
On Distinct Distances and Incidences:

Elekes’s Transformation and the New Algebraic Developments∗

Micha Sharir†

October 12, 2010

Abstract

We first present a transformation that Gyuri Elekes has devised, about a decade ago, from
the celebrated problem of Erdős of lower-bounding the number of distinct distances determined
by a set S of s points in the plane to an incidence problem between points and a certain class
of helices (or parabolas) in three dimensions. Elekes has offered conjectures involving the new
setup, which, if correct, would imply that the number of distinct distances in an s-element point
set in the plane is always Ω(s/ log s). Unfortunately, these conjectures are still not fully resolved.
We then review the recent progress made on the transformed incidence problem, based on a new
algebraic approach, originally introduced by Guth and Katz. Full details of the results reviewed
in this note are given in a joint work with Elekes [8].
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1 Introduction

The motivation for the study reported in this paper comes from the celebrated and long-standing
problem, originally posed by Erdős [9] in 1946, of obtaining a sharp lower bound for the number of
distinct distances guaranteed to exist in any set S of s points in the plane. Erdős has shown that a
section of the integer lattice determines only O(s/

√
log s) distinct distances, and conjectured this

to be a lower bound for any planar point set. In spite of steady progress on this problem, reviewed
next, Erdős’s conjecture is still open.

L. Moser [14], Chung [4], and Chung et al. [5] proved that the number of distinct distances
determined by s points in the plane is Ω(s2/3), Ω(s5/7), and Ω(s4/5/polylog(s)), respectively. Székely
[22] managed to get rid of the polylogarithmic factor, while Solymosi and Tóth [20] improved this
bound to Ω(s6/7). This was a real breakthrough. Their analysis was subsequently refined by Tardos
[25] and then by Katz and Tardos [13], who obtained the current record of Ω(s(48−14e)/(55−16e)−ε),
for any ε > 0, which is Ω(s0.8641).

This was one of the problems that Gyuri Elekes has been thinking of for a long time. About
a decade ago, he came up with an interesting transformation of the problem, which leads to an
incidence problem between points and a special kind of curves in three dimensions (helices or
parabolas with some special structure). The reduction is very unusual and rather surprising, but
the new problem that it leads to is by no means an easy one. In fact, when Elekes communicated
these ideas to me, around the turn of the millennium, the new incidence problem looked pretty
hopeless, and the tex file that he has sent me has gathered dust, so to speak, for nearly a decade.
In fact, Gyuri has passed away, in September 2008, before seeing any real progress on the problem.

In this note I will present Elekes’s transformation in detail, and tell the story of the recent
developments involving the transformed incidence problem and several related problems.

Trying to push his new ideas further, Elekes has proposed several simpler variants of the new
problems, related to problems that I have been thinking of for a long time. Specifically, consider
a set L of n lines in three dimensions. A point q is called a joint of L if it is incident to at least
three non-coplanar lines of L. For example, if we take k planes (in general position) in R

3, and
let L be the set of their

(

k
2

)

intersection lines, then every vertex of the resulting arrangement (an

intersection point of three of the planes) is a joint of L. We have n = |L| =
(

k
2

)

and the number

of joints is
(

k
3

)

= Θ(n3/2). A long standing conjecture was that this is also an upper bound on the
number of joints in any set of n lines in 3-space.

Work on resolving this conjecture has been going on for almost 20 years [3, 10, 18] (see also [2,
Chapter 7.1, Problem 4]), and, until very recently, the best known upper bound, established by
Sharir and Feldman in 2005 [10], was O(n1.6232). The proof techniques were rather complicated,
involving a battery of tools from combinatorial geometry, including forbidden subgraphs in extremal
graph theory, space decomposition techniques, and some basic results in the geometry of lines in
space (e.g., Plücker coordinates).

An extension of the problem is to bound the number of incidences between n lines in 3-space
and their joints. In the lower bound construction, each joint is incident to exactly three lines, so
the number of incidences is just three times the number of joints. However, it is conceivable that
the number of incidences is considerably larger than the number of joints. Still, with the lack of
any larger lower bound, the prevailing conjecture has been that the number of incidences is also at
most O(n3/2). The best upper bound on this quantity, until the recent developments, was O(n5/3),
due to Sharir and Welzl [19].
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Elekes has proposed to study a special case of the incidence problem, in which all the lines in L
are equally inclined, i.e., they all make the same angle (say, 45◦) with the z-axis.1 The lower bound
construction can, with some care, be realized with equally inclined lines, so the goal was to establish
the upper bound O(n3/2) for the number of incidences between n equally inclined lines in R

3 and
their joints. Elekes has managed to establish the almost tight bound O(n3/2 log n). Although the
proof was far from trivial, Elekes considered (probably justifiably so) this result as a rather minor
development.

After Elekes’s death, his son Márton has gone through his father’s files and found the note
containing this result. He has contacted me and asked if I could finish it up and get it published. I
obliged, and even managed to tighten the bound to O(n3/2) (still, only for equally inclined lines),
which made the result a little stronger. I turned it into a joint paper with Elekes, and submitted
it, in January 2009, to János Pach, editor-in-chief of Discrete and Computational Geometry, for
publication.

János’s response was quick, merciless, and extremely valuable:

Dear Micha:

Have you seen arXiv:0812.1043
Title: Algebraic Methods in Discrete Analogs of the Kakeya Problem
Authors: Larry Guth, Nets Hawk Katz

If the proof is correct, DCG is not a possibility for the Elekes-Sharir note.

Cheers, János

What János was referring to was a rather dramatic development where, building on a recent
result of Dvir [6] for a variant of the so-called Kakeya problem for finite fields, Guth and Katz
[11] have settled the conjecture in the affirmative, showing that the number of joints (in three
dimensions) is indeed O(n3/2). Their proof technique is completely different from the traditional
approaches, and uses fairly simple tools from algebraic geometry. This has grabbed me, so to speak,
and for the next six month I did little else but work on the new approach and advance it as far as
possible.

This work has culminated (so far) in three papers. In the first one, I managed, with Kaplan
and Shustin [12], to obtain an extremely simple proof of the joints conjecture, following the new
algebraic approach of Guth and Katz. As a matter of fact, we also extended the result to any
dimension d ≥ 2, showing that the maximum possible number of joints in a set of n lines in
R

d is Θ(nd/(d−1)); here a joint is a point incident to at least d of the given lines, not all in a
common hyperplane. (In another rather surprising turn of events, the same results were obtained
independently and simultaneously2 by R. Quilodrán [15], using a very similar approach.)

