit theleft wedge W (
1; 
2) at least on
e. If its �rst exit point lies on 
1 (resp., 
2), thenwe draw the y-monotone 
urve (edge) 
onne
ting v
1 and v
2 to pass to the right(resp., to the left) of v
. Ex
ept for these requirements, this edge 
an be drawn
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W (
1; 
2)` `

v
2v
1 
2
1 v
2v
1 
2
1
v
 v
 
 vavbv
vdve(i) (ii)Figure 12. Drawing the empty-lenses graph of pairwise-interse
ting pseudo-parabolas: (i) The drawing rule. (ii) A drawingof the graph. Empty lenses are represented by tangen
ies.arbitrarily. It turns out that in the resulting graph G any two edges 
ross an evennumber of times. Therefore, by a theorem of Hanani [63℄ and Tutte [99℄, G is aplanar graph. One 
an also show that G is bipartite, and so its number of edges,i.e., the number of empty lenses, is at most 2n�4. The 
ase of pairwise-interse
tingpseudo-
ir
les (rather than pseudo-parabolas) require additional steps that redu
eit to the 
ase of pseudo-parabolas; see [7℄ for more details.The next step is to bound the maximum size of a family L of pairwise nonover-lapping lenses in an arrangement of pairwise interse
ting 
ir
les (or pseudo-parabolas,or pseudo-
ir
les). A simple analysis of su
h a bound pro
eeds as follows. De�nethe depth of a lens to be the number of 
ir
les of C that interse
t it. Sin
e thelenses in L are pairwise nonoverlapping, the number of lenses in L with depthlarger than n1=2 is O(n3=2) (ea
h su
h lens 
ontains 
(n1=2) verti
es out of the�(n2) verti
es of A(C)). The number of so-
alled \shallow" lenses, i.e., those ofdepth at most n1=2, 
an be estimated using the Clarkson-Shor probabilisti
 analysis[39℄, whi
h bounds the number of lenses of depth at most k by O(k2) times thenumber of lenses of depth 0 (i.e., empty lenses) in an arrangement of a sample ofn=k 
urves of C. Consequently, for k = n1=2, the number of shallow lenses in Lis O(k2 � (n=k)) = O(nk) = O(n3=2). A more re�ned analysis, whose details areomitted in this survey, shows that the maximum size of L is at most O(n4=3); see[7℄. We now apply the analysis of Tamaki and Tokuyama [96℄ to dedu
e that �(C)is also O(n4=3). A
tually, to fa
ilitate the next step of the analysis, this result isextended to the bi
hromati
 
ase, where we have two families C;C 0 of 
urves (
ir-
les, pseudo-
ir
les, et
.) so that ea
h 
urve in C interse
ts every 
urve in C 0. It isshown in [7℄ that in this 
ase the 
ir
les in C [C 0 
an be 
ut into O(n4=3) ar
s, sothat every bi
hromati
 lens, formed by a 
ir
le of C and a 
ir
le of C 0, is 
ut.So far we have assumed that the 
urves in C are pairwise interse
ting. To handlethe general 
ase, we 
onsider the interse
tion graphH = f(
; 
0) 2 C�C j 
\
0 6= ;g,and de
ompose it into a union of 
omplete bipartite graphs H = Si Ai � Bi. Forea
h subgraph Ai �Bi, ea
h 
ir
le in Ai interse
ts every 
ir
le in Bi, so the resultjust stated implies that all lenses formed between 
ir
les of Ai and 
ir
les of Bi 
anbe 
ut using O((jAij + jBij)4=3) 
uts. Repeating this pro
edure for all subgraphs,we eliminate all lenses in A(C), using a total ofO Xi (jAij+ jBij)4=3!
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uts.It remains to obtain a 
omplete bipartite de
omposition of the interse
tiongraph for whi
h the above sum is small. This 
an be done for 
ir
les, for verti
alparabolas, and, more generally, for any family C of x-monotone pseudo-
ir
les orpseudo-parabolas that admit a 3-parameter algebrai
 representation, in the sensethat ea
h 
urve is de�ned in terms of three real parameters, so that the lo
i of all
urves in C that are tangent to a �xed 
urve, or pass through a �xed point, orsatisfy similar properties, 
an be represented as algebrai
 surfa
es or semi-algebrai
surfa
e pat
hes of 
onstant degree in the 3-dimensional parametri
 spa
e; see [7℄ fora more pre
ise de�nition. The de
omposition is obtained using standard te
hniquesin geometri
 partitioning, shortly des
ribed below, whi
h are based on the notionof 
uttings, as reviewed in Se
tion 3.5.3. Finding all interse
ting pairs of 
ir
les. The task of de
omposingthe interse
tion graph of C 
an be a

