
P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4

Kinetic and Dynamic Data Structures for Closest Pair
and All Nearest Neighbors

PANKAJ K. AGARWAL

Duke University

AND

HAIM KAPLAN AND MICHA SHARIR

Tel Aviv University

Abstract. We present simple, fully dynamic and kinetic data structures, which are variants of a
dynamic two-dimensional range tree, for maintaining the closest pair and all nearest neighbors for
a set of n moving points in the plane; insertions and deletions of points are also allowed. If no
insertions or deletions take place, the structure for the closest pair uses O(n log n) space, and processes
O(n2βs+2(n) log n) critical events, each in O(log2 n) time. Here s is the maximum number of times
where the distances between any two specific pairs of points can become equal, βs(q) = λs(q)/q, and
λs(q) is the maximum length of Davenport-Schinzel sequences of order s on q symbols. The dynamic
version of the problem incurs a slight degradation in performance: If m ≥ n insertions and deletions
are performed, the structure still uses O(n log n) space, and processes O(mnβs+2(n) log3 n) events,
each in O(log3 n) time.

Our kinetic data structure for all nearest neighbors uses O(n log2 n) space, and processes
O(n2β2

s+2(n) log3 n) critical events. The expected time to process all events is O(n2β2
s+2(n) log4 n),

though processing a single event may take �(n) expected time in the worst case. If m ≥ n inser-
tions and deletions are performed, then the expected number of events is O(mnβ2

s+2(n) log3 n) and

processing them all takes O(mnβ2
s+2(n) log4 n). An insertion or deletion takes O(n) expected time.

The work of P. Agarwal has been supported by NSF under grants CCR-00-86013, EIA-01-31905,
CCR-02-04118, DEB-04-25465, ARO grant W911NF-04-1-0278, and by a grant from the U.S.-Israel
Binational Science Foundation. Work by H. Kaplan was partially supported by the Israeli Science
Foundation (ISF) grant no. 975/06. Work by M. Sharir was partially supported by NSF grants CCR-
00-98246, and CCF-05-14079, by a grant from the U.S.-Israeli Binational Science Foundation, by
a grant from the Israel Science Fund, Israeli Academy of Sciences, for a Center of Excellence in
Geometric Computing at Tel Aviv University, and by the Hermann Minkowski–MINERVA Center
for Geometry at Tel Aviv University.

Authors’ addresses: P. K. Agarwal, Department of Computer Science, Duke University, Durham, NC
27708-0129, e-mail: pankaj@cs.duke.edu; H. Kaplan, M. Sharir, School of Computer Science, Tel
Aviv University, Tel Aviv 69978, Israel, e-mail: {haimk, michas}@post.tau.ac.il.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1549-6325/2008/11-ART04 $5.00 DOI 10.1145/1435375.1435379 http://doi.acm.org/
10.1145/1435375.1435379

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:2 P. K. AGARWAL ET AL.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Geometrical problems and computations; E.1 [Data]:
Data Structures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Kinetic data structures, computational geometry, closest pair,
nearest neighbors

ACM Reference Format:
Agarwal, P. K., Kaplan, H., and Sharir, M. 2008. Kinetic and dynamic data structures for closest pair
and all nearest neighbors. ACM Trans. Algor. 5, 1, Article 4 (November 2008), 37 pages. DOI =
10.1145/1435375.1435379 http://doi.acm.org/10.1145/1435375.1435379

1. Introduction

Let P = {p1, p2, . . . , pn} be a set of n points, each moving independently in
R

2. Let pi (t) = (xi (t), yi (t)) denote the position of pi at time t , and set P(t) =
{p1(t), . . . , pn(t)}. We assume that each xi (·), yi (·) is a semi-algebraic function of
constant description complexity. The goal is to design a data structure that keeps
track of the closest pair of points in P , and that can also support insertions and
deletions of points into/from P , as well as changes in the flight plans of the moving
points.

The kinetic data structure (KDS) framework, introduced by Basch et al. [1999],
proposes an algorithmic approach, together with several quality criteria, for main-
taining a variety of geometric configurations determined by a set of objects, each
moving along a semi-algebraic trajectory of constant description complexity (see
the following for a precise definition). Several interesting algorithms have been
designed over the past few years using this framework, including algorithms for
maintaining the convex hull of a set S of (moving) points in the plane [Basch
et al. 1999a], the closest pair in such a set [Basch et al. 1999b], a point in the
center region of such a set [Agarwal et al. 2005], kinetic planar subdivisions
[Agarwal et al. 2000a, 2000b, 1998], kinetic medians and kd-trees [Agarwal et al.
2002], kinetic range searching [Agarwal et al. 2003], maintaining the extent of a
moving point set [Agarwal et al. 2001], kinetic collision detection [Basch et al.
2004; Hershberger 2004; Kirkpatrick et al. 2002], shooting a moving target [de Berg
2003], kinetic discrete centers [Gao et al. 2003], kinetic connectivity for unit disks,
rectangles, and hypercubes [Guibas et al. 2001; Hershberger and Suri 2001], kinetic
geometric spanners [Karavelas and Guibas 2001], and kinetic separation of con-
vex polygons [Kirkpatrick and Speckmann 2001]; see Guibas [2004] for a recent
survey.

Typically, a geometric algorithm for computing such a configuration determined
by a set S is designed for the stationary case, where the objects do not move. When
the objects do move, the combinatorial representation of the configuration may
change at certain critical times, when certain “events” occur (e.g., a new vertex
of the convex hull may appear, an old vertex may disappear, the closest pair of
points changes, etc.). The goal is to design a data structure that can efficiently keep
track of these changes, and to maintain (a discrete representation of) the correct
configuration at all times. Thus the algorithm has to keep track of these critical
events, and fix the configuration when they happen.

The crux in designing an efficient KDS is finding a set of certificates that, on the
one hand, ensure the correctness of the configuration currently being maintained,

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:3

while on the other hand being inexpensive to maintain. When the motion starts,
we can compute the closest failure time of any of the certificates, and insert these
times into a global event queue. When the time of the next event in the queue
matches the current time, we invoke the KDS repair mechanism, which fixes the
configuration and replaces the failing certificate(s) with new valid ones. In doing
so, the mechanism will typically delete from the queue those failure times that are
no longer relevant, and insert new failure times into it.

To analyze the efficiency of a KDS, we distinguish between two types of events:
internal and external. External events are events associated with a real (combina-
torial) change in the configuration that we maintain, thus forcing a change in the
output. Internal events, on the other hand, are events where some certificate fails,
but the overall desired configuration still remains valid. These events arise because
of our specific choice of the certificates, and essentially comprise an overhead in-
curred by the data structure. If the ratio between the number of internal events to
the number of external events (in the worst case) is no more than polylogarithmic
in the number of input objects, the KDS is said to be efficient.1 Other parameters
of the KDS that we would like to minimize are the following.

—The processing time of a critical event by the repair mechanism. If this parameter
is no more than polylogarithmic in the number of input objects, we say that the
KDS is responsive.

—The maximum number of events, at any fixed time in the data structure, that
are associated with one particular object. When this parameter is no more than
polylogarithmic in the number of input objects, we say that the KDS is local.
Locality typically implies that changes in flight plan of the moving points can
be handled efficiently.

—The space used by the data structure. If this is larger than the number of input
objects by at most a polylogarithmic factor, we say that the KDS is compact.

In addition, an aspect which is one of the central issues addressed in this article (for
the specific closest pair and all nearest-neighbors problems), it might be desirable
to design a KDS that is also dynamic, meaning that it can also efficiently support
insertions and deletions of objects.

In their paper, Basch et al. [1999] developed a KDS that maintains the closest
pair in a set of n moving points in the plane and which meets all four standard
criteria, namely, it is compact, efficient, local, and responsive. Specifically, their
structure uses linear space; it processes O(n2βs+2(n) log n) events, each in O(log2 n)
time, where s is the number of times that any two fixed pairs of points can attain
equal distances, and βs+2(n) is as defined in the abstract. To achieve locality, their
algorithm uses a fairly complicated set of certificates to guarantee that each point

1 (a) In the original setup of Basch et al. [1999], a KDS is considered to be efficient if the ratio between
the worst-case number of internal events to the worst-case number of external events is bounded by
an arbitrarily small power of the number of input objects. In our definition of efficient KDS, we only
allow a degradation factor that is a polylogarithmic function of the number of input objects. We impose
similar stricter restrictions on other performance parameters of the structure. (b) Ideally, we would
like to ensure a small ratio between the number of internal events and the number of external events
that actually take place. This is considerably harder to achieve, and is not addressed in the earlier
works.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:4 P. K. AGARWAL ET AL.

participates in O(log n) certificates. Furthermore, Basch et al. focused only on
kinetization and did not consider insertions and deletions of points, which seems
hard to implement using their approach. The motivation for our work has been
threefold: (i) to simplify the certificates used by Basch et al. [1999] for the closest-
pair problem; (ii) to obtain a dynamic algorithm that still meets the four quality
criteria mentioned before and that can also be extended to higher dimensions; and
(iii) to extend this technique to the all-nearest-neighbors problem, a problem that
has not yet been tackled in the KDS literature.

Further Background. In the static and stationary scenario, the complete set of
points is given when the algorithm starts, and the points do not move. The pla-
nar version of the static and stationary closest-pair problem has been solved in
O(n log n) time by Shamos and Hoey [1975]. A year later, Bentley and Shamos
[1976] gave an O(n log n) algorithm for the d-dimensional case. Vaidya [1989]
describes an O(n log n) algorithm for computing the nearest neighbor of every
point in a given set of n points in R

d . All these algorithms can be implemented in
the algebraic decision tree model, for which an �(n log n) lower bound holds; see
de Berg et al. [2000].

The problem of maintaining the closest pair in the dynamic but stationary scenario
has also been studied extensively during the past fifteen years. The first algorithm
supporting both insertions and deletions in polylogarithmic update time was given
by Smid [1992], who presents a data structure for points in d dimensions that takes
O(n logd n) space and supports updates in O(logd n log log n) amortized time per
update. Later, Schwarz et al. [1994] gave an algorithm that supports only inser-
tions, in O(log n) amortized time per insertion, again in any dimension. Finally,
Bespamyatnikh [1998] presented an algorithm that supports both insertions and
deletions in O(log n) worst-case time per update, in any dimension.

Our Results. Our first result is an efficient dynamic KDS for maintaining the
closest pair in a set of moving points in the plane, which also supports inser-
tions and deletions of points and which can be extended to any dimension d > 2.
The structure is constructed using standard off-the-shelf data structure compo-
nents, our certificates are simpler than those of Basch et al. [1999], and the
performance of our algorithm (in the planar case) is comparable with that of
Basch et al. [1999].

We assume that each moving point p is given as a pair (x p(t), yp(t)) of semi-
algebraic functions of time of constant description complexity. Specifically, each
function is defined as a Boolean combination of a constant number of predicates
involving polynomials of constant maximum degree.

Our solution is based on a simple geometric property of the nearest neighbor to
a given point, stated in Lemma 2.1 of this article, a property which has also been
noted in Basch et al. [1999]. Using this property, we design a data structure which in
essence is a 2D range tree. It stores the points of P in a certain transformed coordi-
nate system, along with certain additional information to facilitate the maintenance
of the closest pair.

We present the algorithm in three stages. First, in Section 2, we describe the data
structure for the static (no insertions and deletions) and stationary (no motion of
the points) scenario. This leads to a simple, alternative O(n log n) algorithm for
computing the closest pair in a planar point set. We next show in Section 4 how to

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:5

make this structure kinetic, still disallowing insertions and deletions. The modified
structure uses O(n log n) space and processes O(n2βs+2(n) log n) critical events,
each in O(log2 n) time. Here s is the maximum number of times where the distances
between any two specific pairs of points can become equal, βs(q) = λs(q)/q, and
λs(q) is the maximum length of Davenport-Schinzel sequences of order s on q
symbols. Then, in Section 5, we modify the structure further, and turn it into a
fully dynamic and kinetic structure. The dynamic version of the problem incurs a
slight degradation in performance: If m ≥ n insertions and deletions are performed,
the structure still uses O(n log n) space and processes O(mnβs+2(n) log3 n) events,
each in O(log3 n) time. See Theorem 5.2 for a precise statement of the performance
bounds.

An appealing feature of our solution, besides its being the first fully dynamic
and kinetic solution for this problem, is its simplicity. It is in fact a dynamic two-
dimensional range tree on which we superimpose a heap-like tournament structure,
in which only a small number of pairs compete for being the closest pair in P . This
number is linear in the static-kinetic case, and is O(n log n) in the dynamic-kinetic
case.

Our second result is a KDS for maintaining the nearest neighbor of every point
in a set of moving points in the plane, with the same assumption on the motions
as described before. We obtain this result using the same basic observation of
Lemma 2.1. The skeleton of the data structure itself is the same two-dimensional
range tree which we use for the closest pair, but with an additional level of kinetic
tournaments. In order to attain a sharp upper bound on the number of events that
may occur in the additional tournaments, and on the time to handle them, we use
treaps [Seidel and Aragon 1996] to implement both the primary and the secondary
trees. We present this result in Section 6. It uses O(n log2 n) expected space, and the
expected number of events processed by the data structure is O(mnβ2

s+2(n) log3 n)
if m ≥ n insertions and deletions are performed. The expected time to process all
the events is O(mnβ2

s+2(n) log4 n), though a single event may take O(n) expected
time. See Theorems 6.9 and 7.2 for precise statements.

Another feature of our solutions is that they can be extended to arbitrary di-
mensions d > 2, using essentially the same machinery (a d-dimensional dynamic
range tree combined with kinetic and dynamic tournament data structures). We
present this extension in Section 8; the precise performance bounds are given in
Theorems 8.2 and 8.3.