In a second paper [7], we have simplified and extended the analysis technique of Guth and
Katz [11] to obtain tight bounds on the number of incidences between n lines in 3-space and their
joints, showing that the number of such incidences is O(n3/2). As mentioned above, the best
previous bound on this quantity [19] was O(n5/3). (This says that when the number of joints is
near the upper bound, each joint is incident, on average, to only O(1) lines; as observed, this is
indeed the case in the lower bound construction.) We have also shown that the maximum possible

1This, by the way, is also a variant of the complex Szemerédi-Trotter problem, of bounding the number of incidences
between points and lines in the complex plane; see the concluding section for more details.

2Both papers, Quilodrán’s and ours, were posted on arXiv on the same day, June 2, 2009.
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number of incidences between the lines of L and any number m ≥ n of their joints is Θ(m1/3n), and
that in fact this bound also holds for the number of incidences between n lines and m ≥ n arbitrary
points, provided that each point is incident to at least three lines, and that no plane contains more
than O(n) points; both conditions are easily seen to hold for joints.

It is however the third paper [8] that I want to highlight in this note. In this paper, co-authored
with Elekes, I describe his ingenious transformation from the problem of distinct distances in the
plane to an incidence problem between points and helices (or parabolas) in three dimensions. For
this transformation to yield sharper bounds on the number of distinct distances, Elekes has posed
a couple of (rather deep) conjectures, which are still open. I managed to obtain several partial
results concerning these conjectures, but they are still far from what one needs for the motivating
distinct distances problem.

What I find interesting and gratifying in the developments of the past year and a half is the
coincidental confluence between Elekes’s dormant incidence problem and the new machinery pro-
vided by the breakthrough of Guth and Katz. Before this breakthrough there seemed to be little
hope to make any progress on Elekes’s incidence problem, but the scene has now changed unexpect-
edly and completely, and hope is on the horizon. In fact, Elekes’s problem now provides a strong
motivation to study incidences between points and curves in three dimensions, and I hope that,
with this strong motivation and with the powerful new machinery at hand, this topic will flourish
in the coming years.

Before closing the introduction, I would like to share with the reader some more personal notes
concerning the interaction with Elekes many years ago. When he sent me his note on the number
of incidences between equally inclined lines and their joints, he added the following letter.

Dear Micha,

The summer is over (hope you had a nice one) and I have long been planning to write
you about what I could (not) do. In a nutshell: I could not improve on your bounds.
(You may not be too surprised :)

I could not even prove the O(n4/3) bound on the number of 45 degree lines determined
by n points. You certainly know that this is equivalent to the statement that in the
plane, n circles can only have n4/3 points of tangencies. Moreover, even this problem
can be re-phrased in terms of helices — which all start from the same direction (e.g.,
they all start at North).

I have just observed that your conjecture on “cutting n circles into n4/3 pseudo-segments”
is very strong; it would immediately imply the previous bound.

By the way, how about parabolas? You mentioned at the Elbe sandstone Geometry
Workshop that you could prove my conjecture on the number of incidences if all pairs
intersect. Have you written it up and if so, could you please send me a copy?

And now about the only minor fact I have observed. I did not even consider it interesting
until I read your JCTA 94 paper on joints. Let me tell the details.

Apparently, I have managed to misplace the file, so I wrote to Elekes a few years later, asking
him for a fresh copy. He sent me the file again, and added:

Dear Micha,
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I also had to dig back for the proof and could only find a TeX file which I included in
my e-mail (pls find it enclosed, together with some remarks just added). As already
mentioned, I do NOT want to publish it on my own.

If I knew for sure that during the next thirty years – which is a loose upper bound
for my life span — no new method would be developed to completely solve the n4/3

problem, then I would immediately suggest that we publish all we have in a joint paper.

However, at the moment, I think we had better wait for the big fish (à la Wiles :)

By the way, in case of something unexpected happens to me (car accident, plane crash,
a brick on the top of my skull) I definitely ask you to publish anything we have, at your
will.

Gyuri

I find this “scientific will” very touching; it has made me reflect a lot about the fragility of our
life and work. At the risk of sounding too sentimental, let me close this personal part by saying
that I hope that, in mathematicians’ heaven, Gyuri Elekes is looking with satisfaction at the recent
developments, even though his conjectures are still unresolved.

Before proceeding to describe Elekes’s transformation, let me comment that problems involving
incidences between points and curves are related to, and are regarded as discrete analogs of the
celebrated Kakeya problem. This relation was first noted by Wolff [26], who observed a connection
between the problem of counting joints to the Kakeya problem. Bennett et al. [1] exploited this
connection and proved an upper bound on the number of so-called θ-transverse joints in R

3, namely,
joints incident to at least one triple of lines for which the volume of the parallelepiped generated
by the three unit vectors along these lines is at least θ. This bound is O(n3/2+ε/θ1/2+ε), for any
ε > 0, where the constant of proportionality depends on ε. See Tao [24] for a review of the Kakeya
problem and its connections to combinatorial geometry (and to many other fields of mathematics).

2 Distinct distances and incidences with helices

In this section we present Elekes’s transformation from the problem of distinct distances in the
plane to a three-dimensional incidence problem. The material presented here is taken from [8] (and
a significant portion of it is taken almost verbatim from the notes that Elekes has sent me long
time ago).

The transformation proceeds through the following steps.

(H1) Let S be a set of s points in the plane with x distinct distances. Let K denote the set of all
quadruples (a, b, a′, b′) ∈ S4, such that the pairs (a, b) and (a′, b′) are distinct (although the points
themselves need not be) and |ab| = |a′b′| > 0.

Let δ1, . . . , δx denote the x distinct distances in S, and let Ei = {(a, b) ∈ S2 | |ab| = δi}. We
have

|K| = 2
x
∑

i=1

(|Ei|
2

)

≥
x
∑

i=1

(|Ei| − 1)2 ≥ 1

x

[

x
∑

i=1

(|Ei| − 1)

]2

=
[s(s − 1) − x]2

x
.
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(H2) We associate each (a, b, a′, b′) ∈ K with a (unique) rotation (or, rather, a rigid, orientation-
preserving transformation of the plane) τ , which maps a to a′ and b to b′. A rotation τ , in complex
notation, can be written as the transformation z 7→ pz + q, where p, q ∈ C and |p| = 1. Putting
p = eiθ, q = ξ + iη, we can represent τ by the point τ∗ = (ξ, η, θ) ∈ R

3. In the planar context, θ
is the counterclockwise angle of the rotation, and the center of rotation is c = q/(1− eiθ), which is
defined for θ 6= 0; for θ = 0, τ is a pure translation.