omplished as a spe
ial 
ase of bat
hed rangesear
hing, whi
h we review next. We regard ea
h member 
 2 C as a point 
� ina 3-dimensional parametri
 spa
e, e.g., by representing a 
ir
le 
 with 
enter (a; b)and radius � as the point 
� = (a; b; �) 2 R3 . Let C� denote the set of points 
�.We also map ea
h 
ir
le 
 2 C to a surfa
e �(
), 
onsisting of all points (a; b; r)that represent 
ir
les that are tangent to 
. The removal of �(
) partitions R3 intotwo (not ne
essarily 
onne
ted) sets, one of whi
h, denoted by �+(
), 
onsists ofpoints that represent 
ir
les that interse
t 
, while the other set, denoted ��(
),
onsists of points that represent 
ir
les that are disjoint from 
. Let � denote theset of these surfa
es. The problem is thus redu
ed to the bat
hed range sear
hingproblem that asks for reporting all pairs (p; �) 2 C� � � su
h that p 2 �+.To solve this problem, we apply the following (standard) spa
e de
omposi-tion te
hnique. We �x a suÆ
iently large 
onstant parameter r, and 
onstru
t a(1=r)-
utting of the arrangement A(�). In analogy with the 2-dimensional 
ase (asdis
ussed in Se
tion 3), this is a de
omposition of spa
e into relatively open 
ells(of dimension 0,1,2 or 3) su
h that ea
h 
ell is 
rossed by (i.e., interse
ted by butnot 
ontained in) at most j�j=r surfa
es of �. A standard probabilisti
 argument,based on random sampling of �, shows that there exists a (1=r)-
utting 
onsistingof O(r3�(r) log3 r) 
ells, where �(r) = 2O(�2(r)) is an extremely slowly growingfun
tion of r; see [4, 76, 84℄ for details. As in the planar 
ase, a more re�nedargument (see [5, 84℄) redu
es the size of the 
utting to O(r3�(r)). By re�ningthe partitioning further, if needed, we may also assume that ea
h 
ell 
ontains atmost jC�j=r3 points of C�, without 
hanging the asymptoti
 bound on the numberof 
ells. Finally, if we assume that no pair of 
ir
les in C are tangent, we may
onstru
t the 
utting so that all points of C� lie in the interiors of 3-dimensional
ells of the 
utting.Let � be a 3-dimensional 
ell of the 
utting. Put C�� = C� \ � , let �� denotethe set of surfa
es that 
ross � , and let �+� denote the set of surfa
es � for whi
h� � �+. We note that ea
h of the 
omplete bipartite graphs C�� � �+� , for � a
ell of the 
utting, is fully 
ontained in the interse
tion graph H of C. Any otherinterse
ting pair of 
ir
les in C must appear as an element of some C�� � �� , andwe obtain them re
ursively, by applying the above pro
edure, for ea
h 
ell � , withthe set C�� of points and the set �� of surfa
es.In fa
t, sin
e the problem is symmetri
, we 
an somewhat simplify the analysis,as follows. In the se
ond step, we take ea
h pair C�� , �� , and swit
h the roles of
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es. That is, we map ea
h point 
� 2 C�� to the 
orrespondingsurfa
e �(
), and map ea
h surfa
e �(
) 2 �� to the 
orresponding point 
�. Weapply a similar de
omposition step, using the same parameter r, to the resultingsets of points and surfa
es. Repeating this over all 
ells � of the �rst 
utting, weobtain a total of O(r6�2(r)) subproblems, ea
h involving two families of 
ir
les, ea
hof size at most jCj=r4. In addition, we have produ
ed, in the nonre
ursive portionsof the pro
edure, a 
olle
tion of 
omplete bipartite interse
tion graphs, where thesum of the sizes of their vertex sets is O(jCj) (with a 
onstant of proportionalitythat depends on r). The number of 
uts needed to eliminate all bi
hromati
 lenseswithin ea
h of these graphs, summed over all of them, is, by the pre
eding analysis,O(jCj4=3).Hen
e, if we denote by F (n) the maximum number of 
uts needed to eliminateall bi
hromati
 lenses in an arrangement of two families of n 
ir
les ea
h, we obtainthe re
urren
e relationF (n) = O(r6�2(r)) � F (n=r4) +O(n4=3);where the 
onstant of proportionality in the overhead term O(n4=3) depends on r.It is easily seen that the solution of this re
urren
e is F (n) = O(n3=2+"), for any" > 0. (A
tually, this bound 
an be slightly improved, by 
hoosing r to be a powerof n, so that the depth of the re
ursion is only O(log logn). The solution of there
urren
e then be
omesF (n) = O �n3=2(log n)O(log �(n))� = O �n3=2(logn)O(�2(n))� = O(n3=2�(n)):This 
learly also bounds the number of 
uts for a single family of n 
ir
les.5.4. Bounding the number of point-
ir
le in
iden
es. Having developedthe pre
eding ma
hinery, the modi�
ation of Sz�ekely's method reviewed aboveyields, for a set C of n 
ir
les and a set P of m points,I(P;C) = O(m2=3n2=3 + n3=2�(n) +m):As already noted, this bound is tight when it is dominated by the �rst or lastterms, whi
h happens when m is larger than roughly n5=4. For smaller values of m,we de
ompose the problem into subproblems, using the following so-
alled \dual"partitioning te
hnique. We map ea
h 
ir
le (x � a)2 + (y � b)2 = �2 in C to the\dual" point (a; b; �2 � a2 � b2) in 3-spa
e,2 and map ea
h point (�; �) of P tothe \dual" plane z = �2�x� 2�y + (�2 + �2). As is easily veri�ed, ea
h in
iden
ebetween a point of P and a 
ir
le of C is mapped to an in
iden
e between the dualplane and point. We now �x a parameter r, and 
onstru
t a (1=r)-
utting of thearrangement of the dual planes, whi
h partitions R3 into O(r3) 
ells (whi
h is atight bound in the 
ase of planes), ea
h 
rossed by at most m=r dual planes and
ontaining at most n=r3 dual points (the latter property, whi
h is not an intrinsi
property of the 
utting, 
an be enfor
ed by further partitioning 
ells that 
ontainmore than n=r3 points). We apply, for ea
h 
ell � of the 
utting, the pre
edingbound for the set P� of points of P whose dual planes 
ross � , and for the set C�of 
ir
les whose dual points lie in � . (Some spe
ial handling of 
ir
les whose dualpoints lie on boundaries of 
ells of the 
utting is needed, as in Se
tion 3, but we2This is di�erent from the mapping used in �nding all pairs of interse
ting 
ir
les.
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ial 
ase.) This yields the boundI(P;C) = O(r3) � O��mr �2=3 � nr3 �2=3 + � nr3�3=2 �� nr3 �+ mr � =O�m2=3n2=3r1=3 + n3=2r3=2 �� nr3 �+mr2� :Assume that m lies between n1=3 and n5=4; it is not hard to handle the 
omple-mentary 
ases. Choosing r = n5=11=m4=11 in the last bound, we obtainI(P;C) = O(m2=3n2=3 +m6=11n9=11�(m3=n) +m+ n):Remark: The pre
eding analysis 
an be adapted to yield the above upper boundfor the number of in
iden
es betweenm points and n verti
al parabolas (of the formy = ax2+bx+
). It 
an also be adapted to yield weaker, but still nontrivial boundsfor in
iden
es between points and graphs of polynomials of any �xed degree, and afew other 
lasses of 
urves. The analysis relies, as above, on subquadrati
 boundsfor the number of 
uts needed to turn su
h a 
olle
tion of 
urves into pseudo-segments. Bounds of this kind have re
ently been obtained by Chan [31, 32℄. See[7, 17℄ for details.6. Complexity of Many Fa
es in Planar ArrangementsIn this se
tion we brie
y review the state of the art in the 
ompanion problemof estimating the 
ombined 
omplexity K(P;C) of fa
es, marked by a set P of mpoints, in an arrangement of a family C of n 
urves in the plane.Lines and pseudo-lines. We have already dis
ussed the 
ase where C = L is a setof lines. Using Sz�ekely's te
hnique, we have shown that K(P;L) = O(m2=3n2=3 +m + n), and the observation in Se
tion 2 implies that this bound is tight in theworst 
ase. As follows from Sz�ekely's analysis, this bound also holds for families ofpseudo-lines (see also [38℄).Segments and pseudo-segments. The problem be
omes 
onsiderably more in-volved for other types of 
urves. It is not easy to apply the above methods even inthe 
ase when C is a 
olle
tion of n line segments rather than full lines. Indeed, asillustrated in Figure 8, Sz�ekely's te
hnique does not extend to this 
ase, be
ause ofthe potential presen
e of edges with arbitrarily large multipli
ity, and the 
utting-based analysis of Se
tion 3 fa
es te
hni
al diÆ
ulties of its own. (In 
ontrast, inthe in
iden
e problem there is no real di�eren
e between the 
ases of lines and ofline segments.)The 
ase of segments has been studied by Aronov, Edelsbrunner, Guibas andSharir [13℄, who have obtained the upper bound K(P;C) = O(m2=3n2=3+n�(n)+n logm), and the lower bound 
(m2=3n2=3 + n�(n)). Hen
e, the upper bound isoptimal in the worst 
ase, ex
ept for a small range of m near the value n1=2.Re
ently, Agarwal, Aronov and Sharir [3℄ have shown that the 