2. Closest Pair and Nearest Neighbors: Static and Stationary

Let P be a set of n “fixed” points in R
2. We present a “warm-up” solution for

the closet-pair and the all-nearest-neighbor problems. Although these problems
are well studied and optimal algorithms exist [de Berg et al. 2000], we derive
specific solutions that are easy to extend to kinetic and dynamic scenarios. These
structures rely on the following simple but crucial lemma, also proved in Basch
et al. [1999].

Partition the plane into six wedges W0, . . . , W5 of angle π/3 each, with the origin
as their common apex, where Wi spans the orientation [(2i − 1)π/6, (2i + 1)π/6].
Let bi denote the unit vector in the direction of the bisector ray of Wi . Note that
Wi+3 = −Wi and bi+3 = −bi (where addition of indices is modulo 6). For a point
p and a wedge Wi , let p + Wi denote the translation of Wi so that its apex is at p.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:6 P. K. AGARWAL ET AL.

FIG. 1. (a) p cannot be the point nearest to q; (b) the u and v coordinates.

LEMMA 2.1. Let p be the point closest to q, and let Wi be the wedge such that
p + Wi contains q. Then

(q − p) · bi = min{(w − p) · bi | w ∈ P ∩ (p + Wi)}.
PROOF. Suppose to the contrary that there exists a point w ∈ P ∩ (p + Wi),

such that (w − p) · bi < (q − p) · bi . See Figure 1. We have |qw | ≥ |pq|, so
� pwq must be smaller than � qpw . However, � qpw ≤ π/3, and � pwq > π/3, a
contradiction.

We restate Lemma 2.1 by saying that if p is closest to q, then q is the closest point
to p (in P ∩ (p + Wi)) in the bi -direction. Symmetrically, if q is also the closest
point to p, then p is the closest point to q (in P ∩ (q + Wi+3) = P ∩ (q − Wi)) in
the opposite (−bi)-direction. We refer to such pairs of points as being matched in
the bi -direction.

2.1. CLOSEST PAIR. Clearly, if (p, q) is a closest pair in P , then there exists
a direction bi such that p and q are matched in direction bi . The algorithm keeps
track of all these matched pairs of points, in each of the three directions b0, b1, and
b2, and selects the closest pair (in the Euclidean metric) among them. Note that
for each of the directions b0, b1, and b2, a point p can participate in at most two
matched pairs: once as the left point of the pair and once as the right point of the
pair. Thus, at any time, there are only O(n) matched pairs.

Without loss of generality, we only consider matched pairs in direction b0, namely
the x-direction. Consider the two π/3 wedges W + = W0, W − = W3 with the origin
as an apex, whose bisector rays are, respectively, the positive and negative portions
of the x-axis. For simplicity of presentation, we regard W + and W − as open wedges.
For each point q ∈ R

2, we set W +(q) := q + W +, W −(q) := q + W −. We thus
wish to find all matched pairs of points (p, q) in the x-direction; that is, pairs (p, q)
such that p lies to the left of q, q is the leftmost point of P ∩ W +(p), and p is the
rightmost point of P ∩ W −(q). Let � denote the set of these matched pairs.

To construct �, we first map each point p = (x p, yp) ∈ P to a point (u p, v p)

in a new parametric plane, where u p = x p + √
3yp, and v p = x p − √

3yp. These
coordinates are measured along axes that are orthogonal to the directions of the
rays bounding the wedge W +. See Figure 1(b).

Note that q ∈ W +(p) if and only if

uq > u p and vq > v p. (1)

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:7

FIG. 2. A set P = {1, . . . , 8} of eight points in R
2, the primary tree T storing the points sorted

by their u-coordinates, and the secondary tree Tw of node w storing P(w) = {5, 6, 7, 8} sorted
by their v-coordinates. In Tw , 5, 6 are blue and 7, 8 are red points, and blue(w, root(Tw)) = 6
and red(w, root(Tw)) = 8. The closest pair (which is also matched in the x-direction) is (3, 4) =
π (z, root(Tz)).

So all points q that may be matched with p are in the range given by Eq. (1),
which is a translation of the positive quadrant in the uv-plane. To compute �, we
seek, for each point p, the point q ∈ P that lies in that range and has the smallest
x-coordinate. Since x = (u + v)/2 in the uv-plane, we want to find that point in
the query quadrant which is extreme in the (−1, −1)-direction.

Motivated by this observation, we construct a two-dimensional range tree T
[de Berg et al. 2000] on the transformed points of P , where the points are sorted
in the primary tree by their u-coordinates, and in each secondary tree by their v-
coordinates. We store a point in each leaf. Internal nodes do not contain points, but
store keys to guide the search, as well as additional information that is described
next. See Figure 2. We slightly abuse the notation and use T to denote both the
whole range tree and its primary tree. For a node w in the primary tree, we denote
the set of points in the subtree rooted at w by P(w), and denote the secondary
tree associated with w by Tw . For a node ξ ∈ Tw , we denote the set of points in the
subtree of ξ by P(w, ξ). For an internal node ζ , either in the primary tree T or in
some secondary tree, we denote by
(ζ) the left child of ζ , and by r (ζ) the right
child of ζ .

Let w be a node in the primary tree T . The secondary tree Tw stores all points
in P(w) sorted by their v-coordinates. Within Tw , we refer to points that belong
to P(
(w)) as blue points, and to points that belong to P(r (w)) as red points. By
definition, the u-coordinate of each blue point is smaller than that of all the red
points. However, when sorted by their v-coordinates, the blue and red points get
mixed together (see again Figure 2). We use the following observation whose proof
is straightforward.

LEMMA 2.2. Let w be a node in the primary tree T , and let ξ be a node in
the secondary tree Tw . For each blue point p ∈ P(w,
(ξ)) and for each red point
q ∈ P(w, r (ξ)), the wedge W +(p) contains q (and the wedge W −(q) contains p).

For each node ξ in Tw , let Red(w, ξ) (respectively, Blue(w, ξ)) be the subset
of red (respectively, blue) points in P(w, r (ξ)) (respectively, P(w,
(ξ))). Define
blue(w, ξ) to be the point of maximum (respectively, minimum) x-coordinate in
Blue(w, ξ) (respectively, Red(w, ξ)); it is undefined if the set is empty. Consider
the four quadrants defined by the lines u = uw and v = vξ , where uw is the

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:8 P. K. AGARWAL ET AL.

maximum u-coordinate of a point in P(
(w)), and vξ is the maximum v-coordinate
of a point in P(w,
(ξ)). Then Red(w, ξ) (respectively, Blue(w, ξ)) lies in the first
(respectively, third) quadrant, and red(w, ξ) (respectively, blue(w, ξ) is the point
of P(w, ξ) with the minimum (respectively, maximum) x-coordinate (i.e., (u +
v)-value) in this quadrant. See Figure 2. Let π (w, ξ) = (blue(w, ξ), red(w, ξ)),
whenever both elements of the pair are defined. Set

�∗ = {π (w, ξ) | ξ ∈ Tw , w ∈ T }. (2)

We have the following lemma.

LEMMA 2.3. Let p be the point closest to q so that q ∈ W +(p). Then there
are nodes w and ξ such that q = red(w, ξ) and p ∈ P(w,
(ξ)). Symmetrically,
if q ∈ W −(p), then there are nodes w and ξ such that q = blue(w, ξ) and p ∈
P(w, r (ξ)).

PROOF. We prove only the first part, in which q ∈ W +(p); the proof of the
second part is symmetric. Let w be the lowest common ancestor of p and q in T .
Since q ∈ W +(p), we have uq > u p, so p ∈ P(
(w)) and q ∈ P(r (w)). It follows
that in Tw , p is a blue point and q is a red point. Let ξ be the lowest common
ancestor of p and q in Tw . Again, since q ∈ W +(p), we have vq > v p. Therefore
p ∈ P(w,
(ξ)) and q ∈ P(w, r (ξ)).

By Lemma 2.2, the wedge W +(p) contains all the red points in P(w, r (ξ)). It
follows that q must be red(w, ξ), for otherwise there would exist a point q ′ in W +(p)
with x-coordinate smaller than that of q, contradicting Lemma 2.1.

The following corollary follows from Lemmas 2.1 and 2.3.

COROLLARY 2.4. For each matched pair (p, q) ∈ � there are nodes w and ξ
such that (p, q) = π (w, ξ); that is, � ⊆ �∗.

Corollary 2.4 suggests the following procedure for computing the closest pair.
We compute �∗ by constructing the range tree T and the pairs π (w, ξ), for each
primary node w and secondary node ξ ∈ Tw . We then find the pair in �∗ with the
minimum distance between its points. We apply a similar procedure to each of the
two other bisector directions b1 and b2. The closest among the three resulting pairs
is the closest pair in P . This completes the description of the static and stationary
data structure for the closest-pair problem. It uses O(n log n) storage, and the cost of
constructing it, including the construction of the set �∗, is O(n log n). The storage
can be reduced to O(n) if we construct T and the secondary trees incrementally,
discarding portions that have already been fully processed.

2.2. ALL NEAREST NEIGHBORS. We now show how to use the range tree of the
preceding analysis to find the nearest neighbor of each point p ∈ P . The strategy
is to compute, for each p ∈ P , a candidate point q ∈ W +(p) ∪ W −(p) such that if
the nearest neighbor of p lies in this union then it is equal to q (in certain cases, q
may be undefined). By repeating this algorithm for the other two pairs of wedges,
we assign to each point p at most three candidates q, one of which must be the
nearest neighbor of p. We build the two-dimensional range tree as in the preceding
algorithm. For each primary node w and secondary node ξ ∈ Tw , we compute the
following:

(i) the points red(w, ξ) and blue(w, ξ);

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:9

(ii) β(w, ξ), the point in Blue(w, ξ) closest to red(w, ξ); and

(iii) �(w, ξ), the point in Red(w, ξ) closest to blue(w, ξ).

For each point p, define

C(p) = {β(w, ξ) | p = red(w, ξ)} ∪ {�(w, ξ) | p = blue(w, ξ)}. (3)

If C(p) �= ∅, then the candidate point q that we pick for p is the closest point to p
among all points in C(p). The correctness of the algorithm follows from Lemma 2.1.

The running time of this algorithm is proportional to the sum of the sizes of all
secondary subtrees, which is O(n log2 n). The same technique can be used in higher
dimensions as well; see Section 8 for details. While yielding a suboptimal solution
(Vaidya’s algorithm runs in O(n log n) time in any dimension d), this technique is
relatively easy to extend to the kinetic and dynamic scenarios, as will be described
in subsequent sections.

3. A Dynamic and Kinetic Tournament

In this section we review one of the main tools in our algorithm, adapted from Basch
et al. [1999], who present the following algorithm for maintaining the lowest point
among a set of points moving along the y-axis.2 Let Q be a completely balanced
binary tree, with the points stored at its leaves (in an arbitrary order). For an internal
node v ∈ Q, let P(v) denote the set of points in the subtree rooted at v . At any
specific time t , each internal node v stores the lowest point among the points in
P(v) at time t . We call this lowest point the winner at v . Clearly, at any given time,
the winner at v is the lower between the winner at the left child of v and the winner
at the right child of v .

We associate a certificate with each internal node v , which asserts which of the
two winners, at the left child and at the right child of v , is the winner at v . This certifi-
cate remains valid as long as: (i) the winners at the children of v do not change, and
(ii) the order along the y-axis between these two “subwinners” does not change. The
actual certificate caters only to the second condition; the first will be taken care of re-
cursively. The failure time associated with this certificate is the next time when these
two winners switch their order along the y-axis. We store all certificates in a heap,
using the failure times as keys.3 We call this heap of certificates the event queue.

As time progresses, the algorithm encounters events, each containing some cer-
tificate that fails. The algorithm keeps removing from that event queue that certifi-
cate with the minimum failure time, replacing it with a new certificate which takes
into account the new order of the subwinners at the corresponding node v , and
whose failure time is the next time when the two points switch again their order. In
addition, the new winner at v is propagated upwards to the ancestors of v , which
may cause the algorithm to replace the certificates at some of these nodes, too.

In more detail, the algorithm proceeds as follows. When a certificate associated
with a node v fails at time t , a new winner q takes over the old winner p at v .

2 We assume that when points collide, they simply go over each other and continue uninterruptedly
with their individual trajectories.
3 Any “regular” heap that supports insert, delete, and delete-min in O(log n) time is good for our
purposes.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:10 P. K. AGARWAL ET AL.

The old winner p may have also been the winner at some ancestors of v , so, for
each such ancestor, we change its winner to be q. For each ancestor node u of v
whose winner has changed, we also change the certificate associated with its parent
p(u), where the new certificate confronts the new winner at u with the winner at
the sibling of u. We remove the failure times of the old certificates from the event
queue, and replace them by the failure times of the new certificates. All this takes
O(log2 n) time, and is dominated by the cost of performing O(log n) updates of the
event queue. This implies that our data structure is responsive (in the terminology
of Basch et al. [1999]). It is also compact and local, as follows easily from the
construction.

To bound the total number of events, we focus on a single node v , and bound
the number of times when the winner at v can change. Clearly, the total number of
winner-changes at all nodes bounds the total number of events. (Note that creating
a new certificate and inserting it into the event queue is not considered an event,
since the certificate may get deleted from the queue before it becomes the smallest
element there. Only certificates that are removed by a delete-min operation are
considered to be events.)

A bound on the total number of events times O(log2 n) bounds the total time
to process all events. However we can obtain a tighter bound by recalling that the
time it takes to process an event at v is bounded by O(log n) times the number of
ancestors of v that change their winner as a result of the event. Therefore, the total
number of winner changes at all nodes times O(log n) bounds the total time for
processing the events. (Again, as just remarked, there are potentially more winner
changes than events.)

A winner change at v corresponds to a breakpoint in the lower envelope of the
arrangement in the t y-plane, defined by the trajectories of the points in P(v). If
each such pair of trajectories intersect at most s times, then the complexity of the
lower envelope that corresponds to v is at most λs(|P(v)|) = |P(v)|βs(|P(v)|),
where λs(n) is the maximum length of a Davenport-Schinzel sequence of order s
on n symbols, and βs(n) = λs(n)/n is an extremely slowly growing function of
n (see Sharir and Agarwal [1995]). Summing these complexity bounds over all
nodes v , we obtain that the overall number of winner changes, and therefore also
the overall number of events, is at most

∑
v |P(v)|βs(|P(v)|) = O(nβs(n) log n).