The multiplicity µ(τ) of a rotation τ (with respect to S) is defined as |τ(S)∩S| = the number of
pairs (a, b) ∈ S2 such that τ(a) = b. Clearly, one always has µ(τ) ≤ s, and we will mostly consider
only rotations satisfying µ(τ) ≥ 2. As a matter of fact, the bulk of the analysis will only consider
rotations with multiplicity at least 3. Rotations with multiplicity 2 are harder to analyze.

If µ(τ) = k then S contains two congruent and equally oriented copies A, B of some k-element
set, such that τ(A) = B. Thus, studying multiplicities of rotations is closely related to analyzing
repeated (congruent and equally oriented) patterns in a planar point set; see [2] for a review of
many problems of this kind.

(H3) If µ(τ) = k then τ contributes
(

k
2

)

quadruples to K. Let Nk (resp., N≥k) denote the number
of rotations with multiplicity exactly k (resp., at least k), for k ≥ 2. Then

|K| =
s
∑

k=2

(

k

2

)

Nk =
s
∑

k=2

(

k

2

)

(N≥k − N≥k+1) = N≥2 +
∑

k≥3

(k − 1)N≥k.

(H4) The main conjecture posed by Elekes is:

Conjecture 1. For any 2 ≤ k ≤ s, we have

N≥k = O
(

s3/k2
)

.

Suppose that the conjecture were true. Then we would have

[s(s − 1) − x]2

x
≤ |K| = O(s3) ·



1 +
∑

k≥3

1

k



 = O(s3 log s),

which would have implied that x = Ω(s/ log s). This would have almost settled the problem of
obtaining a tight bound for the minimum number of distinct distances guaranteed to exist in
any set of s points in the plane, since, as mentioned above, the upper bound for this quantity is
O(s/

√
log s) [9].

We note that Conjecture 1 is rather deep; even the simple instance k = 2, asserting that there
are only O(s3) rotations which map (at least) two points of S to two other points of S (at the same
distance apart), seems quite difficult.

In the paper reviewed in this note, a variety of upper bounds on the number of rotations and
on the sum of their multiplicities are derived. In particular, these results provide a partial positive
answer to the above conjecture, showing that N≥3 = O(s3); that is, the number of rotations which
map a (degenerate or non-degenerate) triangle determined by S to another congruent (and equally
oriented) such triangle, is O(s3). Bounding N2 by O(s3) is still an open problem.
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Lower bound. It is interesting to note the following lower bound construction.

Lemma 2. There exist sets S in the plane of arbitrarily large cardinality, which determine Θ(|S|3)
distinct rotations, each mapping a triple of points of S to another triple of points of S.

Proof: Consider the set S = S1 ∪ S2 ∪ S3, where

S1 = {(i, 0) | i = 1, . . . , s},
S2 = {(i, 1) | i = 1, . . . , s},
S3 = {(i/2, 1/2) | i = 1, . . . , 2s}.

See Figure 1.

S1

S2

S3

Figure 1: A lower bound construction of Θ(|S|3) rotations with multiplicity 3.

For each triple a, b, c ∈ {1, . . . , s} such that a + b − c also belongs to {1, . . . , s}, construct the
rotation τa,b,c which maps (a, 0) to (b, 0) and (c, 1) to (a + b − c, 1). Since the distance between
the two source points is equal to the distance between their images, τa,b,c is well (and uniquely)
defined. Moreover, τa,b,c maps the midpoint ((a + c)/2, 1/2) to the midpoint ((a + 2b − c)/2, 1/2).
It is fairly easy to show that the rotations τa,b,c are all distinct (see [8] for details). Since there are
Θ(s3) triples (a, b, c) with the above properties, the claim follows. 2

Remark. A “weakness” of this construction is that each of the rotations τa,b,c maps a collinear
triple of points of S to another collinear triple. (In the terminology to follow, these will be called
flat rotations.) We do not know whether the number of rotations which map a non-collinear triple
of points of S to another non-collinear triple can be Ω(|S|3). We tend to conjecture that this is
indeed the case.

(H5) To estimate N≥k, we reduce the problem of analyzing rotations and their interaction with
S to an incidence problem in three dimensions, as follows.

With each pair (a, b) ∈ S2, we associate the curve ha,b, in a 3-dimensional space parametrized
by (ξ, η, θ), which is the locus of all rotations which map a to b. That is, the equation of ha,b is
given by

ha,b = {(ξ, η, θ) | b = aeiθ + (ξ, η)}.
Putting a = (a1, a2), b = (b1, b2), this becomes

ξ = b1 − (a1 cos θ − a2 sin θ), (1)

η = b2 − (a1 sin θ + a2 cos θ).

This is a helix in R
3, having four degrees of freeedom, parametrized by (a1, a2, b1, b2). It extends

from the plane θ = 0 to the plane θ = 2π; its two endpoints lie vertically above each other, and it
completes exactly one revolution between them.
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(H6) Let P be a set of rotations, represented by points in R
3, as above, and let H denote the set

of all s2 helices ha,b, for (a, b) ∈ S2 (note that a = b is permitted). Let I(P, H) denote the number
of incidences between P and H. Then we have

I(P, H) =
∑

τ∈P

µ(τ).

Rotations τ with µ(τ) = 1 are not interesting, because each of them only contributes 1 to the
count I(P, H), and we will mostly ignore them. For the same reason, rotations with µ(τ) = 2 are
also not interesting for estimating I(P, H), but they need to be included in the analysis of N≥2.
Unfortunately, as already noted, we do not yet have a good upper bound (i.e., cubic in s) on the
number of such rotations.

(H7) Another conjecture that Elekes has offered is

Conjecture 3. For any P and H as above, we have

I(P, H) = O(|P |1/2|H|3/4 + |P | + |H|).

Suppose that Conjecture 3 were true. Let P≥k denote the set of all rotations with multiplicity
at least k (with respect to S). We then have

kN≥k = k|P≥k| ≤ I(P≥k, H) = O(N
1/2
≥k |H|3/4 + N≥k + |H|),

from which we obtain

N≥k = O

(

s3

k2
+

s2

k

)

= O

(

s3

k2

)

,

thus establishing Conjecture 1, and therefore also the lower bound for x (the number of distinct
distances in S) derived above from this conjecture.