omplexityof m distin
t fa
es in an arrangement of n extendible pseudo-segments3 with Xinterse
ting pairs is O(m2=3X1=3 + n logn). Sin
e the lower bound of Aronov,Edelsbrunner, Guibas and Sharir 
an be re�ned to 
(m2=3X1=3+n�(n)), this upperbound is asymptoti
ally sharp when the �rst term dominates, and is otherwisewithin a logarithmi
 fa
tor of the lower bound. In general, sin
e X = O(n2), the3A family of x-monotone pseudo-segments is 
alled extendible if ea
h of them is 
ontained inan x-monotone unbounded 
urve, so that these 
urves form a family of pseudo-lines.
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h is optimal for m = 
(n1=2 log3=2 n).There is a tiny range of m where the upper bound of [13℄ is better than that of [3℄,but the se
ond proof is simpler. Although not expli
itly asserted, the analysis of[13℄ also applies to the 
ase of extendible pseudo-segments.By Chan's analysis [31℄, the bound of [3℄ implies an upper bound of O(m2=3X1=3+n log2 n) for the 
omplexity of m fa
es in an arrangement of n arbitrary x-monotonepseudo-segments; this bound also holds when the pseudo-segments are not x-monotone, but ea
h of them has only O(1) lo
ally x-extremal points. Again, thisis asymptoti
ally sharp, unless m is small. For example, substituting X = O(n2),the bound be
omes O(m2=3n2=3 + n log2 n), whi
h 
annot be improved if m =
(n1=2 log3 n).Cir
les. For the 
ase where C is a set of 
ir
les in the plane, Agarwal, Aronov andSharir [3℄ have shown thatK(P;C) = O �m2=3n2=3 +m6=11n9=11�(m3=n) + n logn� ;whi
h is almost identi
al to the upper bound for point-
ir
le in
iden
es, presentedin Se
tion 5.In a nutshell, the analysis pro
eeds as follows: We �rst 
ut the 
ir
les intopseudo-segments, then 
ut the pseudo-segments further into extendible pseudo-segments, and then apply the bound stated above for marked fa
es in an arrange-ment of extendible pseudo-segments. This yields an initial weak bound, whi
h isthen re�ned by means of a 
utting, in the same spirit as the analysis of point-
ir
le in
iden
es. However, the analysis of marked fa
es imposes several additionalte
hni
al problems that need to be addressed. Spe
i�
ally, the in
iden
e problemis fully \de
omposable": If we partition C into a disjoint union C1 [ C2, then,trivially, I(P;C) = I(P;C1) + I(P;C2). However, obtaining a similar relationshipfor K(P;C) is rather nontrivial, and a 
onsiderable portion of the analysis in [3℄ isdevoted to this issue, whi
h arises when we de
ompose the problem into subprob-lems by means of a 
utting. See [3℄ for more details, and for additional bounds forK(P;C) in 
ertain spe
ial 
ases.Unit 
ir
les. If all the 
ir
les in C are 
ongruent (the 
ase of \unit 
ir
les"), then,as shown in [3℄, K(P;C) = O(m2=3X1=3+ n), where X is, as above, the number ofinterse
ting pairs of 
ir
les. This bound is asymptoti
ally tight in the worst 
ase,in 
ontrast with the same asymptoti
 upper bound for the 
ase of in
iden
es, whi
his far away from the best-known, near-linear lower bound (see Se
tion 2).7. In
iden
es between Points and Surfa
es in Higher DimensionsIt is natural to extend the study of in
iden
es to higher dimensions, whereinstead of 
urves we may take surfa
es of a �xed dimension. In this se
tion, wedis
uss the 
ase when C 
onsists of hyperplanes or unit spheres.7.1. In
iden
es between points and hyperplanes. Edelsbrunner, Guibasand Sharir [43℄ were the �rst to 
onsider in
iden
es between points and planes inthree dimensions. It is important to note that, without imposing some restri
tionseither on the set P of points or on the set H of planes, one 
an easily obtainjP j � jH j in
iden
es, simply by pla
ing all the points of P on a line, and making allthe planes of H pass through that line. Some natural restri
tions are to require thatno three points be 
ollinear, or that no three planes be 
ollinear, or that the points
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es of the arrangement A(H), and so on. Di�erent assumptions lead todi�erent bounds. For example, Agarwal and Aronov [2℄ obtained an asymptoti
allytight bound �(m2=3nd=3 + nd�1) for the number of in
iden
es between m verti
esof the arrangement of n hyperplanes in d dimensions and these hyperplanes (seealso [43℄), as well as for the number of fa
ets bounding m distin
t 
ells in su
han arrangement. Other upper bounds are obtained in [43℄ for other restri
tedinstan
es of the problem. These bounds have been re�ned in a re
ent paper by Bra�and Knauer [28℄, showing that the number of in
iden
es between m points and nhyperplanes in d dimensions is O((m+ n) log(m+ n) +md=(d+1)nd=(d+1) log(mn)),provided that their in
iden
e graph 
ontains no Kr;r, for any �xed r.Edelsbrunner and Sharir [44℄ 
onsidered the problem of in
iden
es betweenpoints and hyperplanes in four dimensions, under the assumption that all points lieon the upper envelope of the hyperplanes. They obtained the bound O(m2=3n2=3+m + n) for the number of su
h in
iden
es, and applied the result to establish thesame upper bound on the number of bi
hromati
 minimal distan
e pairs betweena set of m blue points and a set of n red points in three dimensions.Complexity of many 
ells. For a set L of lines in the plane, there is a strong 
on-ne
tion between the 
ompanion problems of (1) bounding the number of in
iden
esbetween the elements of L and a set of points and (2) bounding the 
ombined
omplexity of a 
olle
tion of marked fa
es in A(L). For a set H of hyperplanesin d � 3 dimensions, the 
onne
tion is mu
h weaker. The transformation fromin
iden
es to many fa
es, as reviewed in Se
tion 2, 
an be repeated in Rd , butthen in
iden
es 
orrespond to fa
ets ((d� 1)-dimensional fa
es) of the marked 
ellsin A(H). However, sin
e these 
ells are 
onvex polyhedra in d-spa
e, their over-all 
omplexity (number of bounding fa
es of all dimensions) 
an be mu
h largerthan the number of their fa
ets. This makes the analysis of the 
omplexity of mmarked 
ells in an arrangement of n hyperplanes in d-spa
e a 
onsiderably hardertask, and very little is known about this quantity. In addition to the above men-tioned paper of Agarwal and Aronov [2℄, deriving bounds on the total number offa
ets in m marked 
ells, the general problem has been addressed by Aronov, Ma-tou�sek and Sharir [15℄ and by Aronov and Sharir [18℄. They have shown that theoverall 
omplexity of m marked 
ells in an arrangement of n hyperplanes in Rd isat most O(m1=2nd=2 log(bd=2
�2)=2 n), with the implied 
onstant of proportionalitydepending on d. This bound was used to show that the sum of squares of the
omplexities of all 
ells in an arrangement of n hyperplanes in d dimensions, ford � 4, is O(nd logbd=2
�1 n). Clearly, this latter bound is almost tight, up to thepolylogarithmi
 fa
tor.7.2. In
iden
es with unit spheres: The Repeated Distan
es Problem.Let P be a set of n points in R3 . To estimate the number of pairs of points of P atdistan
e exa
tly 1 from ea
h other, we transform the problem, as in the planar 
ase,to an in
iden
e problem, by drawing a unit sphere �p around ea
h point p 2 P , andby observing that the number of unit distan
es in P is half the number of in
iden
esI(P; S) between P and the set S of these spheres.Consider the general in
iden
e problem, involving a set P of m points and a setS of n unit spheres in R3 . We �rst note that the in
iden
e graph f(p; �) 2 P � S jp 2 �g does not 
ontain K3;3 as a subgraph, so I(P; S) = O(mn2=3+n) [76℄. Next,we partition the problem into subproblems using a 3-dimensional 
utting of thearrangement of the given spheres. The 
onstru
tion of su
h a 
utting, whi
h has
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ontext in Se
tion 5, is more involved than ofits planar 
ounterpart. Roughly speaking, it is based on the verti
al de
ompositionof the arrangement of a random sample of the spheres (see [84℄). Clarkson et al. [38℄show that one 
an 
onstru
t a (1=r)-
utting in this manner, that hasO(r3�(r)) 
ells,ea
h 
rossed by at most n=r spheres of S, where �(r) = 2O(�2(r)), and where �(r)is the inverse A
kermann fun
tion. (A
tually, similar to what we have remarked inSe
tion 3, Clarkson et al. establish a weaker result, where they only guarantee thatthe expe
ted number of spheres 
rossing a 
ell is O(n=r). However, their result 
anbe strengthened as stated above.)Applying the weaker extremal graph-theoreti
 bound to ea
h 
ell � of the 
ut-ting, and handling in
iden
es that o