This is larger by a logarithmic factor than the maximum number of times the lowest
point along the y-axis can indeed change, since this latter number is bounded by the
complexity of the lower envelope associated with the root of Q. It now follows from
our discussion in the previous paragraph that the total time to process all the events
is O(nβs(n) log2 n). In the terminology of Basch et al. [1999], our data structure is
thus also efficient.

Making the tournament dynamic. We next turn this static structure into a dynamic
one which also supports insertions and deletions of points. In principle, we can
replace the static tree Q with any kind of dynamic balanced search tree data structure.
However, for the analysis of the number of events to go through, we assume that
Q is a weight-balanced (B B(α)) tree [Nievergelt and Reingold 1973] (see also
Mehlhorn [1984]). This allows us to insert a new point anywhere we wish in Q, and
to delete any point from Q, in O(log n) time. Each such insertion or deletion may
change O(log n) certificates along the corresponding search path, and therefore
takes O(log2 n) time, including the time for the structural updates of (rotations in)

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:11

FIG. 3. A rotation around the edge (ξ, η).

Q; here n denotes the actual number of points in Q at the step where we perform
the insertion or deletion. Again, most of the cost is incurred in accessing the event
queue; updating the tournament structure itself takes only O(log n) time.4

We next bound the total number of events that may occur while inserting and
deleting at most m points, at arbitrary locations, into or from a kinetic tournament
Q that contains at most n points at any time. Each node in v is created during an
insertion, and then exists in Q until the corresponding deletion. We refer to the
period at which v exists in Q as the lifetime of v . We denote by P(v) the multiset
containing any point that is associated with a leaf of the subtree rooted at v during
the lifetime of v . The multiplicity of a point p in P(v) is the number of maximal
connected time intervals at which p is stored at the subtree rooted at v . (Such
transitions into and out of the subtree may happen when we perform rotations to
rebalance the tree; see the following.)

An argument analogous to the one given earlier for the static case implies that
the number of events at a node v (i.e., events where the certificate associated with
v fails) is bounded by the number of winner changes at v . The number of winner
changes in v is in turn bounded by |P(v)| multiplied by βs+2(n).5 Note that here
we use βs+2 instead of βs , since the lower envelope that we consider at each node
v is now a lower envelope of partial functions [Sharir and Agarwal 1995]. Indeed,
insertions and deletions of points from within the subtree of v , as well as rotations
that may introduce new subtrees or remove subtrees from the subtree of v , may
make the trajectory of a point appear in the arrangement in the t y-plane associated
with v only during part of the lifetime of v .

Also as in the static case, the time it takes to handle all events is proportional to
the number of winner changes at all nodes v multiplied by a factor of O(log n). So
O((

∑
v |P(v)|)βs+2(n) log n) is an upper bound on the total time it takes to process

all the events.
When inserting or deleting a node from a weight-balanced tree, we rebalance the

tree by doing rotations at certain edges along the access path. See Figure 3.
Suppose we perform m ≥ n insertions and deletions. If we ignore rotations for a

moment, then each insertion increases |P(v)| by 1 only for nodes v on a single path,
so this contributes O(m log n) to

∑
v |P(v)|. A rotation around an edge (ξ, η), where

4 Note that there is freedom in choosing the location where the new point is inserted, which we do
not know how to exploit.
5 We may use βs+2(n) rather than βs+2(m), by a standard argument that analyzes the total complexity
of the envelope in the t y-plane by splitting it into O(m/n) intervals along the t-axis such that over
each interval there are only O(n) functions involved; see Sharir and Agarwal [1995].

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:12 P. K. AGARWAL ET AL.

ξ = p(η), changes P(ξ) and P(η) substantially. In particular, the set P(η) grows
substantially by inheriting the subtree rooted at the former sibling of η (and child of
ξ). To complete the analysis, we have to bound the total growth in the sets P(z) due
to rotations. Here comes to the rescue a well-known property of weight-balanced
trees [Blum and Mehlhorn 1980] (see also Mehlhorn [1984]) which asserts that,
even if the cost of a rotation around (ξ, η) is proportional to |P(ξ)|, the total cost
of any sequence of O(m) operations is only O(m log n). This immediately implies
that the sum of size increases of the sets P(z), due to rotations, is only O(m log n).
The following theorem summarizes what we have just shown.

THEOREM 3.1. A sequence of m insertions and deletions into a kinetic tourna-
ment, whose maximum size at any time is n (assuming m ≥ n), when implemented
as a weight-balanced tree in the manner described previously, generates at most
O(mβs+2(n) log n) events, for a total cost of O(mβs+2(n) log2 n). Each update takes
O(log2 n) worst-case time. We can construct (i.e., initialize) a kinetic tournament
on n elements, at any fixed time, in O(n) time.

Remark. Note that the amortized analysis of rotations in a weight-balanced tree
is used only for guaranteeing a near-linear bound on the total number of events. In
contrast, the time bound for an update is worst case, because when we do a rotation
in the weight-balanced tree, no rebuilding of secondary structures is needed, so the
rotation takes O(1) time.

4. KDS for Closest Pair

As the points of P vary continuously with time, we maintain the closest pair in P
by keeping track of the combinatorial changes in the structure of T , and in the set �
of matched pairs. Without loss of generality, we limit the discussion to changes in
the first range tree data structure, that uses the wedges W +, W − with the x-axis as a
bisector. Here is an overview of our approach. We note that, as long as the u-order,
v-order, and x-order of the points of P all remain unchanged, the structure of T
also remains unchanged. Moreover, the set � of matched pairs and the larger set
�∗ also do not change. We refer to swaps in which the u-order, v-order, or x-order
of some pair of points of P changes as u-swaps, v-swaps, or x-swaps, respectively.

We maintain the set � explicitly in a dynamic kinetic tournament Q as described
in Section 3. Specifically, for each pair (p, q) we define an item ϕp,q , which is the
Euclidean distance between p and q, namely

ϕp,q(t) = ‖p(t) − q(t)‖. (4)

Let � = {ϕp,q(t) | (p, q) ∈ �}. We construct the tournament Q on �. It follows
that the winner at the root of Q corresponds to the closest pair. In between swaps, the
set � is static, and changes of the closest pair are tracked by the kinetic tournament
Q and its events.

To keep track of the swaps, we maintain the range tree T and three auxiliary sorted
lists Lu , Lv , Lx , where Lu (respectively, Lv , Lx) stores the points of P sorted by
their u-coordinates (respectively, v-coordinates, x-coordinates). We implement Lu
by threading the leaves of T , and we can implement Lv by threading the leaves
of the secondary tree at the root of T . The list Lx is maintained separately. We
maintain a collection of certificates, one for each pair of consecutive elements in
each of the three lists; each certificate simply asserts that the corresponding pair

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:13

FIG. 4. (a) A u-swap between p and q, with p moving down and q up. The old matched pair (p, z)
is replaced by the new pair (p, q); (b) an x-swap between p and q, with q moving to the left and p
to the right. The old matched pair (z, p) is replaced by (z, q).

obeys the respective order. We refer to these certificates as certificates of type (i),
type (ii), and type (iii), respectively. The failure events of these certificates are then
as follows.

(i) Two consecutive points p, q ∈ P in the u-order switch their positions (a
u-swap). See Figure 4(a).

(ii) Two consecutive points p, q ∈ P in the v-order switch their positions (a
v-swap).

(iii) Two consecutive points p, q ∈ P in the x-order switch their positions (an
x-swap). See Figure 4(b).

We add these certificates to the event queue in which we maintain the certificates
of Q; the key of each such certificate is its failure time.

When a u-swap, v-swap, or x-swap between points p and q occurs, we up-
date the tree T and the appropriate one among the lists Lu , Lv , and Lx . The
swap may also change the set �. Fortunately, any pair that starts or stops be-
ing matched due to the swap contains p or q, and the number of such pairs is O(1).
We use T to efficiently identify the changes in �, and then perform the appro-
priate, constantly many insertions and deletions into Q. By the assumption on the
motion of the points, the total number of swaps is O(n2). Hence, by Theorem 3.1,
Q encounters O(n2βs+2(n) log n) events, which can be processed in overall time
O(n2βs+2(n) log2 n). Note that a swap may also change the set �∗; the number of
changes in this set that are caused by a swap might not be constant, though.

The following lemma summarizes our observations thus far.

LEMMA 4.1. The set � of matched pairs changes only when two points p, q
swap their positions in either the u-order, v-order, or x-order. In each of these
events, any pair that starts or stops being matched contains p or q, and the number
of such pairs is O(1).

We maintain at each node ξ of each secondary tree Tw the points of maximal
and minimal x-coordinates stored at P(w, ξ).6 This allows us to use T to answer

6 Here we do not need to explicitly maintain the pair π (w, ξ) = (blue(w, ξ), red(w, ξ)) at ξ , since
we do not handle the set �∗ of these pairs. This set will come into play when we make the structure
dynamic, in Section 5.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:14 P. K. AGARWAL ET AL.

queries of the form: For a given point p, find the leftmost point in W +(p), or find
the rightmost point in W −(p). The first type of query specifies the quadrant u > u p,
v > v p and asks for the point of smallest x-coordinate (or (u + v)-value) in this
quadrant. The second type of query specifies the quadrant u < u p, v < v p and
asks for the point of largest x-coordinate (or (u + v)-value) in this quadrant. Each
of these queries can be answered in O(log2 n) time by standard techniques, using
the information stored at the secondary nodes.

To update our range tree efficiently when swaps take place, we make each sec-
ondary tree a dynamic balanced search tree data structure that supports insertions
and deletions. These updates are required when we encounter swaps in the u-order
between consecutive elements; see the following.

When we insert a point p into a secondary tree Tw , we may have to update the
information associated with nodes along the path from the root of Tw to the new
point, some of which may participate in rebalancing rotations. For any node ξ on
the update path in Tw , we add p to P(w, ξ), which may now become the point with
maximal or minimal x-coordinate in that set. Notice that for a secondary node ξ in
some Tw , it is straightforward to compute the x-maximal and x-minimal points in
P(w, ξ) from the corresponding values at the children of ξ . Therefore, it is easy to
maintain these values when we insert or delete a point and rebalance a secondary
tree via rotations, in O(log n) time per such update. Since only O(log n) secondary
trees are affected by any swap (see what follows), the cost of updating the overall
tree structure after a swap is O(log2 n). The same discussion applies in the case of
deletions.

Handling u-swaps. Let p, q ∈ P be the pair of points that switch their positions
in the u-order; see Figure 4(a). This causes p and q to swap their positions in the
primary tree T and in the list Lu . Let w be the lowest common ancestor of p and
q in T . When we swap p and q, we have to delete p from the secondary tree Tw ′

of every node w ′ on the path from w to the leaf that contained p before the swap,
and add q to each such tree. Similarly, we have to delete q from, and add p to,
every secondary tree Tw ′ , for w ′ on the path from w to the leaf containing q before
the swap. Since we insert and delete p and q in O(log n) secondary trees, the total
update time of these trees is O(log2 n). Next, we swap p and q in Lu , and update the
type-(i) certificates associated with p, q, and their neighbors in Lu . Finally, we find
the changes in the set � of matched pairs, and update the items in Q accordingly.
The procedure described next applies also for v-swaps and x-swaps, without any
modifications.

In view of Lemma 4.1, only pairs involving p or q can start or stop being
matched. To find these changes, we query T with the wedges W +(p), W −(p),
W +(q), and W −(q), seeking the leftmost or rightmost point in each wedge as
appropriate. This yields at most four candidate pairs (each consisting of the apex
(p or q) of the query wedge and the output point) for being new matched pairs.
We check for each of these pairs whether it is indeed matched. Let (p, z) be one
of these pairs, say, with p lying to the left of z. We query in T with the left wedge
W −(z). If the output is p, the pair is matched. Otherwise, it is not matched and we
discard it.

We insert into Q the new matched pairs, and delete from it the old pairs that involve
p or q if they are not in � anymore. To find the old pairs easily, we maintain two
pointers from each p ∈ P to the (at most) two matched pairs that contain it, one as

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:15

a left point and one as a right point. It is easy to maintain these links as we insert
and delete pairs from the tournament.

The cost of this swap is twofold: the cost of updating T , and the cost of han-
dling the tournament structure Q. Updating T takes O(log2 n) time. Querying T to
compute the new matched pairs also takes O(log2 n) time. Inserting and deleting a
constant number of pairs into Q also takes O(log2 n) time, as discussed in Section 3.
Hence, the cost of a u-swap is O(log2 n).

Handling v-swaps. When two points p, q ∈ P switch their positions in the v-
order, we have to swap them in Lv and any secondary tree that contains both of
them. Specifically, let z be the lowest common ancestor of p and q in the primary
tree T . Then p and q are stored in Tζ for every ancestor ζ of z. For any such ancestor
ζ (including z), we swap p and q in Tζ . Fix one such tree Tζ , and notice that p and
q are stored at consecutive leaves of Tζ . Let η be the lowest common ancestor in Tζ

of these two leaves. We swap p and q, and update the x-maximal and x-minimal
points stored at each node ξ on the paths from the leaves containing p and q to η.
Next, we update the certificates of type (ii), as well as their failure events, associated
with p and q and their neighbors in Lv . Finally, we compute the new matched pairs
in � that arise from the swap (because x-maximal and x-minimal points may have
changed), and update Q, exactly as in the case of u-swaps. The total cost of the
swap is, as before, O(log2 n).

Handling x-swaps. Let p and q be the pair of points that switch their positions
in the x-order, with p preceding q before the event takes place. This event does not
cause any structural changes, neither in the primary T nor in any secondary tree,
but it may change the x-maximal or the x-minimal points in any node ξ of any
secondary tree Tw , such that the subtree of ξ contains both p and q.