Note that two helices ha,b and hc,d intersect in at most one point—this is the unique rotation
which maps a to b and c to d (if it exists at all, namely if |ac| = |bd|). Hence, combining this fact
with a standard cutting-based decomposition technique, similar to what has been noted in [19], say,
yields the weaker bound

I(P, H) = O(|P |2/3|H|2/3 + |P | + |H|), (2)

which, alas, only yields the much weaker bound

N≥k = O

(

s4

k3

)

,

which is completely useless for deriving any lower bound on x.

(H8) From helices to parabolas. The helices ha,b are non-algebraic curves, because of the use
of the angle θ as a parameter. This can be easily remedied, in the following standard manner.
Assume that θ ranges from −π to π, and substitute, in the equations (1), Z = tan(θ/2), to obtain

ξ = b1 −
[

a1(1 − Z2)

1 + Z2
− 2a2Z

1 + Z2

]
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η = b2 −
[

2a1Z

1 + Z2
+

a2(1 − Z2)

1 + Z2

]

.

Next, substitute X = ξ(1 + Z2), Y = η(1 + Z2), to obtain

X = (a1 + b1)Z
2 + 2a2Z + (b1 − a1) (3)

Y = (a2 + b2)Z
2 − 2a1Z + (b2 − a2),

which are the equations of a planar parabola in the (X, Y, Z)-space. We denote the parabola
corresponding to the helix ha,b as h∗

a,b, and refer to it as an h-parabola.

(H9) Joint and flat rotations. A rotation τ ∈ P is called a joint of H if τ is incident to at
least three helices of H whose tangent lines at τ are non-coplanar. Otherwise, still assuming that
τ is incident to at least three helices of H, τ is called flat.

A somewhat puzzling feature of the analysis, which is carried over from the study of standard
joints and their incidences in [7, 11, 12], is that it can only handle rotations incident to at least
three helices / parabolas, i.e., rotations of multiplicity at least 3, and is (at the moment) helpless
in dealing with rotations of multiplicity 2.

Using a rather simple analysis, it is shown in [8] that three helices ha,b, hc,d, he,f form a joint
at a rotation τ if and only if the three points a, c, e are non-collinear. Since τ maps a to b, c to d,
and e to f , it follows that b, d, f are also non-collinear. That is, we have:

Claim 4. A rotation τ is a joint of H if and only if τ maps a non-degenerate triangle determined by
S to another (congruent and equally oriented) non-degenerate triangle determined by S. A rotation
τ is a flat rotation if and only if τ maps at least three collinear points of S to another collinear triple
of points of S, but does not map any point of S outside the line containing the triple to another
point of S.

Remarks: (1) Note that if τ is a flat rotation, it maps the entire line containing the three
source points to the line containing their images. Specifically (see also below), we can respec-
tively parametrize points on these lines as a0 + tu, b0 + tv, for t ∈ R, such that τ maps a0 + tu to
b0 + tv for every t.

(2) For flat rotations, the geometry of our helices ensures that the three (or more) helices incident
to a flat rotation τ are such that their tangents at τ are all distinct (see [8]).

3 Incidences between rotations and helices / parabolas

The preceding analysis leads to the following main problem. We are given a collection H of n ≤ s2

h-parabolas in R
3 (of the form (3)), and a set P of m rotations, represented as points in R

3, and
our goal is to estimate the number of incidences between the rotations of P and the parabolas of
H, which we denote by I(P, H). Ideally, we would like to prove Conjecture 3, but at the moment
we are still far away from that.

Nevertheless, the recent developments, reviewed in the introduction, provide the (algebraic)
machinery for obtaining nontrivial bounds on I(P, H). This part of the analysis is rather technical
and somewhat involved. Full details are provided in [8], and derivation of analogous bounds for
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point-line incidences in R
3 can be found in [7]. Here we only sketch the analysis, leaving out most

of the details.

First, as already noted, because of some technical steps in the algebraic analysis, we can only
handle joint or flat rotations incident to at least three parabolas; the same phenomenon occurs in
the analysis of point-line incidences.

The algebraic approach in a nutshell. The basic idea of the new technique is as follows. We
have a set P of m rotations (points in R

3). We construct a (nontrivial) trivariate polynomial p
which vanishes at all the points of P . A simple linear-algebra argument (see Proposition 7 below)
shows that there exists such a polynomial whose degree is d = O(m1/3). Now if an h-parabola
h∗

a,b contains more than 2d rotations then p has to vanish identically on h∗
a,b (a simple application

of Bézout’s theorem; see below). Assume that p ≡ 0 on all h-parabolas. Then, intuitively (and
informally), the zero set of p has a very complicated shape. In particular, since each rotation τ
is incident to at least three h-parabolas, we can infer certain properties of the local structure of
p in the vicinity of τ . Specifically, if τ is a joint rotation then it must be a critical (i.e., singular)
point of p. If τ is a flat rotation then some other polynomial, dependning on p, has to vanish at τ .
These constraints are then exploited to derive upper bounds on m and on the number of incidences
between the rotations and h-parabolas.

This high-level approach faces however several technical complications. The main one is that
the fact that p vanishes on many h-parabolas is in itself not that significant, because all these
parabolas could lie on a common surface Σ, which is the zero set of some polynomial factor of p.
Understanding what happens on such a “special surface” occupies a large portion of the analysis.
(In the analogous study of point-line incidences [7, 11], the corresponding “special surfaces” were
planes, arising from possible linear factors of p.)

The first step in the analysis is therefore to study the structure of those special surfaces which
may contain many h-parabolas. As it turns out, there is a lot of geometric beauty in the structure
of these surfaces, which we will only be able to sketch briefly. Full details are given in [8].

(H10) Special surfaces. Let τ be a flat rotation, with multiplicity k ≥ 3, and let ℓ and ℓ′ be
the corresponding lines in the plane, such that there exist k points a1, . . . , ak ∈ S ∩ ℓ and k points
b1, . . . , bk ∈ S∩ℓ′, such that τ maps ai to bi for each i (and in particular maps ℓ to ℓ′). By definition,
τ is incident to the k helices hai,bi , for i = 1, . . . , k.