ur along the boundary of the 
ells (we omithere details of this handling), we obtain (where m� denotes the number of pointsof P in a 
ell � of the 
utting)I(P; S) = O X� m� �nr �2=3 + nr! = O�m�nr �2=3 + nr2�(r)� :Now 
hoose r = m3=8=n1=8. When n1=3 � m � n3, this 
hoi
e is valid. Outsidethis range one 
an easily show that I(P; S) = O(m+ n). Altogether, we obtainI(P; S) = O(m3=4n3=4�(m+ n) +m+ n):In parti
ular, the number of unit distan
es in P is O(n3=2�(n)). As mentionedin the introdu
tion, this still leaves a gap with the best known lower bound of
(n4=3 log logn).8. In
iden
es between Points and Curves in Higher DimensionsThe 
ase of in
iden
es between points and 
urves in higher dimensions has beenstudied only re
ently. There are only two papers that address this problem. Oneof them, by Sharir and Welzl [85℄, studies in
iden
es between points and lines in 3-spa
e. The other, by Aronov, Koltun and Sharir [14℄, is 
on
erned with in
iden
esbetween points and 
ir
les in higher dimensions. We brie
y review these results inthe following two subse
tions.8.1. Points and lines in three dimensions. Let P be a set of m pointsand L a set of n lines in 3-spa
e. Without making some assumptions on Pand L, the problem is trivial, for the following reason. Proje
t P and L ontosome generi
 plane. In
iden
es between points of P and lines of L are bije
-tively mapped to in
iden
es between the proje
ted points and lines, so we haveI(P;L) = O(m2=3n2=3 +m+ n). Moreover, this bound is tight, as is shown by theplanar lower bound 
onstru
tion. (As a matter of fa
t, this redu
tion holds in anydimension d � 3.)There are several ways in whi
h the problem 
an be made interesting. First,suppose that the points of P are joints in the arrangement A(L), namely, ea
hpoint is in
ident to at least three non-
oplanar lines of L. In this 
ase, one hasI(P;L) = O(n5=3) [85℄. Note that this bound is independent of m. It is known thatthe number of joints is at most O(n112=69 log6=23 n) = O(n1:6232) [58℄, improvingthe previous bound O(n1:643) of [83℄ (the best lower bound, based on lines forminga 
ube grid, is only 
(n3=2)).
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` p�`� �0