More precisely, let z be the lowest common ancestor of p and q in the primary
T . We need to process the swap of p and q in those secondary trees rooted at the
ancestors of z, including z itself. Let w be a fixed ancestor of z, and let η be the
lowest common ancestor of p and q in Tw . The subtrees of Tw containing both p
and q are the subtrees rooted at ancestors of η (including η itself). Let ξ be one
such ancestor. If the x-minimal point in P(w, ξ) is p then we change it to q, and if
the x-maximal point in P(w, ξ) is q then we change it to p. Finally, we swap p and
q in Lx , and update the certificates of type (iii), and their failure events, associated
with p, q, and their neighbors in Lx . We then compute the new matched pairs that
arise from the swap, and update Q exactly as in the case of u-swaps. The total cost
of the swap is, as before, O(log2 n).

Theorem 4.2 next summarizes the main result of this section.

THEOREM 4.2. The KDS for the closest pair described earlier has the following
properties:

(a) It processes O(n2βs+2(n) log n) events (thus the KDS is efficient).

(b) It takes O(log2 n) time to process an event (thus the KDS is responsive).

(c) Each point p participates in a constant number of certificates of type (i), (ii),
and (iii), and in O(log n) certificates of Q, involving pairs of � that contain p
(thus the KDS is local).

(d) The KDS uses O(n log n) space (and is thus compact).

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:16 P. K. AGARWAL ET AL.

FIG. 5. An insertion of a point p into the shaded region destroys �(n) pairs in �, and deleting the
point re-exposes them. In contrast, most of these pairs (those for which the v-coordinates of their
points are both smaller than v p) remain in �∗ when p is inserted or deleted.

PROOF. The proof of (b), (c), and (d) follows directly from the construction
of the data structure and from the preceding analysis. We note that the size of the
event queue is only O(n). The bound on the number of events has been discussed
in the paragraph preceding Lemma 4.1.

Remark. The time bounds of Theorem 4.2 are the same as those of Basch et al.
[1999]. The space is larger by an O(log n) factor. However, the advantages of our
KDS are that it is considerably simpler, is suitable for dynamization (see Section 5),
and can easily be extended to higher dimensions (see Section 8).

5. Dynamizing the KDS for Closest Pair

In this section we show how to make the KDS described in Section 4 also support
insertions and deletions of points. We have to be careful here, though, because
an insertion or deletion of a point may cause massive changes in the set �, as is
illustrated in Figure 5. We overcome the problem by maintaining the set �∗ as
defined in Section 2, rather than the set �, in a kinetic and dynamic tournament Q.

At each node ξ of a secondary tree Tw , we store red(w, ξ) and blue(w, ξ). If
π (w, ξ) is defined, it generates an item in the tournament Q whose value at time t
is the Euclidean distance between red(w, ξ) and blue(w, ξ) at time t . Since |�∗| =
O(n log n), Q uses O(n log n) storage. In contrast to �, maintaining �∗ at an
insertion or deletion can be made efficient, as we will shortly show.

5.1. KINETIZATION. Before describing the procedure for inserting or deleting
a point, we consider the kinetization of the modified data structure. As in the case
of �, the set �∗ can change only at a u-swap, v-swap, or x-swap (or at an insertion
or deletion, which we consider next). At any such swap, the tree T is updated as
described in Section 4. The only changes in�∗ involve pairs stored along those paths
where the updates of T and its secondary trees take place. Hence, only O(log2 n)
pairs have to be removed from �∗, and O(log2 n) new pairs have to be inserted.
The corresponding updates in the tournament structure that represents �∗ can be
naively performed in O(log4 n) time per update, as described in Section 3.

We can slightly improve this cost by noting that the nodes of the tournament Q
that are affected by the updates are those along the paths from the modified leaves
to the root. In the worst case, the number of such nodes can be O(log3 n), but we
can reduce it to O(log2 n) if we make the structure of the tournament Q identical to
that of the 2-tier range tree T . In fact, we embed the tournament Q into the range
tree T as follows.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:17

At each node ξ of a secondary tree Tw , we maintain π (w, ξ) (whenever it is
defined) and we also keep track of the closest pair among the pairs π (w, ζ), where
ζ is a descendant of ξ in Tw . We denote this pair by π∗(w, ξ), which is π∗(w,
(ξ)),
π∗(w, r (ξ)), or π (w, ξ). For each such node ξ we maintain a certificate that asserts
which among π∗(w,
(ξ)), π∗(w, r (ξ)), and π (w, ξ) is the closest pair. The failure
times of these certificates are maintained in the event queue, where we also store the
times of the upcoming u-swaps, v-swaps, and x-swaps. Similarly, each node w ∈ T
keeps track of the closest pair among the pairs π (u, ζ), where u is a descendant of
w in T , and ζ ∈ Tu . We denote this pair by π∗(w), which is π∗(
(w)), π∗(r (w)),
or π∗(w, η), where η is the root of Tw . For each such node w we keep a certificate
that asserts which among π∗(
(w)), π∗(r (w)), and π∗(w, η) is the closest pair,
and keep the failure times of these certificates in the same event queue. We call
these two classes of certificates tournament certificates. Since the tournament is
now embedded into T , we make the secondary trees weight-balanced trees, in
accordance with the strategy used in Section 3.

When handling swaps, we update the tournament certificates at all nodes af-
fected by the update. Since there are O(log2 n) secondary nodes and O(log n)
primary nodes affected by each such update, we handle each swap in O(log3 n)
time.

We handle a failure of a tournament certificate at a secondary node ξ in Tw , by
updating π∗(w, ξ) and propagating up this new closest pair. This may cause the
tournament certificates of ancestors of ξ in Tw and ancestors of w in T to change, and
this therefore takes O(log2 n) time. We handle a failure of a tournament certificate
at a primary node w similarly.

LEMMA 5.1. The data structure processes O(n2βs+2(n) log3 n) events.

PROOF. We bound the total number of events due to failures of tournament
certificates using the same technique as in Section 3. A failure of a tournament
certificate at a secondary node ξ in Tw corresponds to a breakpoint in the lower
envelope of the distance functions between components of pairs π (w, ζ), for all
descendants ζ of ξ in Tw . The complexity of this envelope is proportional to the
number of such functions times a factor of βs+2(n). Similarly, a failure of a tourna-
ment certificate at a primary node w ∈ T corresponds to a breakpoint in the lower
envelope of the distance functions between components of pairs π (u, ζ), over all
descendants u of w in T , and ζ ∈ Tu .

Let �(w, ξ) be the multiset of pairs (p, q) that are stored as π (w, ζ), for de-
scendants ζ of ξ in Tw , where each pair (p, q) is counted with multiplicity equal
to the number of maximal connected time intervals during which (p, q) is stored
as π (w, ζ), over all nodes ζ as before. Similarly, let �(w) be the multiset of pairs
(p, q) that are stored as π (u, ζ), over all descendants u of w and nodes ζ of Tu ,
where the multiplicity of a pair is defined as earlier. With this notation, the total
number of events is O(βs+2(n)) times∑

w,ξ

|�(w, ξ)| +
∑

w

|�(w)| . (5)

Before the motion starts, the sum (5) is O(n log2 n). Each swap may increase this
sum by O(log3 n). This is because each swap may change O(log2 n) pairs π (w, ζ),
and each such new pair contributes a new element to O(log n) sets �(w, ξ) and

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:18 P. K. AGARWAL ET AL.

�(v), where ξ is an ancestor of ζ in Tw , and v is an ancestor of w in T . The
u-swaps also increase

∑
w,ξ |�(w, ξ)| by a total of O(n2 log2 n), due to rotations

(this bound is a consequence of the fact that the secondary trees are maintained as
weight-balanced trees). Summing up, we obtain that the total number of events due
to failures of tournament certificates is bounded by O(n2βs+2(n) log3 n).

It is easy to see that our modified data structure requires O(n log n) space. Fur-
thermore, each point participates in at most O(log2 n) tournament certificates, so
the data structure is local.

5.2. DYNAMIZATION. We next turn to the implementation of insertions and
deletions of points. For this, we make the primary tree a weight-balanced tree,
too. (We recall that this is the way in which standard dynamization of range trees
is implemented [Mehlhorn 1984].) When performing a rotation around an edge
(ξ, η) in the primary tree, we have to rebuild the secondary trees Tξ and Tη because
a complete subtree moves from one tree to the other; see Figure 3. The weight-
balanced representation allows us to amortize the work associated with such massive
rebuildings. We also maintain the secondary trees as weight-balanced binary search
trees, as before. Here rotations are less expensive since they only entail pointer
changes and do not require any massive rebuilding, but we still need the weight-
balanced mechanism to bound the total number of events. In addition to making
the range trees dynamic, we also maintain a dynamic search tree over the list Lx .
Notice that we already have such a search tree over Lu , which is our primary tree
T , and we have a search tree over Lv , which is the secondary tree Tr associated
with the root r of the primary tree.

To perform an insertion of a point p, we first insert it into the primary tree T , and
then into all secondary trees on the search path from the root r of T to the primary
leaf containing p. While performing these insertions, we update the tournament
certificates of all nodes along the insertion paths in these trees. We also insert p
into Lu , Lv , and Lx , using the search trees over these lists to locate the places
where p should be inserted. We create new order certificates, associated with p
and its neighbors in the lists Lu , Lv , and Lx , and delete the corresponding previous
certificates.

For a rotation around an edge (ξ, η), where ξ = p(η), in the primary tree, we
rebuild Tξ and Tη as follows. Using the notation in Figure 3, the subtrees A, B, and
C themselves are not affected by the rotation, so no update of the corresponding
secondary trees is required. Updates are required in the new secondary trees Tξ and
Tη. For Tξ , we merge the v-sorted lists of the elements of B and C into a common
sorted list, and then (re)construct Tξ over this list. Both steps take O(|B| + |C |)
time. For Tη, we simply use the old secondary tree Tξ as the new Tη. Hence, the
properties of weight-balanced trees imply that the total cost of these rebuildings,
during a sequence of m updates, is O(m log n).

It follows that the overall (amortized) cost of an insertion is dominated by the
update of O(log2 n) tournament certificates, which takes O(log3 n) time (using
the optimization described previously). Deletions are performed in an analogous
manner.

The proof of the following theorem is analogous to the proof of Theorem 4.2.

THEOREM 5.2. The dynamic KDS for the closest pair, as described earlier, has
the following properties.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:19

(a) The number of events during a sequence of m insertions and deletions into a
KDS of size at most n at any time (assuming m ≥ n), is O(mnβs+2(n) log3 n).
This makes the KDS efficient.

(b) The time it takes to process an event is O(log3 n) (thus the KDS is responsive).
(c) Each point participates in a constant number of order certificates, and in

O(log2 n) tournament certificates (thus the KDS is local).
(d) The KDS requires O(n log n) space (and is thus compact).
(e) An insertion or a deletion takes O(log3 n) amortized time.

PROOF. The proof of (b), (c), (d), and (e) follows directly from the construction
of the data structure and from the analysis in Section 4, combined with the analysis
given before. It remains to bound the total number of events, which we do as follows.

The number of failure events of order certificates in the lists Lu , Lv , Lx is O(mn),
because any newly inserted element can swap its position, in any of the three orders,
with at most n older elements: those present at the time of insertion.

We bound the number of tournament events, as in Lemma 5.1, by charging
them to breakpoints in lower envelopes and by bounding the sum in Eq. (5). Each
insertion, deletion, or swap increases this sum by O(log3 n), including the amor-
tized contribution of rotations, and therefore the number of tournament events is
O(mnβs+2(n) log3 n).

To complete the proof of (a), we argue that the structure is efficient by showing
that in this dynamic and kinetic setup, the number of closest pairs can be �(mn).
A simple construction that shows this involves n − 1 stationary points lying on
the x-axis, and m additional points, where each new point p is inserted into the
x-axis to the left of all stationary points, moves to the right and crosses each of the
stationary points, and is then deleted. Hence, the data structure is efficient.

6. KDS for Nearest Neighbors

This structure is an enhancement of the structure presented earlier for closest pairs.
This enhancement is somewhat involved, though, in the following sense.

(a) It requires adding certain substructures to the nodes of the range tree given in
Section 4.

(b) In order to get a sharp bound on the number of events, we need to implement
the primary and secondary trees as treaps [Seidel and Aragon 1996], so our
algorithm becomes randomized and its performance bounds hold in expectation.

(c) The standard implementation of treaps stores an item at each node, rather
than just at the leaves [Seidel and Aragon 1996]. This requires some technical
changes in the way in which the range-tree data structure and its auxiliary data
are maintained.

We maintain at each secondary node ξ the points blue(w, ξ) and red(w, ξ) (whose
definition slightly changes because of the treap structure; see the following). As in
Section 4, the structure of the primary or a secondary tree changes only by u-swaps
and v-swaps, and the points blue(w, ξ) and red(w, ξ) may also change as a result
of an x-swap. The winner points β(w, ξ) and �(w, ξ), however, may change even
when no u-swap, v-swap, or x-swap occurs.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:20 P. K. AGARWAL ET AL.

To keep track of the points β(w, ξ) and �(w, ξ), for every primary node w and
secondary node ξ , we store at each secondary node ξ two kinetic and dynamic
tournaments, as described in Section 3. Let a = red(w, ξ) and b = blue(w, ξ) at
some time t . The first tournament at ξ , denoted by B(w, ξ), contains the distances
ϕp,a , defined in (4), for each point p ∈ Blue(w, ξ). The second tournament at ξ ,
denoted by R(w, ξ), contains the distances ϕq,b for each point q ∈ Red(w, ξ). Thus
β(w, ξ) and �(w, ξ) are the respective winners of the kinetic tournaments B(w, ξ)
and R(w, ξ).