Let u and v denote unit vectors in the direction of ℓ and ℓ′, respectively. Clearly, there exist two
reference points a ∈ ℓ and b ∈ ℓ′, such that for each i there is a real number ti such that ai = a+ tiu
and bi = b + tiv. As a matter of fact, for each real t, τ maps a + tu to b + tv, so it is incident to
ha+tu,b+tv. Note that a and b, which can “slide” along their respective lines (by equal distances),
are not uniquely defined.

Let H(a, b; u, v) denote the set of these helices. Since a pair of helices can meet in at most one
point, all the helices in H(a, b; u, v) pass through τ but are otherwise pairwise disjoint. Using the
re-parametrization (ξ, η, θ) 7→ (X, Y, Z), we denote by Σ = Σ(a, b; u, v) the surface which is the
union of all the h-parabolas that are the images of the helices in H(a, b; u, v). We refer to such a
surface Σ as a special surface.

An important comment is that most of the ongoing analysis also applies when only two helices
are incident to τ ; they suffice to determine the four parameters a, b, u, v that define the surface Σ.

9



We also remark that, although we started the definition of Σ(a, b; u, v) with a flat rotation τ ,
the definition only depends on the parameters a, b, u, and v (and even there we have, as just noted,
one degree of freedom in choosing a and b). If τ is not flat it may determine many special surfaces,
one for each line that contains two or more points of S which τ maps to other (also collinear) points
of S. Also, as we will shortly see, the same surface can be obtained from a different set (in fact,
many such sets) of parameters a′, b′, u′, and v′ (or, alternatively, from different (flat) rotations τ ′).

The equation of a special surface. Routine, though somewhat tedious calculations, detailed
in [8], show that the surface Σ is a cubic algebraic surface, whose equation is given by

E2(Z)X − E1(Z)Y + K(Z) = 0, (4)

where

E1(Z) = (u1 + v1)Z + (u2 + v2)

E2(Z) = (u2 + v2)Z − (u1 + v1),

and

K(Z) =

(

(u1 + v1)Z + (u2 + v2)

)(

(a2 + b2)Z
2 − 2a1Z + (b2 − a2)

)

−
(

(u2 + v2)Z − (u1 + v1)

)(

(a1 + b1)Z
2 + 2a2Z + (b1 − a1)

)

.

We refer to the cubic polynomial in the left-hand side of (4) as a special polynomial. Thus a special
surface is the zero set of a special polynomial. Note that special polynomials are cubic in Z but
are only linear in X and Y .

(H11) Special surfaces pose a technical challenge to the analysis. Specifically, each special surface
Σ captures a certain underlying pattern in the ground set S, which may result in many incidences
between rotations and h-parabolas, all contained in Σ.

Consider first a simple instance of this situation, in which two special surfaces Σ, Σ′, generated
by two distinct flat rotations τ , τ ′, coincide. More precisely, there exist four parameters a, b, u, v
such that τ maps the line ℓ1 = a+tu to the line ℓ2 = b+tv (so that points with the same parameter
t are mapped to one another), and four other parameters a′, b′, u′, v′ such that τ ′ maps (in a similar
manner) the line ℓ′1 = a′+ tu′ to the line ℓ′2 = b′+ tv′, and Σ(a, b; u, v) = Σ(a′, b′; u′, v′). Denote this
common surface by Σ. Let a0 be the intersection point of ℓ1 and ℓ′1, and let b0 be the intersection
point of ℓ2 and ℓ′2. Then it is easy to show that both τ and τ ′ map a0 to b0, and h∗

a0,b0
is contained

in Σ. See Figure 2.

Since the preceding analysis applies to any pair of distinct rotations on a common special surface
Σ, it follows that we can associate with Σ a common direction w and a common shift δ, so that for
each τ ∈ Σ there exist two lines ℓ, ℓ′, where τ maps ℓ to ℓ′, so that the angle bisector between these
lines is in direction w, and τ is the unique rigid motion, obtained by rotating ℓ to ℓ′ around their
intersection point ℓ∩ ℓ′, and then shifting ℓ′ along itself by a distance whose projection in direction
w is δ. Again, refer to Figure 2.

Let Σ be a special surface, generated by H(a, b; u, v); that is, Σ is the union of all parabolas of
the form h∗

a+tu,b+tv, for t ∈ R. Let τ0 be the common rotation to all these parabolas, so it maps

10



b0

ℓ1 ℓ2

ℓ′1
ℓ′2

a0

Figure 2: The structure of τ and τ ′ on a common special surface Σ.

the line ℓ0 = {a + tu | t ∈ R} to the line ℓ′0 = {b + tv | t ∈ R}, so that every point a + tu is mapped
to b + tv.

Let h∗
c,d be a parabola contained in Σ but not passing through τ0. Take any pair of distinct ro-

tations τ1, τ2 on h∗
c,d. Then there exist two respective real numbers t1, t2, such that τi ∈ h∗

a+tiu,b+tiv
,

for i = 1, 2. Thus τi is the unique rotation which maps c to d and ai = a + tiu to bi = b + tiv. In
particular, we have |a + tiu − c| = |b + tiv − d|. This in turn implies that the triangles a1a2c and
b1b2d are congruent; see Figure 3.

a

a1

a2

b

b1

b2

ℓ0

ℓ′0

c

d

Figure 3: The geometric configuration corresponding to a parabola h∗
c,d contained in Σ.

Given c, this determines d, up to a reflection about ℓ′0. We claim that d has to be on the “other
side” of ℓ′0, namely, be such that the triangles a1a2c and b1b2d are oppositely oriented. Indeed, if
they were equally oriented, then τ0 would have mapped c to d, and then h∗

c,d would have passed
through τ0, contrary to assumption.

Now form the two sets

A = {p | there exists q ∈ S such that h∗
p,q ⊂ Σ} (5)

B = {q | there exists p ∈ S such that h∗
p,q ⊂ Σ}.

The preceding discussion implies that A and B are congruent and oppositely oriented.

To recap, each rotation τ ∈ Σ, incident to k ≥ 2 parabolas contained in Σ corresponds to a
pair of lines ℓ, ℓ′ with the above properties, so that τ maps k points of S ∩ ℓ (rather, of A ∩ ℓ) to
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k points of S ∩ ℓ′ (that is, of B ∩ ℓ′). If τ is flat, its entire multiplicity comes from points of S on
ℓ (these are the points of A ∩ ℓ) which are mapped by τ to points of S on ℓ′ (these are points of
B ∩ ℓ′), and all the corresponding parabolas are contained in Σ. If τ is a joint then, for any other
point p ∈ S outside ℓ which is mapped by τ to a point q ∈ S outside ℓ′, the parabola h∗

p,q is not
contained in Σ, and crosses it transversally at the unique rotation τ .

