
An Improved Bound for k-Sets in Three DimensionsMicha Sharir� Shakhar Smorodinskyy G�abor TardoszNovember 30, 1999AbstractWe prove that the maximumnumber of k-sets in a set S of n points in IR3 is O(nk3=2). Thisimproves substantially the previous best known upper bound of O(nk5=3) (see [7] and [1]).1 IntroductionLet S be a set of n points in IRd. A k-set of S is a subset S 0 � S such that S0 = S \H for somehalfspace H and jS 0j = k. The problem of determining tight asymptotic bounds on the maximumnumber of k-sets is one of the most intriguing open problems in combinatorial geometry. Dueto its importance in analyzing geometric algorithms [5, 9], the problem has caught the attentionof computational geometers as well [3, 7, 8, 14, 16]. A close to optimal solution for the problemremains elusive even in the plane. The best asymptotic upper and lower bounds in the plane areO(nk1=3) (see [6]) and n � 2
(plogk) (see [15]), respectively. In this paper we obtain the followingresult:Theorem 1.1 The number of k-sets in a set of n points in IR3 is O(nk3=2).This result improves the previous best known asymptotic upper bound of O(nk5=3) (see Dey andEdelsbrunner [7] and Agarwal et al. [1]). The best known asymptotic lower bound for the numberof k-sets in three dimensions is nk � 2
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(b) We assume that the set S is in general position, meaning that no four points in S lie in acommon plane. Applying a small perturbation to the points of any set S yields a set of points ingeneral position and the number of k-sets does not decrease.(c) We consider the set T of halving triangles spanned by S: A triangle � = abc, with verticesa; b; c 2 S is a halving triangle if the plane containing � has the same number of points of S oneither side. (Note that n has to be odd for halving triangles to exist, and we will indeed assume,without loss of generality, that n is odd.) We show that jT j = O(n5=2). This implies that thenumber of k-triangles, for any k, is also bounded by O(n5=2), where a k-triangle is a triangle �spanned by three points in S with exactly k points of S on one side of the plane containing �.Indeed, choose a direction d not contained in the plane of any k-triangle and add jn� 3� 2kj extrapoints to S far enough in the direction d or �d. Each k-triangle in S turns into a halving trianglein one of the two resulting con�gurations. It is well known [2], that the O(n5=2) bound on thenumber of k-triangles for any k carries over to the same bound on the number of k-sets.(d) All the previous approaches are based on (the 3-dimensional extension of) Lov�asz Lemma[4]: Any line crosses (the relative interiors of) at most O(n2) halving triangles. The precedingtechniques aimed to derive a general lower bound for the number of such crossings. Speci�cally,they showed that for any collection of t triangles spanned by the points of S there exists a linethat crosses many triangles, where the best lower bound for this number of crossings is 
(t3=n6)[7]. Combining this lower bound with the upper bound provided by Lov�asz Lemma, one obtainsan upper bound of O(n8=3) for the number of k-sets.(e) In contrast, our technique focuses on the speci�c set T of halving triangles, and exploits thestructure of this set. The main property of this set, which is also used in deriving Lov�asz Lemma,is the antipodality property, which we re-establish rigorously in Lemma 3.4 below. Informally, itasserts that the halving triangles with a common edge pq alternate sides, as we rotate a plane aboutpq. See Figure 1 for an illustration of this property. This is the only property of the set T that isneeded in the proof.