Figure 13. Transforming in
iden
es between points and equallyin
lined lines to tangen
ies between 
ir
les in the plane.For general point sets P , one 
an use a new measure of in
iden
es, whi
h aimsto ignore in
iden
es between a point and many in
ident 
oplanar lines. Spe
i�
ally,we de�ne the plane 
over �L(p) of a point p to be the minimum number of planesthat pass through p so that their union 
ontains all lines of L in
ident to p, andde�ne I
(P;L) =Pp2P �L(p). It is shown in [85℄ thatI
(P;L) = O(m4=7n5=7 +m+ n);whi
h is smaller than the planar bound of Szemer�edi and Trotter.Another way in whi
h we 
an make the problem \truly 3-dimensional" is torequire that all lines in L be equally in
lined, meaning that ea
h of them forms a�xed angle (say, 45Æ) with the z-dire
tion. In this 
ase, every point of P that isin
ident to at least three lines of L is a joint, but this spe
ial 
ase admits betterupper bounds. Spe
i�
ally, we haveI(P;L) = O �minnm3=4n1=2�(m);m4=7n5=7o+m+ n� ;where �(m) = (logm)O(�2(m)) (see Se
tion 5).The best known lower bound isI(P;L) = 
(m2=3n1=2):Let us brie
y sket
h the proof of the upper bound. For any p 2 P , let Cp denotethe (double) 
one whose apex is p, whose symmetry axis is the verti
al line throughp, and whose opening angle is 45Æ. Fix some generi
 horizontal plane �0, and mapea
h p 2 P to the 
ir
le Cp \ �0. Ea
h line ` 2 L is mapped to the point ` \ �0,
oupled with the proje
tion `� of ` onto �0. Note that an in
iden
e between a pointp 2 P and a line ` 2 L is mapped to the 
on�guration in whi
h the 
ir
le dualto p is in
ident to the point dual to ` and the proje
tion of ` passes through the
enter of the 
ir
le; see Figure 13. Hen
e, if a line ` is in
ident to several pointsp1; : : : ; pk 2 P , then the dual 
ir
les p�1; : : : ; p�k are all tangent to ea
h other at the
ommon point `\�0. Viewing these tangen
ies as a 
olle
tion of degenerate lenses,we 
an bound the overall number of these tangen
ies, whi
h is equal to I(P;L), byO(n3=2�(n)). By a slightly more 
areful analysis, again based on 
utting, one 
anobtain the bound stated above.
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ir
les in three and higher dimensions. Let C be a setof n 
ir
les and P a set of m points in 3-spa
e. Unlike in the 
ase of lines, thereis no obvious redu
tion of the problem to a planar one, be
ause the proje
tionof C onto some generi
 plane yields a 
olle
tion of ellipses, rather than 
ir
les,whi
h 
an 
ross ea
h other at four points per pair. However, using a more re�nedanalysis, Aronov, Koltun and Sharir [14℄ have obtained the same asymptoti
 boundof I(P;C) = O(m2=3n2=3 + m6=11n9=11�(m3=n) + m + n) for I(P;C). The samebound applies in any dimension d � 3.Here is a rough sket
h of the analysis in [14℄. First, by an appropriate inversion,one may assume that no pair of 
ir
les of C are 
oplanar. Next, let G be the Sz�ekelygraph 
onstru
ted along the given 
ir
les in 
omplete analogy with the planar 
ase.We note that the number of edges of G that have multipli
ity 1 (their endpointsare 
onse
utive along just one 
ir
le) is easy to bound. One 
an simply proje
tthe 
ir
les of C onto some generi
 plane, and apply the Crossing Lemma to theresulting proje
ted subgraph of G, to 
on
lude that the number of these edges isO(m2=3n2=3 +m+ n).Bounding the number of edges of G with multipli
ity greater than 1 (the\heavy" edges) is more involved. We repeatedly look for a 
ir
le 
 2 C that 
on-tains more than n1=2 heavy ar
s (that have at least one sibling ar
 that 
onne
tsthe same pair of points), and 
onsider the system S of spheres that pass through 
and 
ontain points of P n 
. The key observation is that any ar
 on another 
ir
lethat shares its endpoints with a heavy ar
 on 
 must belong to a 
ir
le 
0 that is
ontained in a sphere of S. We then pro
ess ea
h sphere � 2 S separately, 
on-sider the set C� of all the 
ir
les of C that it 
ontains, and note that the spheri
alarrangement of C� is equivalent to a planar arrangement of 
ir
les, by means of astereographi
 proje
tion. We now 
ut the 
ir
les of C� into O(n3=2� �(n�)) pseudo-segments, where n� = jC� j, as in the planar 
ase. The sum of these bounds, over� 2 S, bounds the overall number of those heavy ar
s along the 
ir
les that lieon spheres of S, for whi
h at least one additional ar
 lies on the same sphere andshares the same pair of endpoints. The only heavy ar
s that are not 
ounted arethose whose pair of endpoints are only shared with 
ir
les that 
ross the spheresof S transversally. However, as shown by Aronov et al., the number of su
h ar
s isonly O(n).We now remove all the 
ir
les that lie in any sphere of S, and repeat the wholestep with the remaining 
ir
les. If �i 
ir
les are removed at step i, then it followsthat the overall number of heavy ar
s is at most PiO(n + �3=2i �(�i)). Sin
e thenumber of steps is at most n1=2 (at least n1=2+1 
ir
les are removed at ea
h step),the overall bound is O(n3=2�(n)). At the end of the pruning pro
ess, we are leftwith 
ir
les, ea
h having at most n1=2 heavy ar
s, for a total of O(n3=2) additionalheavy ar
s.In other words, the size of G, and thus I(P;C), are O(m2=3n2=3+n3=2�(n)+m).This is the same bound as the initial weaker bound in the planar 
ase. We improvethe bound using a 3-dimensional 
utting, as follows. We map ea
h 
ir
le 
 2 C tothe point dual to the plane 
ontaining 
 (sin
e we made sure that no pair of 
ir
lesare 
oplanar, the resulting points are all distin
t), and map ea
h point p 2 P toits dual plane. Clearly, ea
h in
iden
e p 2 
 is mapped to an in
iden
e betweenthe dual plane and point (but not vi
e versa). We now partition the dual spa
einto O(r3) 
ells, ea
h 
rossed by at most m=r dual planes, and apply the weaker
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iden
e bound, mentioned at the beginning of this paragraph, within ea
h 
ell(to the 
ir
les and points that 
orrespond respe
tively to the dual points in the 
elland to the dual planes that 
ross the 
ell). The expression that arises is identi
al tothat in the planar 
ase, and the right 
hoi
e of r yields the same asymptoti
 boundas in the plane.The same bound 
an be extended to bound the number of in
iden
es betweenm points and n 
ir
les in any dimension. We omit the des
ription of this extension,whi
h 
an be found in [14℄.8.3. Points and plane 
urves in three and higher dimensions. Let Pbe a set of m points in Rd , and let C be a 
olle
tion of n 
onvex plane 
urves, ea
hlying in a distin
t plane. The number I(P;C) of in
iden
es between P and C hasbeen studied by Aronov, Koltun and Sharir [14℄, who have shown thatI(P;C) = O(m4=7n17=21 +m2=3n2=3 +m+ n):In fa
t, this bound also holds in the 
ase where C is a 
olle
tion of n algebrai
 plane
urves of bounded degree that lie in distin
t planes.An interesting appli
ation of this result yields a bound for the number of in
i-den
es between lines and reguli in 3-spa
e. A regulus is the 1-parameter family oflines that pass through three given pairwise skew lines in 3-spa
e. We use the wellknown Pl�u
ker representation of lines in 3-spa
e as points and/or hyperplanes in realproje
tive 5-spa
e (see, e.g., [34℄). In this representation, a regulus 
an be viewed asa quadrati
 plane 
urve in R5 : it is the interse
tion of the three Pl�u
ker hyperplanesof the three generating lines of the regulus with the so-
alled Pl�u
ker surfa
e, whi
his a 4-dimensional quadri
 that is the lo
us of all points in 5-spa
e that are imagesof lines in 3-spa
e under the Pl�u
ker transform. Hen
e, the number of in
iden
esbetweenm lines and n reguli in 3-spa
e is at most O(m4=7n17=21+m2=3n2=3+m+n).This result has been used in [58℄ to obtain an improved upper bound on the numberof joints in an arrangement of lines in R3 , mentioned in Se
tion 8.1.9. Appli
ationsThe problem of bounding the number of in
iden
es between various geometri
obje
ts is elegant and fas
inating, and it has been mostly studied for its own sake.However, it is 
losely related to a variety of questions in 
ombinatorial and 
om-putational geometry and in many other parts of mathemati
s. In this se
tion, webrie
y review some of these 
onne
tions and appli
ations.9.1. Algorithmi
 issues. There are two types of algorithmi
 problems re-lated to in
iden
es. The �rst group in
ludes problems where we wish to a
tuallydetermine the number of in
iden
es between 
ertain obje
ts, e.g., between givensets of points and 
urves, or we wish to 
ompute (des
ribe) a 
olle
tion of markedfa
es in an arrangement of 
urves or surfa
es. The se
ond group 
ontains 
om-pletely di�erent questions whose solution requires tools and te
hniques developedfor the analysis of in
iden
e problems.In the simplest problem of the �rst kind, known as Hop
roft's problem, we aregiven a set P of m points and a set L of n lines in the plane, and we ask whetherthere exists at least one in
iden
e between P and L. The best running time knownfor this problem is O(m2=3n2=3 � 2O(log�(m+n))) [73℄ (see [56℄ for a mat
hing lowerbound). Similar running time bounds hold for the problems of 
ounting or reporting
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iden
es in I(P;L). The solutions are based on 
onstru
ting 
uttings ofan appropriate size and thereby obtaining a de
omposition of the problem intosubproblems, ea
h of whi
h 
an be solved by a more brute-for
e approa
h that usesduality; see next paragraph for details. In other words, the solution 
an be viewedas an implementation of the 
utting-based analysis of the 
ombinatorial bound forI(P;L), as presented in Se
tion 3. We note that in higher dimensions there is adi�eren
e between 
ounting and reporting in
iden
es, e.g., between m points andn hyperplanes. In this 
ase, the number of in
iden
es 
an be mn, so reportingthem 
ould take 
(mn) time in the worst 
ase, but 
ounting them 
an be done
onsiderably faster, as shown by Bra� and Knauer [28℄.The 
ase of in
iden
es between a set P of m points and a set C of n 
ir
les inthe plane is more interesting, be
ause the analysis that leads to the 
urrent bestupper bound on I(P;C) is not easy to implement. In parti
ular, suppose that wehave already 
ut the 
ir
les of C into roughly O(n3=2) pseudo-segments (an inter-esting and nontrivial algorithmi
 task in itself), and we now wish to 
ompute thein
iden
es between these pseudo-segments and the points of P . Sz�ekely's te
hniqueis non-algorithmi
, so instead we would like to apply the 
utting-based approa
hto these pseudo-segments and points. However, this approa
h, for the 
ase of lines,after de
omposing the problem into subproblems, pro
eeds by duality. Spe
i�
ally,it maps the points in a subproblem to dual lines, 
onstru
ts the arrangement ofthese dual lines, and lo
ates in the arrangement the points dual to the lines inthe subproblem. When dealing with the 
ase of pseudo-segments, there is no ob-vious in
iden
e-preserving duality that maps them to points and maps the pointsto pseudo-lines. Nevertheless, su
h a duality has been re
ently de�ned by Agarwaland Sharir [9℄ (re�ning an earlier and algorithmi
ally less eÆ
ient duality given byGoodman [62℄), whi
h 
an be implemented eÆ
iently for several spe
ial 
lasses of
urves, in
luding the 
ase of 
ir
les. It thus yields an eÆ
ient algorithm for 
om-puting I(P;C), whose running time is 
omparable with the bound on I(P;C) givenabove.Constru
ting many fa
es in an arrangement. The problem of 
onstru
t-ing marked fa
es in an arrangement of 
urves has been studied in several papers.Edelsbrunner, Guibas and Sharir [42℄ 
onsider the 
ase of lines or of segments, andpresent an algorithm that runs in time O(m2=3�"n2=3+2" logn + n logn logm) forthe 
ase of lines, and in time O(m2=3�"n2=3+2" logn + n�(n) log2 n logm) for the
ase of segments, for any " > 0. The algorithms use duality. Consider the algorithmfor the 
ase of lines. Let L a set of n lines and let P be a set of m fa
e-markingpoints. The lines of L are mapped to a dual set L� of points, and the points of Pare mapped to a dual set P � of lines. The algorithm then 
onstru
ts a (1=r)-
uttingof A(P �), and solves re
ursively the problem within ea
h 
ell of the 
utting, wherethe pro
essing of a 
ell � involves the set P� of points whose dual lines 
ross � , andthe set L� of lines whose dual points lie in � . (Some additional \external" fa
es alsoneed to be 
omputed, to 
ater to the 
ontribution of lines in L� to fa
es markedby points in P n P� .) Then, ba
k in the primal plane, the algorithm merges (inter-se
ts) the resulting fa
es. That is, for ea
h p 2 P , we obtain several \super-fa
es"that 
ontain p, one from ea
h subproblem that 
orresponds to a 
ell 
rossed by theline dual to p, and we need to interse
t these super-fa
es to obtain the real fa
e
ontaining p. Using a so-
alled Combination Lemma (see also [84℄), Edelsbrunner,Guibas and Sharir show that the merging step 
an be performed in time that is
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lose to the overall fa
e 
omplexities produ
ed by the re
ursive steps, and this leadsto the overall running time stated above. A more re
ent, simpler, and slightly moreeÆ
ient algorithm for arrangements of lines or of line sements, has been given byAgarwal, Matou�sek and S
hwarzkopf [6℄.Extending this approa
h to the 
ase of pseudo-lines, pseudo-segments, or 
ir
les,is not straightforward, be
ause of the la
k of a natural duality transform for su
h
urves. This has been re
ti�ed only re
ently, with the duality transform betweenpoints and pseudo-lines, proposed by Agarwal and Sharir [9℄. Using this duality,Agarwal and Sharir present an algorithm that 
omputes m marked fa
es in anarrangement of n 
ir
les in timeO(m2=3�"n2=3+2" +m6=11+3"n9=11�" +m1+" + n1+");for any " > 0. If all 
ir
les have the same radius, then the running time 
an beimproved to O(m2=3�"n2=3+2" + m1+" + n1+"), for any " > 0. Note that thesebounds are 
lose to the best known upper bounds for the 
omplexity of the m
orresponding fa
es.Related problems. The 
utting-based approa
h has by now be
ome a standardtool in the design of eÆ
ient geometri
 algorithms in a variety of appli
ations inrange sear
hing, geometri
 optimization, ray shooting, and many others. It isbeyond the s
ope of this survey to dis
uss these appli
ations, and the reader isreferred, e.g., to the survey of Agarwal and Eri
kson [4℄ and to the referen
estherein.9.2. Distin
t distan
es. The te
hniques des
ribed in the present survey 
anbe applied to obtain some nontrivial results 
on
erning Erd}os' Distin
t Distan
esProblem [50℄ formulated in the Introdu
tion: What is the minimum number ofdistin
t distan
es determined by n points in the plane? As we have indi
ated inSe
tion 4, after presenting the proof of the Crossing Lemma, a slight modi�
ationof Sz�ekely's idea 
an be used in several other situations where the underlying graphis not simple, i.e., two verti
es 
an be 
onne
ted by more than one edge. However,for the method to work, it is important to have an upper bound for the multipli
ityof the edges. Sz�ekely [94℄ expli
itly formulated the following Generalized CrossingLemma (
ompare with the original lemma in Se
tion 4): Let G be a multigraphdrawn in the plane with V verti
es, E edges, and with maximal edge-multipli
ityM . Then there are 
� E3MV 2��O(M2V ) 
rossing pairs of edges.Sz�ekely applied this statement to the Distin
t Distan
es Problem. He improvedby a polylogarithmi
 fa
tor the best previously known lower bound of Chung, Sze-mer�edi and Trotter [37℄ on the minimum number of distin
t distan
es determinedby n points in the plane. His new bound was 
(n4=5). However, Solymosi andCs. T�oth [89℄ have realized that an ingenious appli
ation of Sz�ekely's method 
ansubstantially improve this lower bound to 
(n6=7).In what follows, we sket
h the idea of Solymosi and T�oth. Consider a set P ofn points in the plane, not all on a line, and denote the number of distin
t distan
esdetermined by them by t. Take a very small 
onstant " > 0 that will be spe
i�edlater, and 
all a straight line ri
h if it passes through at least M = "n2=t2 elementsof P .A