Note also that any pair of parabolas h∗
c1,d1

and h∗
c2,d2

which are contained in Σ intersect, neces-
sarily at the unique rotation which maps c1 to d1 and c2 to d2. This holds because |c1c2| = |d1d2|,
as follows from the preceding discussion.

Special surfaces and repeated patterns in S. As just noted, a special surface Σ corresponds
to two (maximal) subsets A, B ⊆ S, which are congruent and oppositely oriented, so that the
number of h-parabolas contained in Σ is equal to |A| = |B|. Hence a natural interesting problem is
to analyze such repeated patterns in S. For example, how many such maximal repeated patterns
can S contain, for which |A| = |B| ≥ k? Note that one has to insist on maximal patterns, because
one can always take S to be the union of two congruent and oppositely oriented sets S+, S−, and
then every subset A+ of S+ and its image A− in S− form such a repeated pattern (but there is
only one maximal repeated pattern, namely S+ and S−).

As a matter of fact, a special surface is nothing but an “anti-rotation”, namely a rigid motion
that reverses the orientation of the plane; the multiplicity of this anti-rotation is the size of the
subsets A, B in the corresponding repeated pattern. Hence, bounding the number of “rich” special
surfaces is nothing but a variant of the problem we started with, namely of bounding the number
of “rich” rotations (see Conjecture 1).

3.1 Tools from algebraic geometry

We review in this subsection (without proofs) the basic tools from algebraic geometry that have
been used in [7, 8, 11]. We state here the variants that arise in the context of incidences between
points and our h-parabolas.

So let C be a set of n ≤ s2 h-parabolas in R
3. Recalling the definitions in (H9), we say that

a point (rotation) a is a joint of C if it is incident to three parabolas of C whose tangents at
a are non-coplanar. Let J = JC denote the set of joints of C. We will also consider points a
that are incident to three or more parabolas of C, so that the tangents to all these parabolas are
coplanar, and refer to such points as flat points of C. We recall (see (H9)) that any pair of distinct
h-parabolas which meet at a point have there distinct tangents.

First, we note that, using a trivial application of Bézout’s theorem [17], a trivariate polynomial
p of degree d which vanishes at 2d + 1 points that lie on a common h-parabola h∗ ∈ C must vanish
identically on h∗.

Critical points and parabolas. A point a is critical (or singular) for a trivariate polynomial p
if p(a) = 0 and ∇p(a) = 0; any other point a in the zero set of p is called regular. A parabola h∗ is
critical if all its points are critical.

Another application of Bézout’s theorem implies the following.

Proposition 5. Let C be as above. Then any trivariate square-free polynomial p of degree d can
have at most d(d − 1) critical parabolas in C.
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For regular points of p, we have the following easy observation.

Proposition 6. Let a be a regular point of p, so that p ≡ 0 on three parabolas of C passing through
a. Then these parabolas must have coplanar tangents at a.

Hence, a point a incident to three parabolas of C whose tangent lines at a are non-coplanar, so
that p ≡ 0 on each of these parabolas, must be a critical point of p.

The main ingredient in the algebraic approach to incidence problems is the following, fairly easy
(and rather well-known) result.

Proposition 7. Given a set S of m points in 3-space, there exists a trivariate polynomial p(x, y, z)
which vanishes at all the points of S, of degree d, for any d satisfying

(

d+3
3

)

> m.

Proof: (See [7,8,11].) A trivariate polynomial of degree d has
(

d+3
3

)

monomials, and requiring it to
vanish at m points yields these many homogeneous equations in the coefficients of these monomials.
Such an underdetermined system always has a nontrivial solution. 2

Flat points and parabolas. Call a regular point τ of a trivariate polynomial p geometrically
flat if it is incident to three distinct parabolas of C (with necessarily coplanar tangent lines at τ ,
no pair of which are collinear) on which p vanishes identically.

Handling geometrically flat points in our analysis is somewhat trickier than handling critical
points, and involves the second-order partial derivatives of p. The analysis, detailed in [8], leads to
the following properties.

Proposition 8. Let p be a trivariate polynomial, and define

Π(p) = p2
Y pXX − 2pXpY pXY + p2

XpY Y .

Then, if τ is a regular geometrically flat point of p (with respect to three parabolas of C) then
Π(p)(τ) = 0.

Remark. Π(p) is one of the polynomials that form the second fundamental form of p; see [7,8,11,16]
for details.

In particular, if the degree of p is d then the degree of Π(p) is at most (d−1)+(d−1)+(d−2) =
3d − 4.

In what follows, we call a point τ flat for p if Π(p)(τ) = 0. Call an h-parabola h∗ ∈ C flat
for p if all the points of h∗ are flat points of p (with the possible exception of a discrete subset).
Arguing as in the case of critical points, if h∗ contains more than 2(3d− 4) flat points then h∗ is a
flat parabola.

The next proposition shows that, in general, trivariate polynomials do not have too many flat
parabolas. The proof is based on Bézout’s theorem, as does the proof of Proposition 5.

Proposition 9. Let p be any trivariate square-free polynomial of degree d with no special polynomial
factors. Then p can have at most d(3d − 4) flat h-parabolas in C.
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3.2 Joint and flat rotations in a set of h-parabolas in R
3

In this subsection we extend the recent algebraic machinery of Guth and Katz [11], as further
developed by Elekes et al. [7], using the algebraic tools set forth in the preceding subsection, to
establish the bound O(n3/2) = O(s3) on the number of rotations with multiplicity at least 3 in a
collection of n h-parabolas. Specifically, we have:

Theorem 10. Let C be a set of at most n h-parabolas in R
3, and let P be a set of m rotations,

each of which is incident to at least three parabolas of C. Suppose further that no special surface
contains more than q parabolas of C. Then m = O(n3/2 + nq).

Remarks. (1) The recent results of [12,15] imply that the number of joints in a set of n h-parabolas
is O(n3/2). The proofs in [12, 15] are much simpler than the proof given below, but they do not
apply to flat points as does Theorem 10.

(2) One can show that we always have q ≤ s, and we also have n1/2 ≤ s, so the “worst-case” bound
on m is O(ns).

(3) Note that the parameter n in the statement of the theorem is arbitrary, not necessarily the
maximum number s2. When n attains its maximum possible value s2, the bound becomes m =
O(n3/2) = O(s3).