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Figure 1: The antipodality property of halving triangles: The common edge pq is shown head-on,as a point; as we rotate a plane around pq we encounter the other endpoints of these triangles inthe order shown.(f) Our technique only considers interaction between pairs of triangles of T with a commonvertex. Speci�cally, we consider crossings between such pairs of triangles, where two triangles paband pcd cross each other if their relative interiors have a nonempty intersection (in this case p is2



the only common vertex of these triangles).(g) Our proof proceeds by deriving both an upper bound and a lower bound on the numberof triangle crossings (of the above special type) in T . The upper bound is O(n4) and it is aneasy consequence of Lov�asz Lemma in 3-space. The lower bound is 
(t2=n), and is proven usingarguments that extend those that were used in [6] for the analysis of k-sets in the plane. Theseupper and lower bounds immediately yield the desired bound on the number of k-sets.3 Proof of the TheoremLet n be odd, let S be a set of n points in IR3 in general position, and let T be the set of all halvingtriangles of S. Put t = jT j.De�nition 3.1 We say that two triangles �1;�2 2 T cross if �1 and �2 share exactly one vertex,say p, and the edge opposite to p in one of the triangles crosses the other triangle (this is equivalentto the de�nition given in Section 2). Let X denote the number of crossing pairs of triangles in T .The following extension of the two-dimensional Lov�asz Lemma [10] has been derived in [4] andused in [3, 4]. We say that a line crosses a triangle if it intersects the triangle but not any of itsedges. One can prove this lemma using the Antipodality Lemma below by translating a line fromin�nity to the given location, and by observing how the number of triangles crossed by the linechanges as it moves (this number changes only when the line crosses a segment connecting twopoints and then it changes by �1).Lemma 3.2 [4, 11] A line crosses less than n2=4 halving triangles.As a consequence we obtain:Lemma 3.3 The number X of crossing pairs of halving triangles for a set S as above is less than3n4=8.Proof: Fix an edge e = pq with endpoints in S. This edge crosses less than n2=4 triangles.For each triangle � = abc that it crosses, e can contribute at most three crossings to X , namely acrossing between abc and apq, between abc and bpq and between abc and cpq. Since there are only�n2� edges, we have in total less than 3n4=8 crossings. 2The following well-known lemma, which is the basis for the 3-dimensional version of Lov�aszLemma (see, e.g., [3, 4]), will be crucial for our analysis. We include a proof for the sake ofcompleteness.Lemma 3.4 (Antipodality Lemma) Let p; q 2 S and let Tpq denote the subset of all trianglesin T incident to both p and q. Rotate a halfplane h, bounded by the line ` passing through p and q,about `; h meets the triangles in Tpq in a cyclic order. Let � and �0 be two consecutive elementsof Tpq in this cyclic order, let W be the wedge swept by h as it rotates from � to �0, and let W 0denote the antipodal wedge, emanating from ` and bounded by the same pair of planes. Then thereis a unique `antipodal' triangle �00 2 Tpq contained in W 0.Proof: Consider the halfplane h rotating about pq. If during the rotation h contains a halvingtriangle pqr and the next such triangle is pqr0, then as h leaves r the plane containing h has onemore point of S on its side containing r than on the opposite side. Just before reaching r0 the3



plane containing h has one more point on its side containing r0 than in the opposite side containingr. Since the di�erence between the number of points of S contained in the two sides changes byone each time the plane reaches or leaves a point of S, there must be a position in between whenthe di�erence is zero. At that point the plane containing h contains a halving triangle from Tpq,but since � and �0 are consecutive, this halving triangle is not contained in h but in the oppositehalfplane and therefore in W 0.The uniqueness of this antipodal triangle is a consequence of the existence proof: If there weretwo or more antipodal triangles in Tpq for � and �0, then one could choose two consecutive onesand this pair of two consecutive elements of Tpq would have no antipodal triangle. 2Remarks: (a) Note that jTpqj must be odd to satisfy the assertion of the lemma, unless Tpq isempty. It is easy to show that Tpq is not empty for any edge pq.