ording to an old theorem of Be
k [20℄ (whi
h is also a 
onsequen
e of theSzemer�edi-Trotter theorem), if P is not 
ollinear then there is a subset P 0 � Pwith jP 0j = 
(n) su
h that there exist at least 
(n) distin
t lines 
onne
ting ea
h



GEOMETRIC INCIDENCES 29element of P 0 to every other element of P . Fix an element p 2 P 0, and 
onne
t it toevery other point of P by a straight line. Obviously, all other points of P lie on atmost t distin
t 
on
entri
 
ir
les around p. Divide the points on ea
h of these 
ir
lesinto groups of 
onse
utive elements so that ea
h group 
ontains roughly g elements,where g � 3 is a 
onstant. For any two points q and q0 in the same group, 
onne
tq and q0 by the ar
 of the 
ir
le they belong to if and only if their perpendi
ularbise
tor is not ri
h. The 
olle
tion of these 
ir
ular ar
s for all elements p 2 P 0
an be regarded as a multigraph G with maximum multipli
ity M . Applying theGeneralized Crossing Lemma to G, observing that an upper bound on the numberof edge 
rossings is O((nt)2), one 
an 
on
lude that if " is small enough, then thereexists a subset P 00 � P 0 with jP 00j = 
(n) su
h that for ea
h point p 2 P 00, at least
(n) groups around p 
ontribute no ar
 to G. This means that in ea
h of thesegroups all the �g2� bise
tors generated by the group elements are ri
h. Let us 
allsu
h a group empty.Now Solymosi and T�oth argue that every element p 2 P 00 must be in
ident tomany ri
h bise
tors. To see this, by drawing 
(n=t) rays from p, divide the planeinto se
tors, ea
h 
ontaining 3gt points that belong to empty groups. Clearly,ea
h su
h se
tor fully 
ontains at least t empty groups around p. Ea
h of thesegroups generates �g2� ri
h bise
tors that pass through p, but these lines are notne
essarily distin
t. Nevertheless, if, for example, we have g = 3, then the t emptygroups belonging to the same se
tor generate 
(t1=3) distin
t bise
tors. (Indeed,one group gives rise to three distin
t bise
tors, and this triple uniquely determinesthe group, so fewer than t1=3 bise
tors 
annot determine t di�erent groups.) Sin
etwo bise
tors generated by groups belonging to di�erent se
tors 
an never 
oin
ide,we 
an 
on
lude that the total number of ri
h bise
tors in
ident to p 2 P 00 is
(n=t)
(t1=3) = 
(n=t2=3). Summing over all elements of P 00, we obtain that thenumber of in
iden
es between the elements of P 00 and the ri
h lines is 
(n2=t2=3).On the other hand, it follows from the Szemer�edi-Trotter theorem (see the Re-mark in Se
tion 3) that the same quantity is O(jP 00j2=M2) = O(t4=n2). Comparingthe last two relations, we obtain the Solymosi-T�oth bound t = 
(n6=7).Tardos and Katz improved this bound by applying the same argument withlarger group sizes g. That is, they improved the \number theoreti
" part of the proofby showing that for larger group sizes the number of distin
t bise
tors generated byt groups is mu
h larger than t1=3 (see se
tion 9.4). In their latest paper [68℄, they
ombined their methods to prove that the minimum number of distin
t distan
esdetermined by n points in the plane is 
(n(48�14e)=(55�16e)�"), for any " > 0, whi
his 
(n0:8641). (It is striking that the exponent in this bound is trans
endental,whi
h is a very unusual phenomenon.) This is the best known result so far. A
onstru
tion of Ruzsa [82℄ shows that the above approa
h without any additionalgeometri
 idea 
an never lead to a lower bound better than 
(n8=9).For the d-dimensional version of the distin
t distan
es problem, Solymosi andVu [90℄ have re
ently established a surprisingly good lower bound when d is large.They proved that a set P of n points in d-spa
e determine at least 
�n 2d� 2d(d+2) �distin
t distan
es. The best known upper bound, due to Erd}os, is O(n 2d ). Weoutline the idea of Solymosi and Vu [91℄ in the spe
ial 
ase when the n points aresituated in a d-dimensional 
ube C of volume n, and any unit 
ube 
ontains onlyO(1) of them.



30 J�ANOS PACH AND MICHA SHARIRPartition C into rd pairwise 
ongruent little 
ubes by axis-parallel hyperplanes,where r is a parameter to be �xed later. Suppose that the number of distin
tdistan
es determined by point pairs in P is equal to t. We estimate in two di�erentways the number N of pairs that belong to the same little 
ube. Sin
e the elementsof P are almost uniformly distributed, we 
learly haveN = O�rd�n=rd2 �� = O(n2=rd):To establish a lower bound on N , 
onsider the set Sp of all spheres around p 2 Pthat pass through at least one element of P , and set S = Sp2P Sp. Obviously, wehave jSj � nt. The number of little 
ubes interse
ting any sphere � 2 Sp is at mostk = O(rd�1). Let ni(�) denote the number of points in P \ � that belong to thei-th little 
ube. Thus, we obtainN = 
0� 1n(d�1)=d Xp2P X�2Sp kXi=1 �ni(�)2 �1A ;be
ause the number of spheres � for whi
h the same pair (p; p0) is 
ounted isO(n(d�1)=d). Indeed, this follows from the fa
t the 
enters of all these sphereslie on the perpendi
ular bise
tor hyperplane of p and p0, and, again by the unifor-mity of the distribution, every hyperplane passes through O(n(d�1)=d)) elements ofP . It follows from the last inequality thatN = 
� 1n(d�1)=dnkt�(n� 1)=kt2 �� = 
�n(d+1)=d� ;provided that r is roughly (n=t)1=(d�1) (this 
hoi
e of r is needed to ensure thatthe average value of ni(�) is at least 2). Comparing the upper and lower boundson r, we obtain t = 
(n2=d�1=d2). If we drop the 
ondition that the points areni
ely distributed then, instead of partitioning into little 
ubes, we have to followthe 
utting-based method des
ribed in Se
tion 3, whi
h yields the slightly weakerbound t = 
(n2=d�2=[d(d+2)℄).In three dimensions, Aronov, Pa
h, Sharir and Tardos [16℄ have shown thatthe number of distin
t distan
es is 
(n77=141�"), for any " > 0, whi
h is 
(n0:546).This was improved by Solymosi and Vu [91℄ to 
(n0:564).It is an ex
iting open problem to 
hara
terize those point sets that determineonly few distin
t distan
es. It is 
onje
tured that they must have a gridlike stru
-ture, and Freiman's theorem (see Se
tion 9.4) seems to support this belief. A stepin this dire
tion was taken by Elekes and R�onyai [49℄, who proved Purdy's 
on-je
ture: If the number of distin
t distan
es between two n-element 
ollinear setsis at most 
onstant times n, then their supporting lines must be either parallel ororthogonal to ea
h other, provided that n is large enough. The major tool in theproof is the following remarkable result: If a two-variable rational fun
tion assumesonly a linear number of distin
t values on a large grid P �Q, where jP j = jQj = n;then it must be of the form f(g(x)+h(y)); or f(g(x) �h(y)); or f � g(x)+h(y)1�g(x)�h(y)� ; forsome suitable rational fun
tions f; g; h.9.3. Equal-area, equal-perimeter, isos
eles triangles, and 
ongruentsimpli
es. Erd}os and Purdy [53, 54℄ generalized the Repeated Distan
es Problemto other repeated patterns (that is, �nite sets of points), in
luding 
ongruent and