The proof of Theorem 10, whose full details can be found in [8], uses the proof technique of [7]
(for incidences with lines), properly adapted to the present, somewhat more involved context of
h-parabolas and rotations. Here we only give a very brief sketch of the main steps in the proof.

We first prove the theorem under the additional assumption that q = n1/2. The proof proceeds
by induction on n, and shows that m ≤ An3/2, where A is a sufficiently large constant. Let C
and P be as in the statement of the theorem, with |C| = n, and suppose to the contrary that
|P | > An3/2.

We first apply the following iterative pruning process to C. As long as there exists a parabola
h∗ ∈ C incident to fewer than cn1/2 rotations of P , for some constant 1 ≤ c ≪ A that we will fix
later, we remove h∗ from C, remove its incident rotations from P , and repeat this step with respect
to the reduced set of rotations. In this process we delete at most cn3/2 rotations. We are thus left
with a subset of at least (A − c)n3/2 of the original rotations, so that each surviving parabola is
incident to at least cn1/2 surviving rotations, and each surviving rotation is still incident to at least
three surviving parabolas. For simplicity, continue to denote these sets as C and P .

In the actual proof, the constants of proportionality play an important role. In this informal
overview, we ignore this issue, making the presentation “slightly incorrect”, but hopefully making
its main ideas easier to grasp.

We collect about n1/2 rotations from each surviving parabola, and obtain a set S of O(n3/2)
rotations.

We next construct, using Proposition 7, a nontrivial trivariate polynomial p(X, Y, Z) which
vanishes at all the rotations of S, whose degree is d = O(|S|1/3) = O(n1/2). Without loss of
generality, we may assume that p is square-free—by removing repeated factors, we get a square-
free polynomial which vanishes on the same set as the original p, with the same upper bound on
its degree.

The polynomial p vanishes on Θ(n1/2) points on each parabola. By playing with the constants
of proportionality, we can ensure that this number is larger than 2d. Hence p vanishes identically
on all the surviving parabolas of C.
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We can also ensure the property that each parabola of C contains at least 9d points of P .

We note that p can have at most d/3 special polynomial factors (since each of them is a cubic
polynomial); i.e., p can vanish identically on at most d/3 respective special surfaces Ξ1, . . . ,Ξk, for
k ≤ d/3. We factor out all these special polynomial factors from p, and let p̃ denote the resulting
polynomial, which is a square-free polynomial without any special polynomial factors, of degree at
most d.

Consider one of the special surfaces Ξi, and let ti denote the number of parabolas contained in
Ξi. Then any rotation on Ξi is either an intersection point of (at least) two of these parabolas, or
it lies on at most one of them. The number of rotations of the first kind is O(t2i ). Any rotation
τ of the second kind is incident to at least one parabola of C which crosses Ξi transversally at τ .
A simple algebraic calculation shows that each h-parabola h∗ can cross Ξi in at most three points.
Hence, the number of rotations of the second kind is O(n), and the overall number of rotations on
Ξi is O(t2i +n) = O(n), since we have assumed in the present version of the proof that ti = O(n1/2).

Summing the bounds over all surfaces Ξi, we conclude that altogether they contain O(nd)
rotations, which we bound by bn3/2, for some absolute constant b.

We remove all these vanishing special surfaces, together with the rotations and the parabolas
which are fully contained in them, and let C1 ⊆ C and P1 ⊆ P denote, respectively, the set of those
parabolas of C (rotations of P ) which are not contained in any of the vanishing surfaces Ξi.

Note that there are still at least three parabolas of C1 incident to any remaining rotation in P1,
since none of the rotations of P1 lie in any surface Ξi, so all parabolas incident to such a rotation
are still in C1.

Clearly, p̃ vanishes identically on every h∗ ∈ C1. Furthermore, every h∗ ∈ C1 contains at most d
points in the surfaces Ξi, because, as just argued, it crosses each surface Ξi in at most three points.

Note that this also holds for every parabola h∗ in C \ C1, if we only count intersections of h∗

with surfaces Ξi which do not fully contain h∗.

Hence, each h∗ ∈ C1 contains at least 8d rotations of P1. Since each of these rotations is incident
to at least three parabolas in C1, each of these rotations is either critical or geometrically flat for
p̃.

Consider a parabola h∗ ∈ C1. If h∗ contains more than 2d critical rotations then h∗ is a critical
parabola for p̃. By Proposition 5, the number of such parabolas is at most d(d − 1). Any other
parabola h∗ ∈ C1 contains more than 6d geometrically flat points and hence h∗ must be a flat
parabola for p̃. By Proposition 9, the number of such parabolas is at most d(3d− 4). Summing up
we obtain

|C1| ≤ d(d − 1) + d(3d − 4) < 4d2.

An approaite choice of constants ensures that 4d2 < n/2.

We next want to apply the induction hypothesis to C1, with the parameter 4d2 (which dominates
the size of C1). For this, we first argue that each special surface contains at most 3d/2 parabolas
of C1 (proof omitted; see [8]). Since 3d/2 ≤ (4d2)1/2, we can apply the induction hypothesis, and
conclude that the number of points in P1 is at most

A(4d2)3/2 ≤ A

23/2
n3/2.
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Adding up the bounds on the number of points on parabolas removed during the pruning process
and on the special surfaces Ξi (which correspond to the special polynomial factors of p), we obtain

|P | ≤ A

23/2
n3/2 + (b + c)n3/2 ≤ An3/2 ,

with an appropriate, final choice of the various constants. This contradicts the assumption that
|P | > An3/2, and thus establishes the induction step for n, and, consequently, completes the proof
of the restricted version of the theorem. We omit the rather similar proof of the general version of
the theorem. 2

Corollary 11. Let S be a set of s points in the plane. Then there are at most O(s3) rotations
which map some (degenerate or non-degenerate) triangle spanned by S to another (congruent and
equally oriented) such triangle. By Lemma 2, this bound is tight in the worst case.

3.3 Incidences between parabolas and rotations

In this subsection we further adapt the machinery of [7] to derive an upper bound on the number
of incidences between m rotations and n h-parabolas in R

3, where each rotation is incident to at
least three parabolas (i.e., has multiplicity ≥ 3). We present the results and omit all proofs (which,
as usual, can be found in [8]).

We begin with a bound which is independent of the number m of rotations.