In addition, for each point p ∈ P , we maintain another small kinetic and dynamic
tournament, denoted K(p), which contains the distances ϕp,q for each point q ∈
C(p), where C(p) is the set of candidate points defined in (3). The basic properties
of the range tree T and of nearest neighbors in planar point sets (established in
Section 2) imply that the nearest neighbor of p is the winner of K(p) for one of the
range trees corresponding to one of the three pairs of wedges.

The new tournaments B(w, ξ) and R(w, ξ) at secondary nodes may undergo mas-
sive changes during u-swaps, v-swaps, and x-swaps. Each time red(w, ξ) changes,
we have to rebuild B(w, ξ) from scratch, since all trajectories of the items in
B(w, ξ) change algebraically. Similarly, when blue(w, ξ) changes, we have to re-
build R(w, ξ) from scratch. In addition, a rotation around an edge (η, ξ) in Tw also
requires rebuilding of B(w, ξ), R(w, ξ), B(w, η), and R(w, η), because the sets
of points in the left and right subtrees of ξ and of η change in a massive manner
(and also because red(w, ξ), blue(w, ξ), red(w, η), or blue(w, η) may change). To
control the potential increase in cost of performing swaps due to rebuildings of the
new tournaments, we use the scheme of Alexandron et al. [2007], which stores T
and each of its secondary trees as treaps (also known as randomized search trees)
[Seidel and Aragon 1996].

6.1. TREAPS AND THE DATA STRUCTURE. Here is a brief review of treaps and
their basic properties; more properties will be established later as ingredients for
our analysis. A treap is a randomized search tree with optimal expected behavior.
We associate with each node z in the treap a rank, denoted by rank(z), and a
priority, denoted by priority(z).7 The i th node encountered when we traverse the
tree in symmetric order (or in-order, obtained by recursively traversing the left
child, then the node itself, and then the right child) has rank i . The node of rank
i stores the i th smallest item (the item of rank i) among the items stored in the
treap. The priorities are random numbers drawn independently and uniformly at
random from an appropriate continuous distribution, so that with probability 1, the
set of priorities defines a random permutation of the nodes. The treap is a heap with
respect to the priorities. In other words, the priority of a node is larger than the
priorities of its children. Note that once we draw the priorities, the resulting treap
is uniquely determined. The analysis of Seidel and Aragon [1996] shows that the
expected depth of any node in a treap (over the draws of the priorities) is O(log n).

To insert a new item x into a treap, we create a new leaf
 in a position determined
by the rank of x . Then we draw a random priority for
 from the given distribution,
and rotate
 up the tree as long as its priority is larger than the priority of its parent.
The implementation of a delete operation is similar: Let x be the item to be deleted

7 Note that priorities are associated with the nodes of the tree, rather than with the items that will
reside at these nodes.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:21

FIG. 6. Points of P(w, ξ), p = μ(w), q = μ(w, ξ); filled (respectively, hollow) circles denote
the blue (red) points of P(w, ξ). Points in Red(w, ξ) and Blue(w, ξ) are denoted by double circles:
(a) p �= q. Here q = blue(w, ξ), b = red(w, ξ), q = β(w, ξ), and a = �(w, ξ); (b) p = q.
�(w, ξ) = a, and β(w, ξ) = b.

and let v be the node containing x . We keep rotating the edge connecting v to
its child of larger priority until v becomes a leaf, and then remove v . Note that an
insertion or deletion changes the rank of all subsequent nodes by 1, which, however,
has no effect on the algorithm because ranks are maintained only implicitly.

We maintain the primary tree T of our two-dimensional range tree as a treap.
This requires a few minor and technical modifications of the structure, caused by
the fact that now items are also stored at internal nodes of the tree. Specifically,
the node z ∈ T of rank k stores the point μ(z), which is the point with the kth
smallest u-coordinate. We refer to the priorities of nodes in this tree as u-priorities.
We now denote by P(z) the set of points stored at the nodes of the subtree rooted
at z ∈ T , including μ(z) itself. Each secondary tree is maintained as a treap in a
similar manner. We use a different independent set of priorities for each secondary
tree, which we refer to as the v-priorities. A node ξ of rank k in a secondary tree Tw
stores the point μ(w, ξ) of the kth smallest v-coordinate among all points of P(w).
We denote by P(w, ξ) the set of points stored at the nodes of the subtree of Tw
rooted at ξ , including μ(w, ξ) itself. Since the expected depth of a treap is O(log n),
we obtain that any point belongs to an expected number of O(log n) subtrees of the
primary tree, and to an expected number of O(log2 n) subtrees of secondary trees.

Let w be a primary node. Since we now store points also at internal nodes, we
have to redefine which points of Tw are red and which are blue so as to guarantee
that Lemma 2.3 still holds, thereby ensuring the correctness of the data structure.
As before, each point in P(
(w)) is blue in Tw , and each point in P(r (w)) is red in
Tw . The point μ(w), stored at w , is considered to be both red and blue.

Let ξ be a node in Tw . If μ(w, ξ) �= μ(w), then we redefine Red(w, ξ)
(respectively, Blue(w, ξ)) to be the set of red (respectively, blue) points in P(w, r (ξ))
(respectively, P(w,
(ξ))), together with μ(w, ξ) if it is red (respectively, blue).
As earlier, red(w, ξ) is the point of the minimum x-coordinate in Red(w, ξ), and
blue(w, ξ) is the point of the maximum x-coordinate in Blue(w, ξ).

Let p = μ(w) and q = μ(w, ξ). We say that node ξ is special if p = q. Let
αξ be the intersection point of the lines u = u p and v = vq . Note that if ξ is
special, then αξ = p = q. The set Red(w, ξ) (respectively, Blue(w, ξ)) consists
of the points in P(w, ξ) \ {αξ } contained in W +(αξ) (respectively, W −(αξ)), and
red(w, ξ) (respectively, blue(w, ξ)) is the point of P(w, ξ)\{αξ } with the minimum
(respectively, maximum) x-coordinate in this quadrant. See Figure 6. We now define

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:22 P. K. AGARWAL ET AL.

FIG. 7. (a) μ(w) = μ(w, ξ) = a �= p, q; (b) μ(w) = μ(w, ξ) = p, q = red(w, ξ); (c) μ(w) =
μ(w, ξ) = q , p = β(w, ξ); (d) μ(w) �= μ(w, ξ).

the points �(w, ξ), β(w, ξ), and the candidate nearest neighbors generated at ξ .
There are two cases.

Case A. ξ is not special, that is, p �= q. We define �(w, ξ) to be the point
closest to blue(w, ξ) in Red(w, ξ), and β(w, ξ) to be the point closest to red(w, ξ)
in Blue(w, ξ). We maintain two tournaments at ξ : a tournament R(w, ξ) on the
distances ϕa,b, over a ∈ Red(w, ξ), where b = blue(w, ξ), and another tourna-
ment B(w, ξ) on the distances ϕa,b, over a ∈ Blue(w, ξ), where b = red(w, ξ).
Thus �(w, ξ) (respectively, β(w, ξ)) is the winner of the tournament R(w, ξ)
(respectively, B(w, ξ)). We add the point �(w, ξ) to C(blue(w, ξ)) and β(w, ξ)
to C(red(w, ξ)).

Case B. ξ is special, that is, p = q. We define �(w, ξ) to be the point clos-
est to p = q = μ(w, ξ) in Red(w, ξ), and β(w, ξ) to be the point closest to
μ(w, ξ) in Blue(w, ξ). We maintain two tournaments at ξ : a tournament R(w, ξ)
on the distances ϕp,a , over a ∈ Red(w, ξ), and another tournament B(w, ξ) on
the distances ϕp,b, over b ∈ Blue(w, ξ). Thus, as before, �(w, ξ) (respectively,
β(w, ξ)) is the winner of the tournament R(w, ξ) (respectively, B(w, ξ)). We add
the points �(w, ξ), β(w, ξ) to C(μ(w, ξ)). We also add μ(w, ξ) to C(red(w, ξ)) and
C(blue(w, ξ)).

The following lemma proves the correctness of our data structure.

LEMMA 6.1. If p is the nearest neighbor of q and q ∈ W +(p) or q ∈ W −(p),
then p ∈ C(q).

PROOF. Suppose without loss of generality that q ∈ W +(p); the other case is
symmetric. Let w be the lowest common ancestor of the nodes storing p and q in
T . Then p, q ∈ P(w) and p (respectively, q) is blue (respectively, red) in Tw ; if p
(or q) is μ(w), then it has both colors. Let ξ be the lowest common ancestor of the
nodes storing p and q in Tw .

First, we claim that if μ(w) = μ(w, ξ), then this point is either p or q. Indeed,
suppose μ(w) = μ(w, ξ) = a �= p, q; see Figure 7(a). Then p is a blue point in
P(w,
(ξ)) and q is a red point in P(w, r (ξ)), thereby implying that q ∈ W +(a)
and p ∈ W −(a). Consequently, a ∈ W +(p) and xa < xq . Hence, by Lemma 2.1,
p cannot be the nearest neighbor of q, a contradiction which establishes the claim.
The proof continues by considering the following three cases.

Case A. μ(w) = μ(w, ξ) = p. In this case, Red(w, ξ) is the set of red points
in P(w, r (ξ)). Since q ∈ W +(p), q ∈ Red(w, ξ). Moreover, Red(w, ξ) ⊂ W +(p),
therefore by Lemma 2.1, q = red(w, ξ). Since the data structure adds μ(w, ξ) to
C(red(w, ξ)) if ξ is special, p ∈ C(q). See Figure 7(b).

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:23

Case B. μ(w) = μ(w, ξ) = q. In this case, Blue(w, ξ) is the set of blue points in
P(w,
(ξ)). Since p ∈ W −(q), p ∈ Blue(w, ξ). Moreover, p = β(w, ξ) because p
is the nearest neighbor of q = μ(w, ξ) and thus the winner of the tournament built
on the points in Blue(w, ξ). Since the data structure adds β(w, ξ) to C(μ(w, ξ)) if
ξ is special, p ∈ C(q). See Figure 7(c).

Case C. μ(w) �= μ(w, ξ). Let a = μ(w), b = μ(w, ξ), and αξ be the intersection
point of the line u = ua and v = vb. Then p ∈ W −(αξ) and q ∈ W +(αξ),
thereby implying that p ∈ Blue(w, ξ) and q ∈ Red(w, ξ). Moreover Red(w, ξ) ⊂
W +(αξ) ⊂ W +(p), therefore, by Lemma 2.1, q = red(w, ξ) and p, the nearest
neighbor of q, is β(w, ξ). We can thus conclude that p ∈ C(q). See Figure 7(d).

6.2. KINETIC MAINTENANCE OF THE STRUCTURE. We now proceed to describe
the details of kinetic maintenance of the modified tree structure. Similar to the
maintenance of the closest-pair KDS in Section 4, the critical events that affect
the structure of T and its extreme blue and red points (i.e., the points blue(w, ξ)
and red(w, ξ)), for w ∈ T and ξ ∈ Tw) are the u-swaps, v-swaps, and x-swaps,
defined as earlier. The tournaments maintained at the secondary nodes, as well
as the tournaments K(p), may undergo discrete changes in between swaps. As in
Section 4, to keep track of these swaps we maintain three auxiliary sorted lists Lu ,
Lv , and Lx , and a collection of O(n) certificates that specify the respective sorted
orders of the points by their u-coordinates, v-coordinates, and x-coordinates.

Handling u-swaps. Let p, q ∈ P be the pair of points that switch their positions
in the u-order, so that p precedes q before the swap. This causes them to swap their
(consecutive) positions in the primary tree T and in the list Lu . Since now T stores
a point at each node, one of these points is an ancestor of the other. Assume that
q = μ(w) and that p is stored at the rightmost leaf of T
(w). The case where p is an
ancestor of q is handled in a fully symmetric manner. We swap p and q by making
μ(w) := p and by storing q at the leaf that used to store p. This does not change
the primary tree structure, but requires the following updates of secondary treaps.

When we swap p and q, we delete p from the secondary tree Tz of every node
z on the path from
(w) to the leaf that contained p before the swap, and add q to
each such tree. In the treap Tw , q was both blue and red, and p was blue before
the swap. After the swap, q is blue and p is both blue and red. This involves no
structural changes in Tw , but it does affect the sets Red(w, ξ) and Blue(w, ξ), as
well as the tournaments B(w, ξ) and R(w, ξ), at nodes ξ along the paths from the
root of Tw to the nodes that store p and q. Thus, this also affects the corresponding
extreme points blue(w, ξ) and red(w, ξ) and the winners β(w, ξ) and �(w, ξ); see
Figure 8(a). Special care is needed at the nodes of Tw that store p and q: One of
them stops being a special node and the other becomes special; see Section 6.1 for
details.

We insert q to a secondary treap Tz , where z is a node on the rightmost path
of the left subtree of w , using the insertion algorithm for a treap. Recall that the
insertion puts q in a new node, say η, which is initially a leaf. It then propagates
η upwards, using rotations, until priority(η) < priority(p(η)); see Figure 8(b).
When we perform a rotation around an interim edge (η, ξ = p(η)) we recompute
blue(z, ξ), and red(z, ξ), and we rebuild the tournaments B(z, ξ) and R(z, ξ). Once
the final position of η is fixed, we update the tournaments red(z, ζ), blue(z, ζ), as
well as R(z, ζ), B(z, ζ) at the ancestors ζ of η (after the rotations: hollow nodes

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:24 P. K. AGARWAL ET AL.

FIG. 8. Updating T at a u-swap. (a) Swapping p and q in the primary treap; (b) inserting q into a
secondary treap Tz , a new leaf η is created which stores q; the filled (respectively, hollow) nodes have
lower (respectively, higher) priority than that of η; the node η is rotated upwards until it becomes a
child of e.

in Figure 8(b)), as follows. Assume that q is blue after the swap (as in the case
considered in Figure 8). For each ancestor node ζ of η such that η lies, say, in the
left subtree of ζ we do the following: If the x-coordinate of q is larger than that
of blue(z, ζ), we set blue(z, ζ) to q, and if ζ is not special we rebuild R(z, ζ) on
the distances ϕq,a , for a ∈ Red(z, ζ). Furthermore, we set b := red(z, ζ) if ζ is not
special, and b := μ(z, ζ) if ζ is special, and we add ϕb,q to B(z, ζ). The treatment
of the case in which q is red is analogous. We delete a point p from a secondary
treap Tz in a fully symmetric manner.