GEOMETRIC INCIDENCES 31similar triangles. In the plane, every n-element set 
an 
ontain at most O(n2)similar 
opies of a given pattern, sin
e a similarity is determined up to orientationby the image of any pair of points. This bound 
an, of 
ourse, be attained, e.g.,for equilateral triangles in a regular triangular latti
e. In fa
t, a 
urious latti
e-like
onje
ture of Elekes and Erd}os [47℄ indi
ates that the number of similar 
opies ofany given �nite pattern P 
an be almost quadrati
. La
zkovi
h and Ruzsa [69℄showed that the quadrati
 upper bound 
an be asymptoti
ally attained if and onlyif the 
ross ratio of every 4 points of P , interpreted as 
omplex numbers, is algebrai
.Results of this kind found many appli
ations in exa
t pattern mat
hing [26℄.Other variants of repeated patterns in point sets, whi
h we now 
onsider, involve�xed-area, �xed-perimeter, or isos
eles triangles.Let P be a set of n points in the plane. We wish to bound the number oftriangles spanned by the points of P that have a given area, say 1. To do so, we notethat if we �x two points a; b 2 P , any third point p 2 P for whi
h Area(�abp) = 1lies on a �xed line `ab parallel to ab. Pairs (a; b) for whi
h the line `ab 
ontainsfewer than n1=3 points of P generate at most O(n7=3) unit area triangles. For theother pairs, we observe that the number of lines 
ontaining more than n1=3 pointsof P is, by the equivalent formulation of the Szemer�edi-Trotter theorem, at mostO(n2=(n1=3)3) = O(n). The number of in
iden
es between these lines and thepoints of P is at most O(n4=3). We next observe that any line ` 
an be equal to `abfor at most n pairs a; b, be
ause, given ` and a, there 
an be at most two points bfor whi
h ` = `ab. It follows that the lines 
ontaining more than n1=3 points of P
an be asso
iated with at most O(n � n4=3) = O(n7=3) unit area triangles. Hen
e,overall, P determines at most O(n7=3) unit area triangles. We do not know whetherthis bound is tight. The best known lower bound is 
(n2 logn) [53℄. See also [77℄.Next, 
onsider the problem of estimating the number of unit perimeter trianglesdetermined by P . Here we note that if we �x a; b 2 P , with jabj < 1, any thirdpoint p 2 P for whi
h Perimeter(�abp) = 1 lies on an ellipse whose fo
i are a and band whose major axis is 1� jabj. Clearly, any two distin
t pairs of points of P giverise to distin
t ellipses, and the number of unit perimeter triangles determined byP is equal to one third of the number of in
iden
es between these O(n2) ellipses andthe points of P . The set of these ellipses has four degrees of freedom, in the senseof Pa
h and Sharir [78℄ (see also Se
tion 3), and hen
e the number of in
iden
esbetween them and the points of P , and 
onsequently the number of unit perimetertriangles determined by P , is at mostO(n4=7(n2)6=7) = O(n16=7):Again, we do not know whether this bound is tight. The best known lower boundis as for the number of repeated distan
es, i.e., 
(n1+
= log logn) [50℄, sin
e the same
onstru
tion yields the same lower bound on the number of 
ongruent triangles.See Bra�, Rote and Swanepoel [30℄ for related work on triangles with extremalarea or perimeter spanned by a planar point set.Finally, 
onsider the problem of estimating the number of isos
eles trianglesdetermined by P .Re
ently, Pa
h and Tardos [79℄ proved that the number of isos
eles trianglesindu
ed by triples of an n-element point set in the plane is O(n(11�3�)=(5��)),provided that 0 < � < 10�3e24�7e , where the 
onstant of proportionality depends on �.
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onstant 10�3e24�7e 
omes from [68℄; 
f. se
tion 9.4.) The proof pro
eeds throughthree steps, outlined below.(i) Let P be a set of n distin
t points and let C be a set of ` distin
t 
ir
les in theplane, with m � ` distin
t 
enters. Then, for any 0 < � < 10�3e24�7e , the number I ofin
iden
es between the points in P and the 
ir
les of C isO �n+ `+ n 23 ` 23 + n 47m 1+�7 ` 5��7 + n 12+4�21+3�m 3+5�21+3� ` 15�3�21+3� + n 8+2�14+�m 2+2�14+� ` 10�2�14+� � ;where the 
onstant of proportionality depends on �. Note that when m = ` this isa weaker bound than the general point-
ir
le in
iden
e bound derived in Se
tion 5.However, when m is mu
h smaller, this bound be
omes better.(ii) As a 
orollary, we obtain the following statement. Let P be a set of n distin
tpoints and let C be a set of ` distin
t 
ir
les in the plane su
h that they have atmost n distin
t 
enters. Then, for any 0 < � < 10�3e24�7e , the number of in
iden
esbetween the points in P and the 
ir
les in C isO �n 5+3�7+� ` 5��7+� + n� :(iii) Consider an n-element point set P in the plane, and let T be the set of orderedtriples pqr that indu
e an isos
eles triangle in P , with apex q. For any pqr 2 T , let
(pqr) denote the 
ir
le 
entered at q, whi
h passes through p and r. We 
lassifythe elements of T a

ording to the order of magnitude of j
(pqr) \ P j, and boundthe sizes of the 
lasses separately. Setting a threshold t := n(1��)=(5��), letT 0 = fpqr 2 T j j
(pqr) \ P j � tg; andTi = fpqr 2 T j 2it � j
(pqr) \ P j � 2i+1tg;for i = 0; 1; : : : ; blog(n=t)
: For any points p; q 2 P there are at most t� 1 
hoi
esfor r su
h that pqr 2 T 0. Thus, we havejT 0j < n2t = n 11�3�5�� :Let Ci = f
(pqr) j pqr 2 Tig, for 0 � i � blog(n=t)
. Letting `i := jCij, we have atleast 2it`i in
iden
es between the n points in P and the `i 
ir
les in Ci. Moreover,the 
enter of ea
h 
ir
le in Ci is among the n points of P , so we 
an apply thebound in (ii), whi
h yields2it`i = O� �n 5+3�7+� ` 5��7+�i + n� ;for any 0 < � < 10�3e24�7e . (The subs
ript � indi
ates that the 
onstant hidden in theO-notation depends on �.) Rearranging the terms, we get for every i that`i = O� n 5+3�2+2�(2it) 7+�2+2� + n2it! :Using the fa
t that jTij < (2i+1t)2`i, we obtainjTij = O� n 5+3�2+2�(2it) 3�3�2+2� + 2itn! = O� n 11�3�5��2i 3�3�2+2� + n2n=(2it)! :Adding up these bounds, it follows thatjT j = jT 0j+ blog(n=t)
Xi=0 jTij = O� �n 11�3�5�� + n2� = O� �n 11�3�5�� � ;



GEOMETRIC INCIDENCES 33as asserted.A lower bound on the number of isos
eles triangles is 
(n2plogn), as yieldedby the set of verti
es of a pn�pn latti
e.The following algorithmi
 appli
ation of the bound on the number of isos
elestriangles is due to Bra� [27℄: If I(n) is an upper bound on the number of isos
elestriangles in an n-element point set, then the maximum symmetri
 subsets of ann-point set 
an be listed in time O((I(n) + n2) logn).Bounding the number of in
iden
es between points and 
ir
les in higher di-mensions 
an be applied to the following interesting problem posed by Erd}os andPurdy and studied by Agarwal and Sharir [8℄ (see also Bra� [25℄ and Abrego andFernandez-Mer
hant [1℄): Determine the largest number of simpli
es 
ongruent toa �xed simplex �, whi
h 
an be spanned by an n-element point set P � Rd .Here we 
onsider only the 
ase when P � R4 and � = ab
d is a 3-simplex. Fixthree points p; q; r 2 P su
h that the triangle pqr is 
ongruent to the fa
e ab
 of�. Then any fourth point v 2 P for whi
h pqrv is 
ongruent to � must lie on a
ir
le whose plane is orthogonal to the triangle pqr, whose radius is equal to theheight of � from d, and whose 
enter is at the foot of that height. Hen
e, boundingthe number of 
ongruent simpli
es 
an be redu
ed to the problem of bounding thenumber of in
iden
es between 
ir
les and points in 4-spa
e. (The a
tual redu
tion isslightly more involved, be
ause the same 
ir
le 
an arise for more than one trianglepqr; see [8℄ for details.) Using the bound of [14℄, mentioned in Se
tion 8, one 
andedu
e that the number of 
ongruent 3-simpli
es determined by n points in 4-spa
eis O(n20=9+"), for any " > 0. The known lower bound is 
(n2), as follows fromLenz' 
onstru
tion (see, e.g., [76℄).See also Akutsu, Tamaki and Tokuyama [11℄ for related work, and Bra� [26℄for a general referen
e to this kind of problems.9.4. Number theoreti
 appli
ations. As we have seen before, the opti-mum of most extremal problems involving distan
es or in
iden
es are known or
onje
tured to be attained for a portion of the integer latti
e. Therefore, it is nat-ural that additive number theory (e.g., Freiman's theory of set addition [60, 81℄)plays a 
ru
ial role in this area (see, e.g., [48, 51, 69℄). It is somewhat surpris-ing, however, that bounds on in
iden
es 
an be used to establish number theoreti
statements. The prototype of su
h a result is Elekes' theorem [46℄: For any set Aof n reals, either the set of sums A +A = fa+ b j a; b 2 Ag or the set of produ
tsA �A = fab j a; b 2 Ag has at least 
(n5=4) elements. In fa
t, Erd}os and Szemer�edi[55℄, who raised this problem and established the �rst nontrivial estimate of thistype, 
onje
tured that the theorem remains true if the exponent 5=4 is repla
ed byany real number smaller than 2.Elekes' proof is the following. Apply the Szemer�edi-Trotter theorem [95℄ to theset of points P = (A+A)� (A �A) � R2 and to the set L of n2 lines of the form y =a(x� b), where a; b 2 A. Observe that the line y = a(x� b) passes through at leastn elements of P , namely, all points of the form (
+ b; a
) for 
 2 A. Therefore, thenumber of in
iden
es between the elements of P and L is at least n3. On the otherhand, this quantity is at most O(jP j2=3jLj2=3+ jP j+ jLj) = O(jP j2=3n4=3+ jP j+n2).Comparing these two bounds, we obtain jP j = jA + Aj � jA � Aj = 
(n5=2); asrequired.
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ently established the stronger resultmaxfjA+Aj; jA � Ajg = 
(n14=11= log3 n);applying the Szemer�edi-Trotter theorem to the point set P = (A + A) � (A + A)and a properly 
hosen set of lines. His argument also yields a similar statement forthe set of fra
tions A=A instead of the set of produ
ts A �A.A