Theorem 12. For an underlying ground set S of s points in the plane, let C be a set of at most
n ≤ s2 h-parabolas defined on S, and let P be a set of rotations with multiplicity at least 3 with
respect to S, such that no special surface contains more than n1/2 parabolas of C. Then the number
of incidences between P and C is O(n3/2).

Theorem 12 is used to prove the following more general bound.

Theorem 13. For an underlying ground set S of s points in the plane, let C be a set of at most
n ≤ s2 h-parabolas defined on S, and let P be a set of m rotations with multiplicity at least 3 (with
respect to S).

(i) Assuming further that no special surface contains more than n1/2 parabolas of C, we have

I(P, C) = O(m1/3n).

(ii) Without the additional assumption in part (i), we have

I(P, C) = O(m1/3n + m2/3n1/3s1/3).

Remark. As easily checked, the first term in (ii) dominates the second term when m ≤ n2/s, and
the second term dominates when n2/s < m ≤ ns. In particular, the first term dominates when
n = s2, because we have m = O(s3) = O(n2/s).

It is interesting to note that the proof technique also yields the following result.
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Corollary 14. Let C be a set of n h-parabolas and P a set of points in 3-space which satisfy the
conditions of Theorem 13(i). Then, for any k ≥ 1, the number M≥k of points of P incident to at
least k parabolas of C satisfies

M≥k =



















O

(

n3/2

k3/2

)

for k ≤ n1/3,

O

(

n2

k3
+

n

k

)

for k > n1/3.

Proof: Write m = M≥k for short. We clearly have I(P, C) ≥ km. Theorem 13(i) then implies
km = O(m1/3n), or m = O((n/k)3/2). If k > n1/3 we use the other bound (in (2)), to obtain
km = O(m2/3n2/3 +m+n), which implies that m = O(n2/k3 +n/k) (which is in fact an equivalent
statement of the classical Szemerédi-Trotter bound). 2

We can also obtain more general bounds using Theorem 13(ii), but we do not state them,
because we are going to improve them anyway in the next subsection.

3.4 Further improvements

In this subsection we further improve the bound in Theorem 13 (and Corollary 14) using more
standard space decomposition techniques. Omitting all details, we obtain:

Theorem 15. The number of incidences between m arbitrary rotations and n h-parabolas, defined
for a planar ground set with s points, is

O∗
(

m5/12n5/6s1/12 + m2/3n1/3s1/3 + n
)

,

where the O∗(·) notation hides polylogarithmic factors. In particular, when all n = s2 h-parabolas
are considered, the bound is

O∗
(

m5/12s7/4 + s2
)

.

Using this bound, we can strengthen Corollary 14, as follows.

Corollary 16. Let C be a set of n h-parabolas and P a set of rotations, with respect to a planar
ground set S of s points. Then, for any k ≥ 1, the number M≥k of rotations of P incident to at
least k parabolas of C satisfies

M≥k = O

(

n10/7s1/7

k12/7
+

ns

k3
+

n

k

)

.

For n = s2, the bound becomes

M≥k = O

(

s3

k12/7

)

.

Proof: The proof is similar to the proof of Corollary 14, and we omit its routine details. 2

17



4 Conclusion

In this paper we have reduced the problem of obtaining a near-linear lower bound for the number
of distinct distances in the plane to a problem involving incidences between points and a special
class of parabolas (or helices) in three dimensions. We have made significant progress in obtaining
upper bounds for the number of such incidences, but we are still short of tightening these bounds
to meet Elekes’s conjectures on these bounds made in Section 2.

To see how far we still have to go, consider the bound in Corollary 16, for the case n = s2,
which then becomes O(s3/k12/7). Moreover, we also have the Szemerédi-Trotter bound O(s4/k3),
which is smaller than the previous bound for k ≥ s7/9. Substituting these bounds in the analysis
of (H3) and (H4), we get

[s(s − 1) − x]2

x
≤ |K| = N≥2 +

∑

k≥3

(k − 1)N≥k =

N≥2 + O(s3) ·



1 +
s7/9

∑

k=3

1

k5/7
+
∑

k>s7/9

s4

k2



 = N≥2 + O(s29/9).

It is fairly easy to show that N≥2 is O(s10/3), by noting that N≥2 can be upper bounded by
O
(
∑

i |Ei|2
)

, where Ei is as defined in (H1). Using the upper bound |Ei| = O(s4/3) [21], we get

N≥2 = O

(

∑

i

|Ei|2
)

= O(s4/3) · O
(

∑

i

|Ei|
)

= O(s10/3).

Thus, at the moment, N≥2 is the bottleneck in the above bound, and we only get the (very weak)
lower bound Ω(s2/3) on the number of distinct distances. Showing that N≥2 = O(s29/9) too
(hopefully, a rather modest goal) would improve the lower bound to Ω(s7/9), still a rather weak
lower bound.

Nevertheless, we feel that the reduction to incidences in three dimensions is fruitful, because

(i) It sheds new light on the geometry of planar point sets related to the distinct distances problem.

(ii) It gave us a new, and considerably more involved setup in which the new algebraic technique
of Guth and Katz could be applied. As such, the analysis reviewed in this note might prove useful
for obtaining improved incidence bounds for points and other classes of curves in three dimensions.
The case of points and circles is an immediate next challenge.

Another comment is in order. Our work can be regarded as a special variant of the complex
version of the Szemerédi-Trotter theorem on point-line incidences [23]. In the complex plane, the
equation of a line (in complex notation) is w = pz+q. Interpreting this equation as a transformation
of the real plane, we get a homothetic map, i.e., a rigid motion followed by a scaling. We can
therefore rephrase the complex version of the Szemerédi-Trotter theorem as follows. We are given
a set P of m pairs of points in the (real) plane, and a set M of n homothetic maps, and we seek an
upper bound on the number of times a map τ ∈ M and a pair (a, b) ∈ P “coincide”, in the sense
that τ(a) = b. In our work we only consider “complex lines” whose “slope” p has absolute value 1
(these are our rotations), and the set P is simply S × S. This explains in part Elekes’s interest in
incidences with equally inclined lines in R

3, as mentioned in the introduction.

The main open problems raised by this work are:
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(a) Obtain a cubic upper bound for the number of rotations which map only two points of the given
ground planar set S to another pair of points of S. Any upper bound smaller than O(s3.1358) would
already be a significant step towards improving the current lower bound of Ω(s0.8641) on distinct
distances [13].

(b) Improve further the upper bound on the number of incidences between rotations and h-parabolas.
Ideally, establish Conjectures 1 and 3.
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