(b) We say that a collection T of triangles that is spanned by S is antipodal if it satis�es theproperty in Lemma 3.4. Inspecting the foregoing proof, it is easily veri�ed that it also applies toany antipodal collection T . Hence any such collection can have at most O(n5=2) triangles. As amatter of fact, this also holds for weakly antipodal collections T , meaning that, for each edge pq,the antipodality property holds for all but a constant number of consecutive pairs of triangles inTpq.We �x a coordinate frame and assume that no horizontal plane (i.e., one parallel to the xyplane) contains more than one point of S. We further assume that the plane of no triangle in T isparallel to the y-axis. This can be achieved by a suitable rotation.Fix a point p 2 S, and let hp be the horizontal plane passing through p. Let �p be any horizontalplane above p. Clip each triangle in Tp to the halfspace above hp, and project each (nonempty)clipped triangle centrally from p onto �p. The resulting set of projected triangles has the followingstructure. Each point u 2 S that lies above hp is mapped to a point u� 2 �p. Each triangle puv inTp for which both u and v lie above hp is mapped to the segment u�v�, and each triangle puv in Tpfor which u lies above hp but v lies below hp is mapped to a ray emanating from u�. Triangles puvin Tp for which both of u and v lie below hp are excluded from the analysis. Let Gp denote thisgeometric graph drawn on �p (strictly speaking, Gp is not a geometric graph in the sense of [12],because of the in�nite rays that it contains), and let S�p be its set of vertices, the projected imagesof points of S above hp. We refer to both the bounded edges and the rays as edges of Gp.Notice that a crossing pair of edges in Gp correspond to a crossing pair of triangles in Tp. ThusLemma 3.3 bounds the total number of edge crossings in the graphs Gp.Let ep and rp be the number of edges and rays in Gp, respectively. In the next lemma we �ndthe average of these numbers.Lemma 3.5 (a) Pp2S ep = 2t;(b) Pp2S rp = t.Proof: Consider any triangle � in T and let the vertices of � in ascending order of theirz-coordinates be p, q, and r. The triangle � contributes a bounded edge to Gp since q and r areboth above hp. � contributes a ray to Gq since r is above hq but p is below it. Finally, � does notcontribute to Gr since both p and q are below hr. Each triangle in T contributes two to the sumin (a) and one to the sum in (b), thus proving the lemma. 2We next observe that Gp has the following antipodality property, which is an immediate inter-pretation of the antipodality property of Lemma 3.4.4



Lemma 3.6 Let u� 2 S�p and let us sort the edges of Gp incident to u� in the angular order aroundu�. For any two consecutive elements e1 and e2 of this cyclic order there is a unique `antipodal'edge e3 in Gp incident to u�, namely, one that extends from u� into the wedge that is antipodal tothe wedge formed between e1 and e2.Proof: The edges e in Gp incident to u� are in 1-1 correspondence with the triangles in T thatare incident to both p and u. (Here u� is the projected image of the point u 2 S.) Our lemmafollows from Lemma 3.4 since the cyclic ordering of these edges coincides with the cyclic ordering ofthe triangles around the line pu and antipodality for edges corresponds to antipodality of triangles.2We use the antipodality established above to decompose the edges of each Gp into a collectionof x-monotone convex chains, in a manner similar to that in [6]. We include a description of thisconstruction so as to make our paper self-contained and to handle properly the presence of in�niterays in our graphs.Notice that our assumption on the coordinate system implies that no edge of Gp is parallel tothe y-axis, and thus we can distinguish between left and right endpoints of edges. For de�ning thechains we describe how to continue a chain to the right past an edge e of Gp. We extend e to theright past its right endpoint q� and turn the extended segment about q� counterclockwise (lookingfrom above) until we encounter the �rst edge e0 in Gp incident to q� and extending from it to theright. The chain containing e continues through e0. If e is a ray having no right endpoint or if thereis no such e0 as required, then e is the rightmost edge in its chain.Lemma 3.7 (a) Each edge of Gp appears in a unique chain.(b) A single chain terminates at any given vertex of S�p (either on its right side or on its left side).(c) The number of chains is cp = (n+ rp)=2.Proof: Consider a vertex q� 2 S�p and let the edges in Gp extending from q� to the left incounterclockwise angular order be e1; : : : ; ek. Using Lemma 3.6 we �nd a unique edge fi incidentto q� in the wedge antipodal to eiei+1 for each of the values i = 1; : : : ; k � 1. Note that since thewedges are pairwise (openly) disjoint, the edges fi are distinct, and extend from q� to the right.Our construction guarantees that the chain containing ei continues through fi for i = 1; : : : ; k � 1and the chain through ek does not continue through any of the edges fi. This is easily seen toimply (a).For (b), notice that if there are no edges incident to q� other than the edges ei and fi then thechain containing ek terminates at q� (and this is the only chain terminating there). If, however,there are more edges of Gp incident to q�, then (again by Lemma 3.6) there are exactly two moreedges, both extending from q� to the right, and the chain containing ek extends through one ofthem, while the other edge represents a chain that terminates (on its left) at q�.To prove (c), consider the left and right extremities of each of the cp chains, each being eithera ray or a point of S�p . The number or ray extremities is rp and, by (b), the number of pointextremities is exactly n. This readily implies (c). 2The next lemma implies that for typical values of ep and rp (which are �(t=n) for both) andfor t = !(n2), a positive fraction of all pairs of edges in Gp are crossing. This is a substantialimprovement over the known 