ording to the above results, any �nite subset A of the �eld of real numbersis very far from being 
losed either under addition or under multipli
ation. Thesame question 
an be asked for other �elds F . If F has a sub�eld A, then we
annot expe
t su
h a result. However, for �nite �elds F of prime order, Bourgain,Katz, and Tao [23℄ proved that for any Æ > 0 there exists " = "(Æ) > 0 su
h that,whenever jF jÆ < jAj < jF j1�Æ ; we havemaxfjA+Aj; jA � Ajg = 
(jAj1+"):The proof is based on a far-rea
hing generalization of the Szemer�edi-Trotter theoremon in
iden
es. As a 
onsequen
e, Bourgain et al. dedu
ed a nontrivial lower boundfor the distin
t distan
es problem in the �nite �eld plane F 2 = F � F , where Fis of prime order. Given any two points (x; y); (x0; y0) 2 F 2; de�ne their distan
ed((x; y); (x0; y0)) as (x�x0)2+(y�y0)2. (For te
hni
al reasons, it is better to avoidusing square roots.) It was shown in [23℄ that for any 0 < Æ < 2 there exists" = "(Æ) > 0 su
h that any set P � F 2 of jF jÆ elements determine at least jP j1=2+"distin
t distan
es. As we have seen before, Erd}os 
onje
tured that the Eu
lideananalogue of this result is true with any " < 1=2; but there is no obvious reason tobelieve that this would also hold in the 
ase of �nite �elds.We 
lose this subse
tion by formulating the following number theoreti
 problem,expli
itly stated by Tardos [97℄. Its (partial) solution is involved in many of theresults mentioned in the previous two se
tions, in
luding the lower bounds on theDistin
t Distan
es Problem. Given an n � k real matrix M = (mij) all of whoseentries are distin
t, let M(A) denote the set of all numbers that 
an be written asthe sum of two distin
t entries from the same row. Let fk(n) be the minimum sizeof jM(A)j over all su
h matri
es. It is easy to see that both f3(n) and f4(n) are�(n1=3). The best known lower bounds so far have been established by Katz andTardos [68℄: f5(n) � n7=19; f7(n) � n33=89; f9(n) � n59=159; : : :, and, in general, forevery � < 10�3e24�7e there exists k = k(�) su
h that fk(n) � n�. The only nontrivialupper bound is due to Ruzsa [82℄: fk(n) = O(n 12� 12k�2 ) for even values of k.9.5. Fourier analysis and measure theory. A number of interesting 
on-ne
tions between in
iden
e geometry, Fourier analysis, and measure theory aredis
ussed in Iosevi
h's survey [65℄. Here we only mention two interesting problemsthat have generated a lot of resear
h.Fuglede [59℄ 
onje
tured that one 
an 
hara
terize all domains whose translates
an tile the Eu
lidean spa
e, as follows. A domain D in Eu
lidean d-spa
e is 
alledspe
tral if there exists a dis
rete set A in the spa
e su
h that the set of exponentialfun
tions fe2�ix�a j a 2 Ag forms an orthogonal basis for the spa
e L2(D) of allsquare-integrable fun
tions on D. Fuglede 
onje
tured that the spa
e 
an be tiledwith translates of D if and only if D is spe
tral.For instan
e, if D is the unit 
ube, then A 
an be 
hosen to be the integerlatti
e. On the other hand, Iosevi
h, Katz, and Pedersen [66℄ proved that the unitball is not spe
tral in any dimension. Their argument pro
eeds as follows. Assuming
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trum A exists, a 
areful analysis of the Fourier transform �̂(�) of the
hara
teristi
 fun
tion of the d-dimensional ball shows that A is a dis
rete set,fairly uniformly distributed in d-spa
e. Moreover, the assumption on orthogonalityimplies that �̂(a � a0) = 0 for any a; a0 2 A. The Fourier transform �̂(�) dependsonly on the absolute value j�j. It is not hard to prove (see, e.g., [86℄) that thezeroes of �̂(j�j) are very 
lose to the zeroes of 
os(j�j � �d=4). It follows that thenumber of elements of A belonging to a ball of radius r is 
(rd); and these pointsdetermine O(r) distin
t distan
es. This 
ontradi
ts the above surveyed results ondistin
t distan
es.Given a 
ompa
t set S in Rd ; let dim(S) denote its Hausdor� dimension, and let�(S) be the set of interpoint distan
es determined by S. A

ording to a 
elebrated
onje
ture of Fal
oner [57℄, if dim(S) � d=2, then the Lebesgue measure �(�(S)) ispositive. Fal
oner proved that this statement is true under the stronger assumptionthat dim(S) � (d+1)=2: In the plane, this assumption was weakened to dim(S) �13=9 by Bourgain [21℄ and then to dim(S) � 4=3 by Wol� [101℄, who argued thatno further improvement is likely using a purely Fourier-analyti
 approa
h.On the other hand, Arutyunyants and Iosevi
h [19℄ (and, in the plane, Hofmannand Iosevi
h [64℄) proved that if dim(S) � d=2, then �(�(TS)) > 0; for almostall transformations T with bounded positive eigenvalues. Roughly speaking, thismeans that Fal
oner's 
onje
ture is almost surely true for randomly 
hosen aÆnetransformations of the Eu
lidean metri
.Erd}os' 
onje
ture on the minimum number of distin
t distan
es determined byn points in Rd , dis
ussed above, has an interesting asymptoti
 version (see, e.g.,[19, 66℄): Let A � Rd be a uniformly distributed set in the sense that (i) everyaxis-parallel unit 
ube in Rd 
ontains at least one element of A, and (ii) the distan
ebetween any two elements of A ex
eeds some positive 
onstant Æ. Then the numberof distin
t distan
es determined by the points of A lying inside a 
ube of sidelength r is 
(r2). It is not hard to see [19℄ that Fal
oner's 
onje
ture implies this(weaker) form of Erd}os' 
onje
ture on distin
t distan
es. Some further dis
retized
onje
tures and their relations with one another and with the Szemer�edi-Trottertheorem on in
iden
es are dis
ussed in [67℄.These problems are also related to Kakeya's problem [100℄: A Kakeya set (orBesi
ovit
h set) is a subset of Rd that 
ontains a unit segment in every dire
tion.Besi
ovit
h was the �rst to 
onstru
t su
h sets with zero measure. Kakeya's problemis to de
ide whether the Hausdor� dimension of a Kakeya set is always at least d.The planar version of this question was answered in the aÆrmative by Davies [41℄and, in a stronger form, by C�ordoba [40℄ and by Bourgain [22℄. For d � 3, this isa major unsolved problem.A
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