For each primary node z and secondary node ξ such that red(z, ξ), blue(z, ξ),
�(w, ξ), or β(w, ξ) changes, we also make the derived modification to the tourna-
ments K(p) for the affected points p. Finally, we swap p and q in Lu , and update
the O(1)-order certificates associated with p, q, and their neighbors in Lu .

Handling v-swaps. As in the structure of Section 4, when two points p, q ∈ P
switch their positions in the v-order, we have to swap them in any secondary tree
that contains them both, and in Lv . Specifically, let z be the lowest common ancestor
of p and q in the primary tree T . For any ancestor y of z (including z), we swap
p and q in Ty . Fix one such secondary treap Ty , and notice that p and q are stored
at consecutive nodes (in symmetric order) of Ty . Thus, one of them is an extreme
node in a subtree rooted at a child of the other, as in Figure 8(a). Let η be the lowest
common ancestor of p and q in Ty . Assume that before the swap η stored q, and p
was stored at the rightmost leaf of the left subtree of η. (The case when η holds p
and q is stored at the leftmost leaf of the right subtree of η is symmetric.) We swap
p and q, and update blue(y, ξ), red(y, ξ), B(y, ξ), and R(y, ξ), for each node ξ on
the path from the leaf containing p to η. We perform an insertion and/or a deletion
to/from B(y, ξ) in the case where red(y, ξ) does not change and either p or q is
blue. If red(y, ξ) does change and ξ is not special, we rebuild B(y, ξ). Symmetric
updates are applied to R(y, ξ).

Note that either p or q is μ(z), and therefore in Tz either η or the leaf containing p
is special. If η is special before the swap then it stops being special and the leaf that
contained p and now contains q becomes special, and vice versa. We recompute
blue(y, ξ), red(y, ξ), B(y, ξ), and R(y, ξ) for these nodes that change their status
from special to nonspecial or vice versa.

For each primary node z and secondary node ξ such that red(z, ξ), blue(z, ξ),
�(w, ξ), or β(w, ξ) changes, we also make the derived modification to the

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:25

tournaments K(p) for the affected points p. Finally, we swap p and q in Lv ,
and update the O(1)-order certificates associated with p and q and their neighbors
in Lv .

Handling x-swaps. Let p and q be a pair of points that switch their positions in
the x-order, with p to the left of q before the event takes place. This event does not
cause any structural changes in the primary treap, nor in any secondary treap, but it
may change red(z, ξ) in any node ξ of any secondary treap Tz such that the subtree
of Tz rooted at ξ contains both p and q.

Let z be the lowest common ancestor of p and q in the primary treap. We need to
process p and q at each ancestor of z, including z itself. Let y be a proper ancestor
of z; note that neither p nor q is stored at y. Assume that p and q are both red
in Ty , and let η be the lowest common ancestor of p and q in Ty . The subtrees of
Ty containing both p and q are the subtrees rooted at ancestors of η (including η
itself). At any such ancestor ζ , if p = red(y, ζ) then we change red(y, ζ) to be q
and rebuild B(y, ζ). Finally, we swap p and q in Lx , and update the O(1)-order
certificates associated with p, q, and their neighbors in Lx . The case where both
p and q are blue in Ty is analogous. If one is blue and the other is red in Ty (i.e.,
y = z), then we do nothing; this also covers the case when one of p, q is stored as
μ(z).

6.3. ANALYSIS.

.

Some properties of treaps. Before analyzing the expected cost of the various swaps,
we provide two related lemmas on the expected size of various substructures in
a treap. The proofs are similar to those given in the original paper of Seidel and
Aragon [1996], but we present them in detail for the sake of completeness.

LEMMA 6.2. Let w be the node of rank k in a treap, and let W = 〈w1, . . . , wl〉
be the rightmost path starting from the left child w1 of w and ending at the leaf wl .
Then, for any nonnegative function f ,

E

(l∑
s=1

f (size(ws))

)
≤ f (k − 1)

k
+ 2

k−2∑
m=1

f (m)

m2
,

where size(w) is the size of the subtree rooted at w.

PROOF. For each i , let w(i) denote the node of rank i in the treap. For each pair
of indices i, j such that i ≤ j < k, consider the event Xi, j , where w(j) is the root
of a subtree in T whose leftmost leaf is w(i) and whose rightmost leaf is w(k − 1).
Clearly, in this case this subtree consists of all the vertices w(l), for i ≤ l ≤ k − 1.
Note that when Xi, j takes place, w(j) is a node on the path W. Conversely, if w(j)
is a node on W, then there exists an i ≤ j such that Xi, j occurs; moreover, in any
random instance of T , this i is unique. We then have

E

(l∑
s=1

f (size(ws))

)
≤

k−1∑
i=1

k−1∑
j=i

Pr(Xi, j) · f (k − i) . (6)

For i > 1, Xi, j occurs if and only if among the nodes w(s), i −1 ≤ s ≤ k, w(i −1)
and w(k) have the two largest priorities, in either order, and w(j) has the third

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:26 P. K. AGARWAL ET AL.

largest priority. Hence,

Pr[Xi, j] = 2(k − i − 1)!

(k − i + 2)!
≤ 2

(k − i)3
.

The event X1, j occurs if among the nodes w(l), 1 ≤ l ≤ k, w(k) has the largest
priority and w(j) has the second largest priority. Hence,

Pr[X1, j] = 1

k(k − 1)
.

We can thus rewrite Eq. (6) as

E

(l∑
s=1

f (size(ws))

)
≤

k−1∑
j=1

f (k − 1)

k(k − 1)
+

k−1∑
i=2

k−1∑
j=i

2 f (k − i)

(k − i)3

=
k−1∑
i=2

2 f (k − i)

(k − i)2
+ f (k − 1)

k
,

which is exactly the inequality asserted in the lemma.

In particular, for f (s) = s, Lemma 6.2 yields

E

(l∑
j=1

size(w j)

)
= O(log n).

LEMMA 6.3. Let w be the root of a treap on n points, and let W = 〈w =
w1, . . . , wl〉 denote the path from w to a node wl of rank k. Then, for any non-
negative function f ,

E

(l∑
s=1

f (size(ws))

)
= O

(
f (n) +

n∑
m=1

f (m)

m + 1

)
,

where size(u) is, as earlier, the size of the subtree rooted at node u.

PROOF. Let w(i) denote the node of rank i in the treap, so, in particular, wl =
w(k). For each triple of indices i, m, j such that i ≤ m ≤ j and i ≤ k ≤ j , consider
the event Xi,m, j , in which w(m) is the root of a subtree in T whose leftmost node is
w(i) and whose rightmost node is w(j). Clearly, in this case this subtree consists
of all the vertices w(s), for i ≤ s ≤ j , and in particular it contains w(k). Note that
when Xi,m, j occurs, w(m) is a node on the path W. Conversely, if w(m) is a node
on W, then there exist indices i ≤ m ≤ j , where we also have i ≤ k ≤ j , such that
Xi,m, j occurs. Moreover, in any random instance of T , these i and j are unique. We
then have

E

(l∑
s=1

f (size(wq))

)
≤

k∑
i=1

n∑
j=k

j∑
m=i

Pr(Xi,m, j) · f (j − i + 1) . (7)

We bound the righthand side by dividing the summation into four subsums.
Case A. i > 1 and j < n. In this case Xi,m, j occurs if and only if among the

nodes w(s), i −1 ≤ s ≤ j +1, w(i −1) and w(j +1) have the two largest priorities,

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:27

in either order, and w(m) has the third largest priority. Hence,

Pr[Xi,m, j] = 2(j − i)!

(j − i + 3)!
≤ 2

(j − i + 1)(j − i + 2)2
.

Therefore

k∑
i=2

n−1∑
j=k

j∑
m=i

Pr(Xi,m, j) · f (j − i + 1) ≤
k∑

i=2

n−1∑
j=k

j∑
m=i

2 f (j − i + 1)

(j − i + 1)(j − i + 2)2

=
k∑

i=2

n−1∑
j=k

2 f (j − i + 1)

(j − i + 2)2
≤

n∑
i=1

2 f (i)

i + 1
.

(8)

Case B. i = 1 and j < n. The event X1,m, j , for j < n, occurs if among the nodes
w(s), 1 ≤ s ≤ j + 1, w(j + 1) has the largest priority and w(m) has the second
largest priority. Hence,

Pr[X1,m, j] = 1

j(j + 1)
,

thereby implying that

n−1∑
j=k

j∑
m=1

Pr(X1,m, j) · f (j) ≤
n−1∑
j=k

j∑
m=1

f (j)

j(j + 1)
≤

n∑
j=1

f (j)

j + 1
. (9)

Case C. i > 1 and j = n. As in the previous case, Xi,m,n , for i > 1, occurs if
among the nodes w(s), i − 1 ≤ s ≤ n, w(i − 1) has the largest priority and w(m)
has the second largest priority. Therefore,

Pr[Xi,m,n] = 1

(n − i + 2)(n − i + 1)
,

and

k∑
i=2

n∑
m=i

Pr(Xi,m,n) · f (n − i + 1) ≤
k∑

i=2

n∑
m=i

f (n − i + 1)

(n − i + 2)(n − i + 1)
≤

n∑
i=1

f (i)

i + 1
.

(10)

Case D. i = 1 and j = n. Finally, X1,m,n occurs if w(m) has the highest priority
overall (this is the event where w(m) is the root), which implies that Pr[X1,m,n] =
1/n. Therefore

n∑
m=1

Pr(X1,m,n) · f (n) =
n∑

m=1

f (n)

n
= f (n). (11)

Summing Eqs. (8)–(11), we obtain

E

(l∑
s=1

f (size(ws))

)
= O

(
f (n) +

n∑
j=1

f (j)

j + 1

)
,

as asserted.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:28 P. K. AGARWAL ET AL.

We now give the analysis of the data structure. We do not consider updates to the
kinetic tournaments K(p), as it would be easy to verify that the cost of maintaining
these tournaments is dominated by the cost of maintaining the tournaments R(w, ξ)
and B(w, ξ).

The cost of a u-swap. Consider first the cost of rebuilding tournaments during
a u-swap, and assume the setup depicted in Figure 8. At each of the affected
secondary subtrees Tz (including Tw itself), the tournaments that might have to be
rebuilt originate at nodes that lie on two paths from the root to two nodes of specific
ranks. The cost of rebuilding a tournament at a node ξ is proportional to the size
of the subtree rooted at ξ . Hence, the total expected cost of rebuilding tournaments
at some secondary tree Tz is proportional to the expected sum of the sizes of the
subtrees rooted at nodes lying along the path to p before it is deleted, and along
the path to q after it is inserted. By Lemma 6.3, with f (x) = x , this expected
sum is O(|Tz|). Plugging this bound into Lemma 6.2, the overall expected cost of
rebuilding tournaments at a u-swap is O(log n).

The cost of the other steps that handle a u-swap is smaller: The cost of the actual
updating of a secondary tree Tz is only O(log |Tz|), even if the cost of peforming
a rotation around a node ξ is proportional to the size of the subtree rooted by ξ
(see Theorem 7.1). This is subsumed by the preceding bound. We thus obtain the
following lemma.

LEMMA 6.4. The expected cost of handling a u-swap is O(log n).

The cost of a v-swap. Recall that a v-swap of two points p, q requires updates
in secondary trees Tz , where z is a common ancestor of the nodes storing p and
q . In each such tree Tz , p and q are consecutive, so one is an extreme node in
a subtree rooted at a child of the other. Using Lemma 6.2, the expected cost of
updating a secondary tree Tz , which consists of swapping p and q and rebuilding
the appropriate tournaments, is O(log |Tz|). Plugging this into Lemma 6.3, with
f (x) = log x , we obtain the next lemma.

LEMMA 6.5. The expected cost of handling a v-swap is O(log2 n).

Expected cost of all x-swaps. A single x-swap may be expensive, also in expec-
tation (see the following), but we show that the total cost of all x-swaps is small
by arguing as follows. For a node ξ ∈ Tw , let �(w, ξ) be the multiset of all pairs
(a, b) of points of P , with a �= b, such that at some time t , a ∈ Red(w, ξ) and
b ∈ Blue(w, ξ). The multiplicity of each pair (a, b) in �(w, ξ) is equal to the num-
ber of maximal (connected) time intervals in which the aforesaid event occurs. Let
� = ⋃

w,ξ �(w, ξ), where the union is over all primary nodes w and secondary
nodes ξ ∈ Tw . The following lemma bounds the expected total size of tournaments
that we rebuild while handling x-swaps.

LEMMA 6.6. The expected total size of tournaments that we rebuild while per-
forming x-swaps is O(|�|βs+2(n)).

PROOF. Fix a node ξ in a secondary treap Tw . Let B denote the multiset of all
blue points that are ever stored either at the left subtree of ξ or at ξ itself. Each point
is counted with multiplicity equal to the number of times it enters this set. Similarly,
let R denote the multiset of all red points which are stored either at the right subtree
of ξ or at ξ itself, where each point is counted with multiplicity equal to the number

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:29

of times it enters this set. Associate with each point b ∈ B the function x(b(t)), and
let U = U(t) denote the upper envelope of these (partial) functions, each defined
over some connected t-interval. Since, by assumption, the x-coordinates of a fixed
pair of points can become equal at most s times, it follows [Sharir and Agarwal
1995] that the number of breakpoints of U is at most λs+2(|B|) = O(|B|βs+2(n)).
Similarly, the number of breakpoints in the upper envelope defined by any subset
B ′ ⊆ B of the functions is O(|B ′|βs+2(n)).