(e3p=n2) bound on the crossing number (see, e.g., [13, Theorem14.12]). Using this weaker bound instead (and comparing it with the upper bound of Lemma 3.3),would yield a simple proof of the known result [7] that a set of n points in 3-space has O(n8=3)k-sets, for any �xed k. 5



a b c d e
f gFigure 2: An illustration of the graph Gp. One convex chain is drawn as dashed and one asdotted. The full decomposition into convex chains is (the notation �1=+1 means that the chainstarts/stops on a ray): (�1; c; f;+1), (�1; a; c;+1), (�1; a; d; f), (c; g;+1), (d; e), (a; b; g),(�1; b).Lemma 3.8 The number of edge-crossings in Gp is at least r2p=8� 3epn.Proof: In view of Lemma 3.7(a), it su�ces to obtain a lower bound for the number of pairs ofchains that cross each other. Instead, let us derive an upper bound for the number of non-crossingpairs of chains. Let C1; C2 be a non-crossing pair of chains. Then either (a) C1 and C2 are disjoint,or (b) C1 and C2 meet at a vertex. We assume that both C1 and C2 start and end on rays of Gp.The total number of pairs of chains that violate this assumption is at most cpn, as follows fromLemma 3.7(b).Suppose that C1 and C2 are disjoint, in which case one of the chains, say C1, lies fully aboveC2 (in the y-direction). Take any edge e2 of C2, and let `1 be the line tangent to C1 and parallel toe2. (The line `1 exists because C1 lies above C2 and C2 lies above the line containing e2.) Let p1 bea vertex of C1 incident to `1; see Figure 3. The pair (p1; e2) determines the pair (C1; C2). Indeed,the edge e2 identi�es the chain C2 uniquely, by Lemma 3.7(a). The pair e2 and p1 determine thetangent line `1, and the construction of the chains is easily seen to imply that p1 and `1 uniquelyidentify C1. Hence, the number of disjoint pairs of chains is at most epn.Suppose next that C1 and C2 meet at a vertex. Let e1 2 C1 and e2 2 C2 be edges of the chainswith a common right endpoint. Clearly e1 and e2 determine C1 and C2. Here e1 is one of the epedges of Gp and e2 is one of the at most n edges in Gp incident to the right endpoint of e1. (Herewe use the fact that the maximum degree of Gp is bounded by n, since at most n triangles in Tare incident to a �xed pair of points of S.) Hence, the number of pairs of chains having a commonvertex is at most epn. 6



C1C2 e2p1`1Figure 3: A pair of non-crossing chainsWe thus have at least �cp2 �� cpn� 2epn crossing pairs of edges in Gp which is, by Lemma 3.7(c),at least the claimed number r2p=8� 3epn. 2We �nish the proof by comparing the upper bound in Lemma 3.3 and the lower bound inLemma 3.8 for the number X of crossing pairs of triangles in T with a common vertex. We have3n4=8 � X �Xp2S(r2p=8� 3epn) � t2=(8n)� 6tn;where the last inequality follows from Lemma 3.5. We thus have t2 � 3n5 + 48tn2, which impliesthat t = O(n5=2).This, and the observations in Section 2 (a) and (c), complete the proof of Theorem 1.1.4 Open problems(a) Our analysis is based on the upper bound O(n4) on the number of crossings derived inLemma 3.3. However, this bound seems to be weak, because, for an edge ab connecting twopoints a; b of S, we want to count the number of k-triangles pcd that it crosses, with the additionalconstraint that pab is also a k-triangle. In our derivation we do not exploit this constraint at all, sothe �rst open problem is whether this bound can be improved, taking into account this constraint.(b) We conjecture that the following holds: Given a set S of n points in 3-space in general positionand an arbitrary set T of t triangles spanned by S, there exists a line that crosses 
(t2=n3) trianglesof T . This bound is signi�cantly larger than the bound 
(t3=n6) of [7] and it would yield a trivialproof of Theorem 1.1 (using Lov�asz Lemma). We are not aware of any construction that contradictsthis conjectured bound. This bound is best possible, for t = 
(n2), which can be shown by a simpleconstruction.(c) An even stronger conjecture is the following: Given a set S of n points in the plane in generalposition and an arbitrary set T of t triangles spanned by S, there exists a point that lies in 
(t2=n3)triangles of T . The best known lower bound, due to [3], is 
(t3=(n6 log5 n)). Again, the conjectured7



bound is best possible for t = 
(n2). (Note that if (c) is true then the following strengthening of(b) also holds: Given S and T as in (b), then for any direction u there exists a line parallel to uthat crosses 
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