Each such breakpoint corresponds to an x-swap at which we rebuild R(w, ξ).
So if we sum the sizes of the tournaments R(w, ξ) measured at the times these
breakpoints occur, we get a bound on the total size of red tournaments at those
times when they are rebuilt at ξ . We can get a similar bound on the total size of
blue tournaments at the times of their rebuilding. Assume that each time such a
breakpoint occurs, we charge one unit to each point in R(w, ξ). We now bound the
maximum number of such charges.

Fix a red point a ∈ R, within a fixed maximal time interval I in which a is in R.
Let �a be the set of breakpoints of U that charge a, that is, breakpoints that occur
within I . Let B∗

a denote the multiset of those blue points whose functions are incident
to the breakpoints of �a . Clearly, the breakpoints of �a are also breakpoints of the
upper envelope of {x(b(t)) | b ∈ B∗

a }. Hence we have |�a| = O(|B∗
a |βs+2(n)).

Now the total count of tournament changes under consideration is

∑
a∈R

|�a| = O

(∑
a

|B∗
a |βs+2(n)

)
.

Since
∑

a |B∗
a | ≤ |�(w, ξ)|, we conclude that O(|�(w, ξ)|βs+2(n)) bounds the total

size of red tournaments measured at the time of their rebuilding in ξ . Summing over
all primary nodes w and secondary nodes ξ and applying the same argument to blue
tournaments, the lemma follows.

To apply Lemma 6.6, we have to bound |�|. New pairs in � are created during
the handling of u-swaps and v-swaps. Consider first a u-swap of points p and q.
There are two types of pairs that this swap creates: pairs that contain either p or
q , and pairs created by the structural changes caused by rotations while deleting q
and inserting p (or vice versa) into secondary trees. We refer to pairs of the first
(respectively, second) kind as primary (respectively, secondary) pairs. The number
of primary pairs is bounded by the expected total size of the secondary trees affected
by the swap. By Lemma 6.2, this size is bounded by O(log n).

To bound the number of new secondary pairs, we first show that each insertion
into or deletion from a secondary tree of size s creates an expected number of O(s)
new secondary pairs.

LEMMA 6.7. If a point is inserted into or deleted from a secondary tree Tw ,
then the expected increase in the value of

∑
ξ∈Tw

�(w, ξ) is O(|Tw |).
PROOF. We analyze deletions in detail; the analysis of insertions is analogous

and hence omitted. Assume that the point to be deleted from Tw resides at node ξ
of rank m. We examine the rotations that bring ξ down, and bound the expected
number of new pairs created by these rotations.

Let X = 〈χ1 =
(ξ), χ2, . . . , χg〉 denote the rightmost path from
(ξ) to a
leaf, and let Z = 〈ζ1 = r (ξ), ζ2, . . . , ζh〉 denote the leftmost path from r (ξ) to

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:30 P. K. AGARWAL ET AL.

FIG. 9. Rotating ξ down by a sequence of right rotations. D becomes part of Tχi after performing
the right rotation along the edge ξχi .

a leaf, both defined before the rotations begin; see Figure 9. Each rotation in the
deletion procedure to bring ξ down is performed along an edge on X or Z. Let
B = Blue(w, ξ) and R = Red(w, ξ). For 1 ≤ i ≤ g, let Bi = Blue(w, χi), and for
1 ≤ j ≤ h, let R j = Red(w, ζ j).

Suppose we first perform right rotations along the edges of X. As shown in
Figure 9, a right rotation around the edge between ξ and its current left child

(ξ) = χi (starting with i = 1) changes the left child of ξ to χi+1, and ξ becomes
the right child of χi . Note that Tr (ξ) remains unaffected by these rotations (see, for
example, the subtree D in Figure 9.) Since Tr (ξ) was disjoint from the right subtree
of Tχi before the rotation but becomes part of it after the rotation, new pairs are
generated in �(w, χi) by the rotation, namely, the pairs in Bi × R. The only other
pairs in � that can be generated by this rotation involve the point p = μ(w, ξ)
stored at ξ ; there are at most |Bi | such pairs; again see Figure 9. Hence, the right
rotations introduce

∑g
i=1(|Bi × R|+ |Bi |) ≤ |B|(|R|+1) new pairs to � (note that

the Bi ’s are disjoint; see Figure 9).
Similarly, if we first perform left rotations along Z (before performing any right

rotation), then the rotation around the edge (ξ, ζ j) introduces |B×R j |+|R j | pairs to
�(w, ζ j), for a total of (|B| + 1)|R| pairs. If right and left rotations are performed
in any mixed order, then each right rotation creates only a subset of the pairs it
would have created if performed before all left rotations, and the same holds for
left rotations. Therefore, regardless of the order of rotations, the total number of
new pairs is

O((|B| + 1)(|R| + 1)) = O((|P(w,
(ξ))| + 1) · (|P(w, r (ξ))| + 1));

here we are referring to the children of ξ before the rotations. It thus suffices to
bound the expected value of this quantity.

Let ξ (i) denote the node of rank i in the treap Tw , so in particular ξ = ξ (m). For
i ≤ m ≤ j , define Xi, j to be the indicator random variable of the event in which the
node ξ (m), storing m in Tw , is the lowest common ancestor of ξ (i) and ξ (j). The
expected value of (|P(w,
(ξ))|+1) · (|P(w, r (ξ))|+1), for a fixed node ξ = ξ (m),
is ∑

i≤m

∑
j≥m

E(Xi, j) .

For Xi, j to be 1, ξ (m) must have the largest priority among all nodes ξ (k), for
i ≤ k ≤ j . The probability of this event is clearly 1/(j − i + 1). Summing up over

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:31

all pairs (i, j) with i ≤ m ≤ j , we get that

∑
i≤m

∑
j≥m

E(Xi, j) =
∑
i≤m

∑
j≥m

1

j − i + 1
≤

|Tw |∑
k=0

(k + 1)
1

k + 1
= O(|Tw |).

In other words, we have shown that the expected increase in the sum
∑

ξ |�(w, ξ)|,
caused by generating new secondary pairs, is O(|Tw |).

Combining this with Lemma 6.2, we obtain that the expected number of new
secondary pairs is O(log n). Since we have O(n2) u-swaps altogether, it follows
that the total contribution of u-swaps to � is O(n2 log n) pairs.

Consider now a v-swap of points p and q. Here there are no structural changes
in any tree, and each newly created pair contains either p or q. By Lemma 6.2,
with f (x) = x , the expected total size of the affected subtrees in a secondary treap
Tu containing both p and q is O(log |Tu|). Applying Lemma 6.3 to the primary
tree, we obtain that the expected number of new pairs created by a single v-swap is
O(log2 n). In total we have O(n2) v-swaps, which contribute an expected number
of O(n2 log2 n) new pairs to �.

LEMMA 6.8. The expected cost of all x-swaps is O(n2βs+2(n) log2 n).

PROOF. Since the expected depth of a node in a treap is O(log n), it follows
that, initially, the expected number of sets �(w, ξ) in which a pair of points of
P appears is O(log2 n). So the expected initial size of � is O(n2 log2 n). By the
preceding discussion, the expected contribution to � by all u-swaps and v-swaps
is also O(n2 log2 n). Thus the expected size of � is O(n2 log2 n). Combining this
with Lemma 6.6, we obtain that the expected total size of tournaments, measured
at the time of their rebuilding, is O(n2βs+2(n) log2 n). By Theorem 3.1, the total
time to rebuild these tournaments is also O(n2βs+2(n) log2 n). This bounds the total
time spent in handling all x-swaps.

Expected cost of a single x-swap. Recall that the time spent in an x-swap of two
points p and q is proportional to the expectation of the sum, over all secondary
trees Tz that contain both p and q, of the sum of sizes of subtrees rooted at nodes
along the path leading from the root to the lowest common ancestor of p and q.
Applying Lemma 6.3, with f (s) = s, to such a secondary treap Tz , we obtain that
the expected contribution of Tz to this sum is O(|Tz|). Now, applying Lemma 6.3
again in the primary tree T , we obtain that the expected total size of all tournaments
affected by the swap is O(n).

We summarize the result of this section in the following theorem.

THEOREM 6.9. Our KDS for maintaining the nearest neighbor of each point in
a set of n moving points in the plane has the following properties.

(1) The number of u-swaps is O(n2), and handling a u-swap takes O(log n)
expected time.

(2) The number of v-swaps is O(n2), and handling a v-swap takes O(log2 n)
expected time.

(3) The number of x-swaps is O(n2), processing a single x-swap takes O(n) ex-
pected time, and processing all x-swaps takes O(n2 log2 nβs+2(n)) expected
time.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:32 P. K. AGARWAL ET AL.

(4) The number of tournament events is O(n2 log3 nβ2
s+2(n)), and the total time

required to handle them is O(n2 log4 nβ2
s+2(n)).

(5) The data structure requires O(n log2 n) expected storage.

In particular, the KDS is compact, efficient, and responsive in an amortized sense,
but in general not local.

PROOF. The proof items of (1), (2), and (3) follows from our assumption on
the motion and from Lemmas 6.4, 6.5, 6.8, and the preceding discussion.

To bound the number of tournament events, recall from the proof of (3) that
over the entire motion, all tournaments together contain O(n2 log2 nβs+2(n)) items
(where each item is counted with multiplicity equal to the number of times it
is inserted into the tournament). The bounds claimed in (4) now follow from
Theorem 3.1. The expected storage required by the structure is dominated by the
expected total size of all tournaments B(w, ξ), R(w, ξ). This is bounded by the
expected sum of the sizes of all subtrees over all secondary trees. Since the ex-
pected depth of the primary tree and each of the secondary subtrees is O(log n),
this expected sum is O(n log2 n). Thus (5) follows.

7. Dynamizing the KDS for Nearest Neighbors

Our kinetic data structure for nearest neighbors as described in Section 6 can in fact
support insertions and deletions of points. We only need to add a dynamic search
tree over the lists Lu , Lv , and Lx , as we did for the closest pair problem in Section 5.
Here, too, the primary treap T can serve as the tree associated with Lu , and the
secondary treap associated with the root of the primary treap can serve as the tree
associated with Lv .

To perform an insertion of a point p, we first insert it into the primary treap
T . For a rotation around an edge (z, w) in the primary tree (with w the former
parent of z), we rebuild Tw and Tz , as well as the tournaments that they store. This
takes O(|Tw | log n) expected time. Seidel and Aragon [1996] proved the following
lemma (which is similar to Lemma 6.2); it shows that rotations in treaps are not
that expensive in expectation.

LEMMA 7.1. Assume that a rotation around an edge (x, y = p(x)) in a treap
takes O(f (s)) time, where s is the size of the subtree rooted at y. Then the expected
time to perform an insertion or a deletion to/from the treap is

O

(
f (n)

n
+

∑
1≤s≤n

f (s)

s2

)
.

Lemma 7.1 implies that the insertion of p into the primary treap takes O(log2 n)
expected time.

Let z be the node containing p in the primary treap T . After inserting p into the
primary treap, we insert p into every secondary treap Tu , where u is an ancestor
of z in T . While inserting p into a secondary treap Tu , we also have to insert p
into a tournament at each node on the path to p in Tu . Furthermore, if p becomes
red(u, ξ) or blue(u, ξ) for some (nonspecial) node ξ ∈ Tu , then we have to rebuild
the tournament B(u, ξ) or R(u, ξ), respectively. The node η containing p in Tz is
special and we rebuild B(u, η) and R(u, η).

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:33

The expected time it takes to insert p into all secondary trees containing it is
O(log2 n). Updating tournaments, however, may be expensive. Nevertheless, this
time is bounded by the expected sum of the sizes of all secondary subtrees containing
p, which is O(n) by Lemma 6.3. We summarize with the following theorem.

THEOREM 7.2. Suppose we make m ≥ n insertions and deletions to the kinetic
and dynamic data structure for nearest neighbors described previously, such that
there are at most n points in the data structure at any fixed time. Then the following
properties hold.

(1) The number of u-swaps is O(mn) and processing a u-swap takes O(log n)
expected time.

(2) The number of v-swaps is O(mn) and processing a v-swap takes O(log2 n)
expected time.

(3) The number of x-swaps is O(mn), processing a single x swap takes O(n)
expected time, and processing all x-swaps takes O(mn log2 nβs+2(n)) expected
time.

(4) The expected number of tournament events is O(mn log3 nβ2
s+2(n)), and their

total expected cost is O(mn log4 nβ2
s+2(n)).

(5) The data structure requires O(n log2 n) space.

(6) An insertion or a deletion takes O(n) expected time.

PROOF. Arguing as in the proof of Theorem 5.2, the number of u-swaps,
v-swaps, and x-swaps is O(mn). It takes O(n) expected time to insert or delete
a point by the discussion preceding this theorem.

The rest of the proof is analogous to the proof of Theorem 6.9. The only difference
is that we have to take into account the increase in � when we insert or delete a point
p. Clearly, there are O(n) new primary pairs (containing p) in �. Secondary new
pairs are created as a result of rotations in the primary treap, which cause rebuildings
of secondary treaps. Each secondary treap Tw that is rebuilt may contribute O(|Tw |2)
new pairs to �. However, Lemma 7.1 implies that the expected total number of new
pairs is O(n), so the increase of |�| caused by insertions and deletions is O(mn)
and it therefore does not dominate the size of �.

8. Extension to Higher Dimensions

In this section, we extend the data structures discussed Sections 5 and 7 to fully
dynamic and kinetic data structures for maintaining the closest pair and all nearest
neighbors in a set P of n moving points in R

d , for any d ≥ 3. The extension is
straightforward, and is based on the following generalization of the key geometric
property as given in Lemma 2.1. The proof is essentially identical to the preceding
proof, and is thus omitted.

LEMMA 8.1. Let p be the closest point to q, and let C be a cone of opening
angle π/3, with apex at the origin, which contains q − p. Let b denote a vector in
the direction of the symmetry axis of C (pointing into C). Then

(q − p) · b = min {(w − p) · b | w ∈ P ∩ (p + C)}.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:34 P. K. AGARWAL ET AL.

We tile R
d by a constant number of convex polyhedral cones, all having the

origin o as their apex, such that each of these polyhedral cones is bounded by d
facets, and is contained in a regular cone8 of opening angle π/3 with apex o. Note
that the number of polyhedral cones grows exponentially with d. As in the planar
case, we may assume that, for each polyhedral cone W , its antipodal cone −W also
appears in the tiling. We describe the extension for closest pair, since the extension
for all nearest neighbors is similar.

Let W be one of these polyhderal cones. Without loss of generality, assume that
the symmetry axis of the π/3 cone that contains W is the positive x-axis. Clearly,
Lemma 8.1 also holds for W . In other words, if p, q is a closest pair at time t such
that q − p ∈ W , then

(q − p)x = min {(w − p)x | w ∈ P ∩ (p + W)}.
Specifically, q is the leftmost point of p +W and, symmetrically, p is the rightmost
point of q − W . As in the planar case, we say that such a pair is matched (in the
x-direction). Our strategy is thus to maintain O(1) data structures, one for each
pair W, −W of cones in the tiling. For each cone W , its data structure maintains
(a superset of) the set � of all matched pairs, and runs a kinetic and dynamic
tournament among them to keep track of the closest pair in �. The real closest pair
is the pair with the smallest distance between its points among the winners of these
O(1) tournaments. In complete analogy with the planar case, in the purely kinetic
scenario we can maintain the actual set �, whereas in the kinetic and dynamic
scenario we need to maintain a slightly larger superset �∗, which we will shortly
define.

Fix a cone W , and assume, as before, that its “symmetry axis” is the positive x-
axis. Let e(1), . . . , e(d) be vectors orthogonal to the facets of W and pointing into W .
For each point p ∈ R

d , define u(i)
p = p · e(i), for i = 1, . . . , d. Clearly, q − p ∈ W

if and only if u(i)
q > u(i)

p , for i = 1, . . . , d. We thus apply the same strategy as in the
planar case: We construct a d-dimensional range tree T , where the i th level of the
tree stores points according to their u(i)-order. At the bottom level of the structure,
each node ξ records the points with the smallest and largest x-coordinates that are
stored in the subtree rooted at ξ . By querying the structure with a point p, or, more
precisely, with the orthant u(i) > u(i)

p , for i = 1, . . . , d, we can find the leftmost
point q ∈ p+W , in time O(logd n). This allows us to construct the set � of all O(n)
matched pairs in O(n logd n) time, and to run a tournament on these pairs using
exactly the same structure as described in Section 3. (Note that this tournament
structure is independent of d.)

As in the planar case, we can alternatively use the larger set �∗ of pairs, defined
as follows. For each node ξ of the bottom level of T , we form a pair (p, q), where
p (respectively, q) is the rightmost (respectively, leftmost) point that is stored at
the left (respectively, right) subtree of each of the nodes ξ (1), ξ (2), . . . , ξ (d) = ξ
in the d levels of the structure, whose respective trees contain ξ . As in the planar
case, it is easy to see that � ⊆ �∗. The size of �∗ is O(n logd−1 n), and it can
initially be constructed in time O(n logd−1 n) during the construction of T in a
straightforward bottom-up manner. (Thus, in the static and stationary case, we

8 In other words, a cone of the form {x | � (x, u) ≤ α}, for some vector u and angle α.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:35

obtain an algorithm for the closest pair that runs in time O(n logd−1 n); however,
there are faster algorithms for this scenario, such as the one of Vaidya [1989].) To
compute and maintain �∗, we need to store more refined information in the nodes
of the bottom level of T , which extends in an obvious manner the blue/red pointers
maintained in the two-dimensional tree explained in Section 4.

Each of the sets � and �∗ remains unchanged, as long as the orders of the
points of P in each of the coordinates x, u(1), . . . , u(d) remain unchanged. Hence,
the critical events that the range tree T has to keep track of are the O(n2) swaps of
consecutive points in any one of these orders. In addition, the tournament structure
maintains its own set of critical events, exactly as in the planar case.

Consider first the purely kinetic scenario (i.e., no insertions or deletions). Here
we maintain only the set �. When a swap between two points p, q takes place, we
update T in an analogous manner to that described in Section 4. To make the updates
efficient, we maintain each subtree of T in each of the levels 2, . . . , d as a dynamic
weight-balanced B B(α) tree. Note that rebalancing rotations may require that the
relevant subtrees be completely rebuilt in the deeper levels. Using the properties
of B B(α) trees, an update of T takes O(logd n) amortized time. In the kinetic
and dynamic scenario, the first level of T is also maintained as a weight-balanced
tree.

In the purely kinetic scenario, we query T after the update with p and q, and find
the O(1) new pairs of � that the swap has generated, as well as the O(1) old pairs
that have to be deleted. We then update the tournament structure accordingly. The
cost of handling the tournament structure is negligible in this case. We summarize
the performance of the structure in the following theorem.

THEOREM 8.2. In the purely kinetic scenario, the KDS for the closest pair in
R

d described earlier has the following properties.

(1) The number of events that it processes is O(n2βs+2(n) log n) (thus the KDS is
efficient).

(2) The (amortized) time it takes to process an event is O(logd n) (thus the KDS is
responsive, in an amortized sense).

(3) At any time, each point p participates in a constant number of certificates of
types (i), (ii), and (iii), and the pairs that p belongs to participate in O(log n)
certificates of Q (thus the KDS is local).

(4) The structure requires O(n logd−1 n) space (and is thus compact).

In the kinetic and dynamic scenario, we need to maintain the larger set �∗,
for which we need to maintain the refined information at the bottom-level nodes
of T . Here each swap generates an amortized number of O(logd n) updates of
�∗, which are then fed into the tournament structure. As in the planar case, naive
implementation using an external tournament will result in O(logd+1 n) certificates
changing, which will then require O(logd+2 n) time to process (largely consumed
by updating the event queue). However, if we embed the tournament into the range
tree, we can reduce the (still amortized) number of certificates changing by a swap
to O(logd n), and their processing cost to O(logd+1 n). The total number of internal
critical events that the tournament keeps track of is O(mnβs+2(n) logd+1 n), by
arguments analogous to the ones given in Section 5. Summarizing, we have the
following theorem.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

4:36 P. K. AGARWAL ET AL.

THEOREM 8.3. The dynamic KDS for the closest pair in R
d , as described before,

has the following properties.

(1) The number of events during a sequence of m insertions and deletions into a
KDS of size at most n at any time (assuming m ≥ n) is O(mnβs+2(n) logd+1 n).
This makes the KDS efficient.

(2) The amortized time it takes to process an event is O(logd+1 n) (thus the KDS
is responsive).

(3) Each point participates in O(logd n) certificates (thus the KDS is local).
(4) The KDS requires O(n logd−1 n) space (and is thus compact).
(5) An insertion or a deletion takes O(logd+1 n) amortized time.

Finally, we consider the extension to higher dimensions of our data structure for
all nearest neighbors. For this we need to construct a d-dimensional dynamic range
tree using treaps. The analysis in Sections 6 and 7 extends to higher dimensions
in a straightforward (albeit tedious) manner. Omitting all further details, we obtain
the following extension of Theorem 7.2.

THEOREM 8.4. Let P be a set of moving points in R
d to which we also make

m ≥ n insertions and deletions of points, so that there are at most n points in the set
at any fixed time. We can then construct a KDS that maintains all nearest neighbors
in P, which also supports these insertions and deletions and which satisfies the
following properties.

(1) The number of e(i)-swaps, for 1 ≤ i ≤ d, is O(mn) and processing an e(i)-swap
takes O(logd n) expected time.

(2) The number of x-swaps is O(mn), processing a single x-swap takes O(n)
expected time, and processing all x-swaps takes O(mnβs+2(n) logd n) expected
time.

(3) The expected number of tournament events is O(mnβ2
s+2(n) logd+1 n), and their

total expected cost is O(mnβ2
s+2(n) logd+2 n).

(4) The data structure requires O(n logd n) space.
(5) An insertion or a deletion takes O(n) expected time.

ACKNOWLEDGMENT. We thank D. Feldman for pointing out that our technique
works in any dimension.

REFERENCES

AGARWAL, P. K., ARGE, L., AND ERICKSON, J. 2003. Indexing moving points. J. Comput. Syst. Sci. 66,
207–243.

AGARWAL, P. K., BASCH, J., DE BERG, M., GUIBAS, L., AND HERSHBERGER, J. 2000a. Lower bounds for
kinetic planar subdivisions. Discrete Comput. Geom. 24, 721–733.

AGARWAL, P. K., DE BERG, M., GAO, J., GUIBAS, L., AND HAR-PELED, S. 2005. Staying in the middle:
Exact and approximate medians in R

1 and R
2 for moving points. In Proceedings of the 16th Annual

Canadian Conference on Computational Geometry (CCCG), 43–46.
AGARWAL, P. K., ERICKSON, J., AND GUIBAS, L. 1998. Kinetic binary space partitions for intersecting

segments and disjoint triangles. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 107–116.

AGARWAL, P. K., GAO, J., AND GUIBAS, L. 2002. Kinetic medians and kd-trees. In Proceedings of the
10th European Symposium on Algorithms (ESA), 5–16.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

P1: ILT

ACMB079A-04 Journal of the ACM November 6, 2008 20:35

Kinetic Closest Pair and Nearest Neighbors 4:37

AGARWAL, P. K., GUIBAS, L., HERSHBERGER, J., AND VEACH, E. 2001. Maintaining the extent of a
moving point set. Discrete Comput. Geom. 26, 353–374.

AGARWAL, P. K., GUIBAS, L., MURALI, T. M., AND VITTER, J. S. 2000b. Cylindrical static and kinetic
binary space partitions. Comput. Geom. Theory Appl. 16, 103–127.

ALEXANDRON, G., KAPLAN, H., AND SHARIR, M. 2007. Kinetic and dynamic data structures for convex
hulls and upper envelopes. Comput. Geom. Theory Appl. 36, 144–158.

BASCH, J., ERICKSON, J., GUIBAS, L., HERSHBERGER, J., AND ZHANG, L. 2004. Kinetic collision detection
between two simple polygons. Comput. Geom. Theory Appl. 27, 211–235.

BASCH, J., GUIBAS, L. J., AND HERSHBERGER, J. 1999. Data structures for mobile data. J. Algor. 31,
1–28.

BENTLEY, J., AND SHAMOS, M. 1976. Divide-and-Conquer in higher-dimensional space. In Proceedings
of the 8th Annual ACM Symposium on Theory of Computing (STOC), 220–230.

BESPAMYATNIKH, S. 1998. An optimal algorithm for closest-pair maintenance. Discrete Comput.
Geom. 19, 175–195.

BLUM, N., AND MEHLHORN, K. 1980. On the average number of rebalancing operations in weight-
balanced trees. Theoret. Comput. Sci. 11, 303–320.

DE BERG, M. 2003. Kinetic dictionaries: How to shoot a moving target. In Proceedings of the 11th
European Symposium on Algorithms (ESA), 172–183.

DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND SCHWARZKOPF, O. 2000. Computational Geom-
etry: Algorithms and Applications, 2nd ed. Springer.

GAO, J., GUIBAS, L., HERSHBERGER, J., ZHANG, L., AND ZHU, A. 2003. Discrete mobile centers. Discrete
Comput. Geom. 30, 45–63.

GUIBAS, L. 2004. Modeling motion. In Handbook of Discrete and Computational Geometry (J. Goodman
and J. O’Rourke, eds. Chapman and Hall, 1117–1134.

GUIBAS, L., HERSHBERGER, J., SURI, S., AND ZHANG, L. 2001. Kinetic connectivity for unit disks.
Discrete Comput. Geom. 25, 591–610.

HERSHBERGER, J. 2004. Kinetic collision detection with fast flight plan changes. Inf. Process. Lett. 92,
287–291.

HERSHBERGER, J., AND SURI, S. 2001. Simplified kinetic connectivity for rectangles and hypercubes. In
Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), 158–167.

KARAVELAS, M. I., AND GUIBAS, L. 2001. Static and kinetic geometric spanners with applications. In
Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), 168–176.

KIRKPATRICK, D., SNOEYINK, J., AND SPECKMANN, B. 2002. Kinetic collision detection for simple
polygons. Int. J. Comput. Geom. Appl. 12, 3–27.

KIRKPATRICK, D., AND SPECKMANN, B. 2001. Separation sensitive kinetic separation structures for
convex polygons. In Proceedings of the Japanese Symposium on Discrete Computational Geometry,
222–236.

MEHLHORN, K. 1984. Data Structures and Algorithms 1: Sorting and Searching. Springer.
NIEVERGELT, J., AND REINGOLD, E. M. 1973. Binary search trees of bounded balance. SIAM J. Comput. 2,

33–43.
SCHWARZ, C., SMID, M., AND SNOEYINK, J. 1994. An optimal algorithm for the on-line closest-pair

problem. Algorithmica 12, 18–29.
SEIDEL, R., AND ARAGON, C. R. 1996. Randomized search trees. Algorithmica 16, 464–497.
SHAMOS, M., AND HOEY, D. 1975. Closest-Point problems. In Proceedings of the 16th IEEE Symposium

on Foundations of Computer Science (FOCS), 151–162.
SHARIR, M., AND AGARWAL, P. 1995. Davenport-Schinzel Sequences and Their Geometric Applications.

Cambridge University Press, New York.
SMID, M. 1992. Maintaining the minimal distance of a point set in polylogarithmic time. Discrete Comput.

Geom. 7, 415–431.
VAIDYA, P. 1989. An O(n log n) algorithm for the all nearest neighbor problem. Discrete Comput.

Geom. 4, 101–115.

RECEIVED MARCH 2005; ACCEPTED JANUARY 2008

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 4, Publication date: November 2008.

